
Journal of Intelligent Information Systems 7, 75-100 (1996) 
© 1996 Kluwer Academic Publishers. Manufactured in The Netherlands. 

Computing Access Relevance for Path-Method 
Generation in OODB and IM-OODB 
ASHISH MEHTA amehta @ quasar.poly, edu 
Center.fbr Applied Large-Scale Computing (CALC), Polytechnic University, Brooklyn, NY 11201 

JAMES GELLER geller @homer.njit.edu 
YEHOSHUA PERL 
Institute.for Integrated Systems, C1S Department, New Jersey Institute of Technology, Newark, NJ 07102 

PETER FANKHAUSER 
GMD-IPSI, Dolivostr 15, D-6100, Darmstadt, Germany 

Abstract. A path-method (PM) is a mechanism to retrieve or to update information relevant to one class, in an 
object-oriented database (OODB), that is not stored with that class but with some other class. The PM traverses a 
chain of classes and connections that ends at the class where the required information is stored. However, it is a 
difficult task for a user to write PMs. This is because it might require comprehensive knowledge of many classes 
of the conceptual schema. But a typical user has often incomplete or even inconsistent knowledge of the schema. 
Currently we are developing a system, called Path-Method Generator (PMG), which generates PMs automatically 
according to a naive user's requests. One algorithm of PMG uses numerical access relevance between pairs of 
classes as a guide for the traversal of an OODB schema. In this paper we define the notion of access relevance to 
measure the significance of the (indirect) connection between any two classes in an OODB and present efficient 
algorithms to compute access relevance. The manual PM generation in an interoperable multi object-oriented 
database (IM-OODB) is even more difficult than for one OODB since a user has to be familiar with several OODBs. 
We use a hierarchical approach for developing efficient online algorithms for the computation of access relevances 
in an IM-OODB, based on precomputed access relevances for each autonomous OODB. In an IM-OODB the 
access relevances are used as a guide in generating PMs between the classes of different OODBs. 

Keywords: object-oriented database, path-method, path-method generator, traversal algorithms, access rele- 
vance, triangular norms, weighting functions, interoperable databases, interoperable multi-OODB, inter-OODB 
connection 

1. I n t r o d u c t i o n  

The  task of  re t r ieving informat ion  re levant  to a class, that is s tored with another  class  in an 
O O D B ,  requires  cons iderab le  knowledge  o f  the structure of  the OODB.  In a large O O D B  
this is difficult  for  a typical  user  who  has incomple te  knowledge  of  the conceptua l  schema.  
The m e c h a n i s m  for  re t r ieving such dis tant  in format ion  is a pa th -method .  A path-method  
(PM) is a m e thod  wh ich  traverses f rom one class  through a chain of  connec t ions  (user- 
def ined  and gener ic  re la t ionships)  be tween  classes  to retr ieve relevant  in format ion  f rom a 
dis tant  class.  The wri t ing  o f  such P M s  requires  traversal o f  the O O D B  schema.  Currently,  
we  are deve lop ing  a sys tem,  cal led Path-Method Generator (PMG),  wh ich  consis ts  o f  a 
co l lec t ion  o f  traversal  a lgor i thms to genera te  des i red  PMs  automatically.  One  a lgor i thm of  



76 MEHTA ET AL. 

the PMG (Mehta et al., 1993; Mehta, 1993) uses as a guide for the traversal precomputed 
access relevances between all the pairs of classes in the OODB schema. 

Following, e.g., VML (Klas et al., 1991), GemStone (Butterworth et al., 1991), and 
ORION (Kim, 1990; Kifer et al., 1992), we are modeling an OODB schema as a directed 
graph. Classes are represented as nodes. Directly related classes are connected by a 
directed edge. Note that the directed graph of a schema may contain cycles. Our approach 
is enhanced as we assign an access weight from the range [0, I] to each edge in the schema 
graph. The access weight of a connection from a class as to a class at is a measure 
of its significance according to the frequency of traversing this connection relative to all 
connections emanating from the class as. The access weights are assigned according to 
the frequencies of use of the connections accumulated during the operation of the OODB. 
Initially, frequency information is not available and access weights are approximated by 
the schema designer. 

The significance of a path is measured by the access relevance value ARV(P). The 
ARV(P) of a path P is obtained by applying a triangular-norm (t-norm) (Fankhauser et al., 
1991; Kracker, 1992; Zadeh, 1965; Klir and Folger, 1988) to the set of access weights of 
the edges of the path. For example, for the t-norm PRODUCT, the access relevance value 
of a path is the product of the access weights of all its edges. There exist several infinite 
families oft-norms and corresponding conorms (Schweizler and Sklar, 1961). However, in 
Bonissone and Decker (1986) it is empirically shown that for most practical purposes two 
to five different t-norms suffice. From these we have chosen PRODUCT. 

The access relevance between non-adjacent classes as and at is a measure of the signifi- 
cance of the indirect connection from as to at. If several paths exist between a,. and at then 
we use the co-norm MAXIMUM to compute a single value. Thus, the access relevance 
AR(a,., at) from a class a~ to another class at is the maximum access relevance value over 
all paths from as to at. Note again the difference between the two terms access relevance 
value ARV(P) and access relevance AR(as, at). 

To relate our work to previous research, we mention the following relevant publications. 
The concept of dynamic message forwarding plan generation for incompletely specified 
global views of integrated databases is discussed in Neuhold and Schrefl (1988). In Bertino 
et al. (1992), OODB methods and OODB views are contrasted. Schema independent query 
formulation, i.e., finding proper terms defined in the schema from the terms contained in a 
user-query has been discussed in Kracker and Neuhold (1989). The PMG can be considered 
as apowerful underlying traversal tool for schema independent query formulation (Kracker, 
1992), for dynamic derivation of personalized views (Neuhold and Schrefl, 1988), and in 
general as a retrieval/update mechanism for OODBs. 

Other OODBs have used constructs similar to PMs, under a number of different names. 
Kim (1989) introduces an object-oriented query model based on query graphs. In Kifer et al. 
(1992) he extends his approach to a comprehensive treatment of path expressions. OQL, a 
query language for object-oriented databases (Alashqur et al., 1989) calls PMs in the fully 
formal treatment intensional association patterns (with distinctively named associations). 
Intensionality thereby stands for schema objects, while extensional association patterns 
involve instances. 

In Alhajj and Arkun (1993), a variant of PMs is referred to as message expressions. Their 
contribution is an object algebra that overcomes many problems of previous OODB query 



COMPUTING ACCESS RELEVANCE FOR PATH-METHOD GENERATION 77 

models, such as violation of the closure property. The closure property requires that the 
result of a query has to have the same structural properties as the original database. (Note, 
however, that OQL (Alashqur et al., 1989) conforms to the closure property.) Kemper and 
Moerkotte (1990) introduces an indexing scheme, called access support relations for path 
expressions. Their query language is QUEL-Iike. 

Query optimization for OODBs is combined with optimization for deductive databases in 
a single model in Cheiney and Lanzelotte (1992). This model permits the optimization for 
joins interleaved with path traversals. Query optimization has been extended to recursive 
queries (Lanzelotte et al., 1992), a useful feature for object-oriented engineering databases 
that deal with part hierarchies. 

Our own work agrees with the previously mentioned approaches on the basic building 
blocks (path expressions), but it differs from them considerably in the following way. Most 
of the described research, except to some degree Kim's, comes out of the tradition of 
specifying what the user wants to retrieve, but now how it should be done. In this paper our 
queries are underspecified. Our user is assumed to be naive, so that he cannot even give a 
complete description of what he wants to retrieve. Rather he specifies only the endpoints of 
his path expression. The PMG then returns a suggestion of what the user wants to retrieve, 
while query optimizers find the best way of how to retrieve fully specified information. The 
PMG user can accept that suggestion, or ask for an alternative. 

For interoperable databases the PM mechanism for supporting schema independent query 
formulation is even more important, as it is unrealistic to maintain a completely integrated 
schema which equally serves all users' needs. Rather, only a loosely coupled form of 
interoperable multi-database (Sheth and Larson, 1990) can be achieved by specifying simple 
cross-database relationships. In such interconnected schemas it is particularly difficult for 
individual users to combine information from multiple resources. We will discuss efficient 
algorithms to compute access relevance in an IM-OODB, i.e., each autonomous database 
is an OODB. However, the different OODBs may use different object-oriented database 
models. Connections between different OODBs are established by extending Cheiney and 
Lanzelotte (1992); Czejdo and Taylor (1991). 

The automatic generation of joins in relational databases is an analogous problem to PM 
generation. There are two major approaches to this problem, the universal schema interface 
(Maier and Ullman, 1983; Maier et al., 1987) and the implicit join (Litwin, 1985). There 
is a fundamental difference between PMs in our approach and joins in both of the above 
approaches. PMs are properties of a class and are generated by following a sequence of 
connections of the schema. Once the PM is generated, its execution requires just the fast 
traversal of the connections which appear in the definition of the PM. On the other hand, joins 
are used to combine information stored in different relations, which may be quite large, and 
require a large overhead for deriving query-results. E.g., in relational databases to find all 
the sections taken by a student, we need to join at least three relations, Student, Transcript, 
and Sections. Hence the join operations require processing of a large amount of data. 

A dramatic decrease in the amount of data accessed is achieved by using semijoins 
(see, e.g. (Elmasri and Navathe, 1989)). By optimizing the order of performing the join 
operations, a meaningful saving is obtained. Nevertheless, even with semijoins we have to 
process all the entries of some relationships, although not for all relationships. In an OODB 
on the other hand, once we find a student instance we connections, from student to transcript 



78 MEHTA ET AL. 

and then from transcript to sections. This traversal does not require any information about 
transcripts of other students, or sections taken by other students. Thus, execution of PMs 
significantly reduces the overhead of joins and even semijoins in relational databases. A 
fast object reference technique, such as in the BeSS System (Biliris and Panagos, 1995), 
can improve execution of PMs even further. 

The remainder of this paper is organized as follows. In Section 2, we discuss the no- 
tions of access weights and access relevance. In Section 3, we present an efficient algo- 
rithm for access relevance computation. In Section 4 we briefly describe the Path-Method 
Generator (PMG). In Section 5 we introduce the computation of access relevance in an 
Interoperable Multi-OODB. In Sections 6 and 7 we discuss the computation of access rele- 
vance in an IM-OODB containing two and many OODBs, respectively. Section 8 contains 
conclusions. 

2. Access  weight  and access relevance in an O O D B  

2.1. A general OODB model 

The presentation in this paper uses an abstract OODB model rather than a specific OODB 
model. The reason for this is to present the computation of access relevance between classes 
in a way that can be implemented on a variety of OODB systems. This general representation 
emphasizes the possibility of computing access relevance in an Interoperable Multi-OODB 
containing OODBs of different models. Although this abstract OODB model reflects a 
variety of existing OODBs, we use some of the terminology of Neuhold et al. (1989); 
Neuhold et al. (1990); Neuhold et al.; Geller et al. (1991); Klas et al. (1991), which we 
now summarize. 

A class description consists of  four kinds of properties: attributes, user-defined and 
generic relationships, and methods. Attributes specify values of a given data type. Methods 
specify operations defined for instances of a class. Relationships refer to other classes. We 
use the common term "connection" for user-defined and generic relationships. For a user- 
defined relationship the system has no additional semantics. Generic relationships are 
system-supported connections between classes. We consider two specialization generic 
relationships: categoryof (roleof) for the case where the superclass and the subclass are 
in the same (different) contexts. A set class S is always connected to a member  class M. 
Every instance of S is a set that has as members instances of M. Two generic relationships, 
memberof and setof, connect S and M. 

Let us consider a subschema of a university database (figure 1) and the directed graph 
G(V, E) corresponding to it (figure 2). Figure 1 uses OODINI,  a graphical language and 
tool for schema representation (Halper et al., 1992). A rectangle represents a class. A 
double line rectangle represents a set class and shares one corner with its member  class, 
e.g., the classes sect ion and sections.  Note that the schema contains a second set class for 
section, called crsections which represents a set of sections of the same course. A thick 
arrow represents specialization generic relationships such as categoryof, and a thin arrow 
a user-defined relationship. 

We will now define the formalism that is specific to this paper. 



C O M P U T I N G  A C C E S S  R E L E V A N C E  FOR P A T H - M E T H O D  G E N E R A T I O N  79  

Figure 1, 

6 1 

Cour,eRecord, i 

i ~=:~°"/ \ 
Tr~nscrl  t Supervisor 

i ' i / i o.~ 

, I ~ - - - - - - J  ,o I ~ l  
/ I I c . . . . . .  o.s M . . . . . . .  . . ]  $ 

I 

A subschema of a University Database. 

0.~ 

0.~ 

0.," 

0.1 

Figure 2. The subschema as a directed graph. 



80 MEHTA ET AL. 

Definition I. A path-method (PM) is a side effect-free method that consists of a chain of 
connections between classes, possibly terminated by an attribute. Execution of a PM with 
an instance as argument results in the retrieval of some object (or data) at the end of the 
chain which is a function of the argument. (If several objects or data are retrieved, then the 
set of objects is a function of the argument.) 

E.g., in figure 1, if we want to know all sections that the advisor of a student X is teaching, 
we use a PM consisting of the connection Supervisor from student to professor, followed 
by the connection Teaches to sections. 

Definition 2. The access weight of a connection between two neighboring classes is a 
number between 0 and 1 that characterizes the strength of this connection. 

Intuitively, the access weights reflect how often connections have been used in the past, 
i.e., the strength is measured by frequency. We will use this strength to choose to which 
connection the PMG should advance. The access weights have to follow certain rules that 
will be introduced later on. A main problem of this paper is to find a technique for computing 
a number which measures the strength of a connection between two classes that are not 
directly connected, i.e., a generalization of access weights for pairs of distant classes. 

Definition 3. The access relevance value ARV(P) of a path P is a number that character- 
izes the strength of P. It is computed from the access weights of all the connections on P. 

Definition 4. The access relevance AR(a,., a~) from a node as to a node a~ is a number 
that characterizes the strength of the strongest path between those two nodes, taking into 
account all the paths from a,. to at. 

Note that AR(a,., at) is directional, because connections are directional. In other words, 
usually AR(a,., at) ~ AR(at, as). The precomputed access relevances for a schema consist 
of a table of the access relevances for every pair of nodes (a,., at) such that there is at least 
one path from as to at. 

Definition 5. The Path-Method Generator (PMG) is a system of algorithms that takes as 
arguments two nodes a,. and at, and that returns a path from a, to at. In selecting this path 
it makes use of the precomputed access relevances for the schema. The resultant path is the 
"strongest" path that exists from as to at in this schema. 

2.2. Motivation 

We now describe briefly why the PMG needs to use access relevances. While traversing the 
schema to generate a PM, we start with the source class a.,. and consider its different outgoing 
connections. Our observation has been that some connections in a database schema are more 
significant than others. Traversing the connections of a schema, giving priority to more 
significant connections, will in many cases produce PMs more correctly and efficiently than 
a uniform traversal. The problem is how to identify the "more significant" connections. 



COMPUTING ACCES S RELEVANCE FOR PATH-METHOD GENERATION 81 

One may try to use the semantics of the different connections in the schema. However, 
one needs to specify a combination rule for the semantics of the connections along a path 
in order to derive the significance of a connection of two classes which are not directly 
related. Recent work (Fankhauser et al., 1991; Fankhauser and Neuhold, 1992) addresses 
this problem based on semantic resemblance between classes. However, the ideas used in 
Fankhauser et al. (1991); Fankhauser and Neuhold (1992) are not applicable to measuring 
the semantics of the connection between two indirectly related classes. The problem is that 
while semantic resemblance (Fankhauser et al., 1991; Fankhauser and Neuhold, 1992) can 
supply a semantic interpretation to the different adjacent edges, there is no known way to 
generalize this notion to paths. Thus, we have taken the approach introduced before. 

The access weights associated with the connections emanating from a class are chosen 
to reflect the relative frequencies of traversal of each of the connections of the class during 
the operation of the OODB. These numbers should be accumulated during the operation of 
the OODB. In the beginning, when access frequency information is not available, a domain 
expert can suggest initial values for access weights. Further research will determine whether 
application (view) oriented frequencies will be needed to achieve acceptable success ratios 
for automatic path generation. 

The simplest greedy traversal algorithm would be to choose at each node the outgoing 
connection of highest frequency. However, our experiments (Mehta et al., 1993) show that 
this algorithm, like many greedy algorithms (Horowitz and Sahni, 1989), lacks the look- 
ahead property necessary in many cases to create a desired PM. Thus, we use a measure 
that incorporates the access weights of all connections that make up a path. Our PMG 
algorithm decides on the connection to be traversed from a,, based on the access weight of 
the connection to a neighboring class u and the access relevance from u to the target class 
at. These choices will be made for each node in the path traversal. This mechanism adds 
to the greedy traversal the necessary look-ahead property which dramatically improves the 
results of our PMG algorithm (Mehta et al., 1993). Our experiments (Mehta et al., 1993) 
show that traversal of a schema according to the following rules generates the desired PMs 
more successfully and more efficiently than a uniform traversal, e.g., depth first search, or 
breadth first search. 

2.3. Access weight assignment and computation of access relevance 

Each connection in the OODB is assigned an access weight W, where 0 < W < 1. For 
the relationships setof and memberof and for user-defined relationships the access weight 
satisfies Rule 1. 

Rule 1. The sum of the weights on the n outgoing connections of a class must conform to 
n the following constraint: ~-~'~i=l Wi = 0.5 * n. From this sum, each connection is assigned 

a weight from the interval [0, 1], reflecting its relative frequency of traversal. 
E.g., in figure 1, the class t ranscript  has three relationships, CourseRecords to 

course_records, CurrentSections to sections and Student to student, with access weights 
0.8, 0.4, and 0.3, respectively. Observe that 0.8 + 0.4 + 0.3 = 1.5 = 0.5 * 3, as required 
by Rule 1. 



82 MEHTA ET AL. 

The justification for Rule 1 is as follows. It is not sufficient to assign access weights which 
add up to 1 according to traversal probabilities of a connection. This would imply that the 
connections of a class with few connections are more significant than the connections of a 
class with many connections, which is not true. Thus, Rule 1 makes the values of access 
weights independent of the number of connections of a class. (For access weights missing 
in figure 1 refer to figure 2.) 

While we hasten to stress that access weights are not probabilities (they do not sum to 
1 !) and not grades of fuzzy membership, we are still using t-norms to combine them. To 
stress the fact that we are talking about access weights and not probabilities, we will use 
the term "weighting function" (WF) instead of the term t-norm. We will use the weighting 
function PRODUCT. The weight of a path between two classes is the product of the access 
weights of all the edges in the path. 

For an example, let us consider the paths from professor (12) to course (10). (1) The path 
Pl represents the class sequence (professor (12), sections (7), section (8), crsections (9), 
course (10)). This class sequence will retrieve all the courses being taught by a professor. 
The ARV(pl) is 0.0872. (2) The path P2 represents the class sequence (professor (12), 
students (3), student (2), t ranscript  (4), sections (7), section (8), crseetions (9), course 
(10)). This class sequence will retrieve all the courses currently being taken by all the 
students supervised by a professor. The ARV(p2) is 0.0068. 

Following again techniques commonly used with fuzzy sets, we will use a co-norm to 
select one of the paths connecting the pair of nodes as and at. Here, we will use the MAX- 
IMUM co-norm. In other words, we are applying the MAXIMUM function to the access 
relevance values of all paths from as to at to compute the access relevance from as to at. 

Definition 6. The most relevant path from as to at is the path P with the maximum ARV(P) 
compared to all the other paths from as to at. 

Lemma 1. The ARV(P) of the most relevant path P from a, to a~ is identical to the 
AR(as, at). 

Proof: As we are using the MAXIMUM co-norm to choose between different paths, the 
path P that will be selected to define the AR(a,., at) value is the one with the maximum 
ARV(P). [] 

In the previous example Pl is the most relevant path. Later on we will need the following 
property of a most relevant path. 

Proper ty  1: For every pair of nodes there exists a simple (i.e., no cycles) most relevant 
path. 

Property 1 is implied by the fact that for our WF the deletion of a cycle from a path P 
can only increase the access relevance value of P. 

The assignment of access weights to the relationships roleof and categoryof needs to 
reflect inheritance, i.e., each property of a superclass is available at the subclass at no extra 
cost. We consider two possible rules. 



COMPUTING ACCESS RELEVANCE FOR PATH-METHOD GENERATION 83 

R u l e  2a. Assign an access weight of 1.0 to each roleof  and categoryof  connection (see 
figure 2). 

Such a value implies that the properties of the superclass are available at the subclass 
without decreasing the access relevance. However, Rule 2a has the following disadvantage. 
It enables the traversal of a specialization connection as a regular connection rather than an 
inheritance link. That is, it enables traversal which stops at the superclass as a target rather 
than continuing to use one of its properties. But there is no reason for such traversal since 
it does not lead to any meaningful information not available at the subclass. We would like 
to block traversals through specialization connections while still enabling inheritance. But 
an access weight of 1.0 enables such a traversal and gives it high priority. 

R u l e  2b. Assign an access weight of 0.0 to categoryof  and roleof  connections. Copy all 
the properties of the superclass to the subclass in the schema's underlying graph to allow 
for the effect of inheritance. 

Rule 2b allows computation of access relevance exactly as discussed before, but it prac- 
tically disallows unwanted traversals of specialization connections. One disadvantage of 
Rule 2b is that the schema graph becomes more dense. Thus, it increases the running time 
of the algorithms which compute access relevances. The schema visible to the user as well 
as the algorithms for computing the access relevance are not changed. Our experiments 
with the PMG algorithm (Mehta et al., 1993) show slightly better results for Rule 2b than 
Rule 2a for generating PMs. Thus, the choice between Rule 2a and Rule 2b is a tradeoff 
between accuracy and complexity where the difference is small in both dimensions. For 
figure 1 the graph is unchanged. 

To summarize formally, we state that ifa single path P (as, at) = as (=-aft), ai2 , ai3 , . . . ,  ai~ 
(~at)  connects two nodes a,,, at, then the access relevance value of P is 

A R V ( P ) =  H [W(ai , 'a ir+l)]  
(i_<r<k) 

If there are m paths Pj . . . . .  Pm from a,. to at, then the access relevance of this pair of 
nodes is 

= = max AR(as, at) max A R V ( P j )  W air , air+i 
j=1 .i=1 ((~,,,%+,)cp,) 

We define AR(as, a,.) - 1. Maximizing the PRODUCT weighting function finds a path 
with the highest product of access weights of all its edges. We note that sometimes the 
user may be interested in the access relevance between a class a~ and an attribute atra, of 
another class at. To handle this case we represent the connection between a class and one 
of its attributes by an edge with a given access weight. 

Definit ion 7. We define AR(¢~, atr~,) for a pair of a class a, and an attribute atr of another 
class at as follows: 

AR(as, atr,,) = WF[AR(¢,., at), W(a t ,  atro,)] 

Note that if W(at, atr, t ) = i then for WF = PRODUCT AR(a,., atr~,) = AR(a,, at). 



84 MEHTA ET AL. 

3. Algorithms for computing access relevance in an OODB 

We will now describe an algorithm PRODUCT_AR for the PRODUCT weighting function 
which computes access relevance fi'om a source class to all the classes in the schema. This 
algorithm is a variation of  the well-known nearest neighbor greedy algorithm of  Dijkstra 
(e.g. (Aho et al., 1983)) which solves the single source shortest path problem. To find 
the access relevances for all pairs of classes in a schema of n classes we need to apply 
PRODUCT_AR n times, once for each class as a source class. PRODUCT_AR finds the 
access relevance AR(s,  v) from a source class represented by node s to every other class 
v and stores it in an array ARS. In other words, the notation ARS[v] stands for the stored 
value of  AR(s,  v). 

The algorithm assumes without loss of generality that all nodes are labeled with integers: 
V = {1,2 . . . . .  n}. It maintains a set S of nodes whose maximum access relevance from 
the source is already computed. Initially, S contains only the source node {s}. At  each step, 
we add to S a node u c V - S of  maximum access relevance. (If there are several, we 
choose one at random.) A path from s to a node v is called special if all its nodes (except 
possibly v itself) belong to S. 

At  each step of  the algorithm, we use the array ARS to record the maximum access 
relevance value of a special path to each node. In each step, after u is chosen to be inserted 
into S, a new special path P to v, v E V - S - {u} containing u may result, that has an 
A R V ( P )  > ARS[v].  Hence, we update ARS[v] for each node v 6 V - S as follows. We 
are using a two-dimensional  array W, where W[i, j] is the access weight of  the edge (i, j ) .  
I f  there is no edge (i, j ) ,  then W[i, j ]  = 0. ARS[v] is the maximum of  two values: (1) The 
old ARS[v]  and (2) ARS[u] • W[u, v] representing the access relevance of a special path 
containing u as the last node before v. Once S includes all nodes, all paths are "special",  
so ARS[v]  will hold the maximum access relevance from the source to each node v 6 V. 

Procedure PRODUCT_AR (IN s: node, O U T  ARS: array[1..n] of REAL) 
begin 

( 1 )  S : =  {s}; 
(2) for  each node v other than s do 
(3) ARS[v] : =  W[s,  v]; 
(4) for  i :--- 1 to n - 1 do begin 
(5) choose a node u in V - S such that 

ARS[u] is a maximum; 
(6) add u to S; 
(7) for each node v in V - S do 
(8) ARS[v] : =  max (ARS[v],  ARS[u] * W[u, v]) 

end 
end; 

Let us apply PRODUCT_AR to the graph of figure 2 assuming Rule 2b, although figure 2 
was constructed according to Rule 2a. The source is node 12 (professor) .  In steps (2)-(3), 
S = { 12}, ARS[3] = 0.3, ARS[1] = 0.0, ARS[7] = 0.7, and for the rest of the entries i of 
the array, ARS[i]  = 0. Note that ARS[1] = 0.0 using Rule 2b, though it is shown as 1.0 



COMPUTING ACCESS RELEVANCE FOR PATH-METHOD GENERATION 85 

in figure 2. In the first i teration of  the f o r - l o o p  of  lines (4)-(8),  u = 7 is selected as the 
node with the m a x i m u m  ARS[u] .  Then  we set ARS[8]  = max(0,  0.7 • 0.5) = 0.35. Other  
values o f  the array A R S  do not change.  See  the sequence  o f  the A R S  values in Table 1. 

I f  we  compu te  the array A R S  for every starting node s, then the result  wil l  be a two-  
d imens iona l  matr ix  AR[s ,  v]. The  value stored in every array e lement  AP,[s, v] is then 
identical  to the result  o f  comput ing  AR(s ,  v). The  results o f  P R O D U C T _ A R  (Table 1) 
appear  in row 5 in the matr ix A R  in Table 2, showing the access re levance  for each pair  
(5, v), v c V, o f  nodes. We will  now discuss the validity o f  the PRODUCT_.AR algori thm. 

Table 1. Computation of PRODUCT~.R on graph of figure 2. 

Iteration S u New value of ARS 

ARS[3] = 0.3, ARS[1] = 0.0, ARS[7] = 0.7 
ARS[8] = 0.35 
ARS[9] = 0.175 
ARS[21 = 0.150 

ARS[10] = 0.088 
ARS[4] = 0.135 
ARSI6] = 0.108 
ARS[5] = 0.032 

ARS[ll] = 0.044 

Initial { 12} - 
1 {12,7} 7 

2 {12,7, 8} 8 
3 {12,7,8,3} 3 
4 {12,7,8,3,9} 9 
5 {12,7,8,3,9,2} 2 
6 {12,7,8,3,9,2,4} 4 
7 {12,7,8,3,9,2,4,6} 6 
8 {12,7, 8, 3, 9, 2,4, 6, 10} 10 
9 {12,7,8,3,9,2,4,6, 10, 11} 11 

10 {12,7,8,3.9,2,4,6, 10, 11,5} 5 
1l {12,7,8,3,9,2,4,6, 10~ 11,5, 1} 1 

Table 2. Access relevance matrix AR for graph of figure 2. 

1 2 3 4 5 6 7 8 9 10 11 12 

1 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
2 0.0 1.0 0.3 0.9 0.216 0.72 0.36 0.18 0 . 1 3 6  0 .151 0.076 0.3 
3 0.0 0.5 1.0 0.45 0 . 1 0 8  0.36 0.I8 0.09 0 . 0 6 8  0.076 0.038 0,15 
4 0,0 0.3 0.12 1.0 0.24 0.8 0,4 0.2 0.151 0 .168  0,084 0.14 
5 0.0 0 ,095  0.189 0.21 1.0 0.3 0.154 0.315 0.63 0.7 0.35 0.221 
6 0.0 0,21 0.084 0.7 0.3 1.0 0.28 0.14 0 . 1 8 9  0.2l 0.105 0,098 
7 0.0 0.15 0.3 0.135 0 .032  0.108 1.0 0.5 0.25 0 . 1 2 5  0 .063  0.35 
8 0.0 0.3 0,6 0,27 0 . 0 6 5  0 .216  0.49 1,0 0.5 0.25 0.125 0.7 
9 0.0 0.15 0,3 0,135 0.032 0 .108  0245 0.5 1,0 0.5 0.25 0.35 

IO 0.0 0.135 0.27 0,122 0.029 0 ,097  0.22I 0.45 0.9 1.0 0.5 0.315 
I1 0.0 0.068 0 .135  0 ,061  0 .015  0.049 0,11 0.225 0.45 0.5 1.0 0.158 
12 0.0 0.15 0.3 0.135 0.032 0.108 0.7 0.35 0 , 1 7 5  0 .088  0.044 1.0 



86 MEHTA ET AL. 

Theorem 1. In the PRODUCT_AR algorithm, ARS[v] contains at all times the highest 
access relevance of a special path from node s to node v, for every node v ~ V. 

Proof: Due to space limitations we need to omit the proof, which can be found in Mehta 
(1993). [] 

The running time of the PRODUCT_AR algorithm is O (n2). Let e be the number of edges 
in the graph. If e << n 2 then we might do better by using an adjacency list representation 
of the directed graph and using a priority queue implemented as a heap (Aho et al., 1983) 
to organize the nodes in V - S. Choosing and deleting a maximum access relevance node 
from S in lines (5) and (6) takes O (log n) time. This operation is repeated n times yielding 
O(n log n) time. The loop of lines (7) and (8) can then be implemented by going down the 
adjacency list for u and updating the access relevance in the priority queue. At most a total 
of e updates will be made, each at a cost of O (log n), so the total time is now O (e log n), 
rather than O (n2). Thus, the running time of PRODUCT_AR algorithm is O (e log n). This 
running time is considerably better than O(n  2) if e << n 2, as it is for a typical OODB 
schema whose graph representation is a sparse graph. 

4. The PMG algorithm to generate path-methods 

4.1. User interaction with the PMG 

Before describing the PMG we shall clarify our assumptions about the interaction between 
the user and the PMG. We assume that the user supplies to the PMG a pair of (source, target). 
Although the user does not know the exact traversal path from the source to the target, s/he 
perceives the proper interpretation or "semantics" of the PM s/he desires and can give a 
verbal description of it. As we will see later, such a verbal description is an inappropriate 
input to PMG, because it is not usually clear how to utilize the information contained in 
it. For the same pair (source, target) there may exist several possible semantics. E.g., for 
(student, {course}) we list several possible interpretations. (1) The courses already taken 
by a student. (2) The courses currently taken by a student. (3) The courses taught by all 
current instructors of a student. (4) The courses offered by the supervisor of a student. 

Let us enumerate the paths corresponding to these 4 interpretations. (1) (student, tran- 
script, course_records, course_record, course). (2) (student, transcript, sections, sec- 
tion, crseetions, course). (3) (student, transcript, sections, section, professor, sec- 
tions, section, crsections, course). (4) (student, professor, sections, section, ersections, 
course). 

Different users may want different PMs for the same pair. Thus, there is no sense in 
talking about a "right" or "wrong" PM for a given pair. Instead, we talk in this paper about 
the desired PM. A PM is generated by the PMG system and the user can verify whether 
it is the PM desired by him. The PMG system does not guarantee that the generated PM 
has the desired semantics, as this task seems to be beyond the capabilities of an automatic 
traversal. It is much easier for a user to verify a PM than to traverse the schema on his own 
and find it. By developing a PMG system which generates the desired PM in most cases 



COMPUTING ACCESS RELEVANCE FOR PATH-METHOD GENERATION 87 

at the first try, the system will serve as an important tool to support queries in an OODB. 
In the few other cases, the PMG system enables the user to perform subsequent traversals, 
incorporating the feedback she gained, to find the desired PM in almost all remaining cases 
(see Mehta etal., 1993; Mehta, 1993). 

4.2. Path-method generation algorithm 

In Mehta etal.  (1993) and Mehta et al. (1995) we present in detail the PMG algorithm 
using access relevance to generate PMs and compare its results to those of several other 
algorithms. In this paper we just review this algorithm briefly to motivate the study of 
efficient algorithms for computing access relevances which is the subject of this paper. 

The PMG algorithm has two required parameters, the source s and the target t of the 
desired PM. The algorithm is basically a traversal algorithm from the source s to the target t. 
It maintains a stack containing the classes along the current path, which provide the class 
sequence of the PM once t is reached. The stack is also used for backtracking in case the 
traversal cannot continue forward. 

The traversal starts at s and repeats in each iteration the same operation for the node u 
at the top of the stack. In each step we consider all outgoing neighbor classes of u. To 
select the next class in the PM we consider for each outgoing neighbor class v of u the 
access weight W[u, v] and the access relevance matrix entry AR[v, t]. We apply to these 
two numbers a weighting function (PRODUCT) and select out of the neighbors the class 
v which maximizes the return value of the weighting function. If the selected class v is 
identical to the target t, the traversal is completed. Otherwise the next iteration follows, 
where u is set to the class v that was selected. 

We now demonstrate the application of the PMG algorithm for the pair (student (2), 
course (10)). The class student (2) has 4 outgoing connections to person (11), students 
(3), professor (12), and t ranscript  (4). We calculate now the value of W(u, v) • AR(v, t), 
using the PRODUCT weighting function for each of the neighbors v. The ARs are taken 
from Table 2 as calculated for the schema of figure 1. 

W[2, 1] * AR[1, 10] = 0 * 0 -- 0 (Note: We use Rule 2(b)). 
W[2, 3] • AR[3, 10] = 0.3 • 0.076 = 0.0228 

W[2, 12] • AR[12, 10] = 0.3 • 0.088 = 0.0264 
W[2, 4] • AR[4, 10] = 0.9 • 0.168 ----- 0.1512 

Thus, transcript  (4) is selected as the next class in the PM and is pushed onto the stack. 
Now transcript has 3 outgoing connections to neighbors: student (2), course_records (6), 
and sections (7). The class student is already on the stack, so it is not a candidate. We 
compute W[u, v] * AR[v, t] for the other classes. 

W[4, 6] ,  AR[6, 10] = 0.8 * 0.21 = 0.168 
W[4, 7] ,  AR[7, I0] = 0.4 • 0.125 = 0.05 

Hence course_records (6) is selected as the next class in the PM and is pushed onto 
the stack. The class course_records has two outgoing connections, to transcript and to 



88 MEHTA ET AL. 

course_record. The class t ranscript  is already on the stack. Hence course_record is 
selected as the next class in the PM and is pushed onto the stack. It has only one unused 
outgoing connection to a neighbor, the class course, which is the target t of the desired 
PM. Hence, the PM is completed and its class sequence is (in reverse order): (student, 
transcript, course_records, course_record, course). This is the PM of interpretation (1) 
from Section 4.1, i.e., all the courses already taken by a student, 

The user sees the PM generated by the algorithm and determines if it has the semantics 
intended. What happens if this is not the case? Then he applies the algorithm again, 
providing some optional parameters. There are two optional parameters: forbidden classes 
and required classes. Suppose, for example, that the user is interested in all the courses the 
student is taking now (interpretation 2 from Section 4.1). Looking at the first PM returned 
by the algorithm he tries to identify where it went wrong. He sees that the offered PM 
contains the class course_records which holds courses already taken. Then he can mark 
course_records as a forbidden class. By this choice he forces the algorithm to avoid this 
class when reconstructing the PM, resulting in the following PM: (student, transcript, 
sections, section, crsection, course). This corresponds to the desired interpretation (2). 

Another option to obtain this PM is by picking a required class which must belong to the 
PM. For interpretation (2) the class sections is such a class since to obtain the current courses 
a student is taking we need to access the sections he is taking. Now, instead of searching 
for a path from student to course we search for a path from student to the required class 
sections and a path from sections to the target class course. The concatenation of these 
two paths actually yields the same PM as interpretation (2). 

5. Computing access relevance in an interoperable multi-OODB 

So far we have discussed path traversal in a single database. To automate path traversal 
in interoperable databases means to automate it across database boundaries which is even 
more important for a naive user. This is because not every possible query which needs 
a combination of data from multiple databases can be anticipated and represented in a 
predefined view. Rather, only simple cross-database relationships via joinable attribute 
domains can be determined. Thus, PMs are needed to help the user in navigating along 
these relationships. 

Let us consider for example a university environment which typically contains several 
units. Each unit has its own autonomous OODB which contains necessary information 
for its day to day operations. In addition, these OODBs are interoperable, because it 
is necessary for one unit to access information from other units. An IM-OODB for a 
university environment, which consists of five OODBs, is shown in figure 3. It consists of 
an admissions OODB, a registration OODB which was discussed in the previous sections, 
a departmental OODB, afinance OODB and a library OODB. 

In an IM-OODB one component OODB can retrieve information from another component 
OODB. For example, the registration OODB retrieves information from the departmental 
OODB about every professor's teaching sections. It retrieves information from the admis- 
sions OODB about the admission status for new students, and from the finance OODB 
about overdue payments before a student may register each semester. 



COMPUTING ACCESS RELEVANCE FOR PATH-METHOD GENERATION 89 

registration OODB 

d~ 

admi 

Figure 3. An interoperable multi-OODBs system. 

We have shown only a few classes of each component OODB in figure 3, but in reality the 
number of  classes in each OODB is large. Let us assume that each component has n classes. 
All-pair computation of  access relevances for each component OODB requires computation 
of/7 2 values. As we have k component OODBs it is necessary to compute k n  2 values. If  
these component OODBs are interoperable, there are totally kn  classes which requires the 
computation of  (kn) 2 values, a number much larger than kn  2. Even if we subtract the k n  2 
values that were already computed, the combination into a Multi-OODB still requires to 
compute and store k ( k  - 1)n z values, a number that is large compared to the number of 
values stored for all individual databases. Therefore, it is not practical to simply extend our 
approach from Sections 2 and 3 to IM-OODBs. Thus, we apply a hierarchical approach. 
While the internal values for each component OODB are precomputed, the values between 
pairs of  classes from two different OODB components will be computed on the fly based 
on the precomputed access relevance of each component OODB and the access weights of 
the relatively few connections between pairs of  classes from different OODBs. 

6. An IM-OODB containing only two OODBs 

In this section we discuss the computation of access relevances in an IM-OODB containing 
only two databases. For this special case we present an algorithm which is more efficient 
than in the general case. Furthermore, this case will serve as an introduction to the more 
complex general case in Section 7. 



90 MEHTA ET AL. 

To explain how to realize a connection between two component OODBs, we follow 
Czejdo and Taylor (1991). The problem is that a class in an autonomous OODB cannot 
have pointers to a class in another OODB. The solution of Czejdo and Taylor (1991) 
selects two classes, one in each OODB, that represent the same real world objects. In their 
example the two classes represent social security numbers, one with dashes and one as 
integers. For both of these classes they define a class in the IM-OODB schema. Then a 
correspondence is defined between the two IM-OODB schema classes and implemented 
as a mathematical transformation capable of transforming an instance of one class to an 
instance of the other class. In this way, we avoid pointers for instances from different 
IM-OODBs. The connection between the two classes of the two OODBs is realized by 
a PM (in our terminology) from one class to its IM-OODB schema class and on through 
the transformation to the IM-OODB schema class of the other class and then to the other 
class. 

In Czejdo and Taylor (1991) every item of information is represented as a class. However, 
in our abstract model as well as in many other models (e.g., VML (Martin, 1991), ONTOS 
(Klas et al., 1991), ObjectStore (Lamb et al., 1991)), most items of information which are 
stored with a class are represented as attributes. For example, the social security number 
of a person will be an attribute of the class person. Thus, we have to modify the solution of 
Czejdo and Taylor (1991) as follows. We pick two classes, one in each OODB, representing 
the same real world object, e.g., in our upcoming example dep.professor and reg.professor 
to be represented in the IM-OODB schema. The dot notation is used to distinguish classes 
of different OODBs. The mathematical transformation between these two classes in the 
IM-OODB schema is based on the correspondence of their appropriate attributes, e.g., an 
attribute representing the name or the social security number of the professor. 

However, in our model we can have a connection between two classes, one in each OODB, 
even i f  they do not represent the same real worm object. If both classes have corresponding 
attributes representing the same real world information, the correspondence can be realized 
based on the mathematical transformation of the attributes of the two classes, even though 
the classes do not represent the same real world object. This enables more flexibility in 
establishing connections between different OODBs, as seen in the following example. 

In figure 4 the class course of the registration OODB has an attribute dept_name which 
represents the department that offers this course. The class department in the depart- 
mental OODB has an attribute name. Presumably the department names used in these 
two databases are identical. Thus, we can have a PM with the class sequence (course, 

DeFerment 0.~ 

r,gLJt,~tlon OODB d~partm~,~t*~ OOOm 

Figure 4. H o w  to realize connect ions  between two component  OODB.  



COMPUTING ACCESS RELEVANCE FOR PATH-METHOD GENERATION 91 

Figl.iTe 5. 

C o ~  oleof 

I ~  D2 pervlsor 

cRtegoryof categoryof 

/ ° , ~ ~ ( ~ ° ° ' ~  f l  

R7 R8 ~et o i R9 L Sect ~z; 
1 . . . . . . . .  o . . . . . . . .  . . . . . .  

RI 1 e ~  ou~e 

registration OODB departmental OODB 

An IM-OODB containing the registration and the departmental OODB. 

im-course, im-department, department), where classes im-course and ira-department 
are defined in the IM-OODB schema. The endpoints of this path do not represent the 
same real world objects. Nevertheless, an attribute-pair (dept~ame, name) can be used for 
implementing the transformation in the IM-OODB schema. 

Two small subschemas of the registration OODB (figure 1) and the departmental OODB 
and their corresponding graphs are shown in figure 5 and figure 6. Both the OODBs have a 
class professor. Two PMs between these two classes, Dep_prof and Reg_prof, consist of the 
class sequences (reg.professor, im-reg.professor, im-dep.professor, dep.professor) and 
(dep.professor, im-dep.professor, im-reg.professor, reg.professor), respectively. An 
attribute-pair (name, name) can be used for establishing the correspondence between in- 
stances. The PM Department for the class course is described in figure 4. There is a 
PM Courses defined from department to courses (figure 5). The attribute dept_name, is 
also defined for courses and has a non-nil value only for instances of a set of courses of 
the same department. Thus, the same attribute-pair (dept_name, name) can be used for 
correspondence between such instances of the class courses and instances of the class de- 
partment. There may be instances of the class courses representing a set of courses which 
have several department names, e.g., prerequisite sets. Such instances are not considered 
for correspondence with the class department. 

We will now define the problem of computing access relevances in an IM-OODB. In 
a typical IM-OODB, a component OODB is developed first, and later on it is added to 
the IM-OODB. We assume that alPpair access relevances for each individual OODB is 
precomputed with the algorithms discussed in Section 3. In the following discussion we 
will define several terms needed to compute access relevance in an IM-OODB. Assume 
two independent databases OODBi and OODBj. Denote by ap the classes of OODBi and 
by bq the classes of OODBj, where i ~ j ,  i.e., ap f) bq = (3. 



92 MEHTA ET AL. 

registration OODB 

Figure 6. The registration and departmental schemas as a directed graph. 

departmental OODB 

Definition 8. A connection from a class ap E OODBi to another class aq E OODBi is 
called an intra-OODB connection. 

Definition 9. A connection from a class ap ~ OODBi to another class b e ~ OODB),  i 
j ,  is called an inter-OODB connection. 

As discussed earlier, such inter-OODB connections are realized as PMs. Their weights 
are determined by Rule 3 since they should not interfere with weights of intra-OODB 
connections. 

Rule 3. The sum of the weights on the outgoing inter-OODB connections of  a class 
conforms to the following constraints: (1) Wi ~ [0, 1], I < i < n. (2) ~ i n l  Wi = 0.5 * n, 
where, n is the number of outgoing inter-OODB connections from this class. Each inter- 
OODB connection is assigned a weight reflecting its relative frequency of traversal. 

Definition I0. For each component OODBi, a class a p c  OODBi, which has an inter- 
OODB connection or is referred to by an inter-OODB connection is called a contact class. 

We will assume that there are relatively few inter-OODB connections and contact classes 
in IM-OODBs.  Considering the difficulties in defining such classes (Biliris and Panagos, 
1995) this is a realistic assumption. In figure 5, the relationship Transcript of  s tudent  to 



COMPUTING ACCESS RELEVANCE FOR PATH-METHOD GENERATION 93 

transcript is an intra-OODB connection. The PM Department of the class course to the 
class department  is an inter-OODB connection. The classes course and department  are 
examples of contact classes. 

Definitionll .  Letas andat beclassesin OODBi. Apath P(as, at) =as(=ail ), ai 2 . . . . .  ai k 
(=at) using only classes of OODBi is called an intra-OODB path. 

Theoretically, there may exist a most relevant path between two classes of the same 
OODB going through classes of another OODB. But we will not consider such paths since 
it contradicts the autonomy assumption (Sheth and Larson, 1990) of the OODBs. 

Definition 12. Let ap and bq be classes of OODBi and OODBj, i ~ j ,  respectively. A 
path P(ap, bq), is called an inter-OODB path. 

In figure 5, the path of the class sequence: (student, transcript, sections) is an intra- 
OODB path, while the path of the class sequence: (section, reg.professor, dep.professor, 
department) is an inter-OODB path. 

Definition 13. Let P(ap, bq) be an inter-OODB path from class a p c  OODBi to class 
bq E OODB i, i ¢ j .  In general, such a path may contain several inter-OODB connections. 
An inter-OODB path containing only one inter-OODB connection is called a direct inter- 
OODB path. 

Note that in an IM-OODB containing only two OODBs we shall assume first that an 
inter-OODB path is a direct inter-OODB path since other kinds of paths traversing back 
and forth between the two OODBs are very unlikely to have a reasonable interpretation. 
However, such paths will be considered in the next section. 

A direct intcr-OODB path P has the form ap(=ai,), ai2 . . . . .  a&, bj~, b h . . . . .  bjt(=b q) 
where aim, 1 5 m < k are classes of OODBi and bj,, 1 < n <_ l are classes of OODBj. 
Hence, (air, air+ 1), 1 < r < k and (b jr , b jr+l), 1 < r < l are intra-OODB connections 
and (aik , bj~ ) is the only inter-OODB connection in P ( a p ,  bq). The access relevance value 
ARV(P(ap, bq))  for a weighting function WF is defined as 

ARV(P) = WF(AR(ap, a&), W(aik, bj~), AR(bh, bq)) 

The access relevance from ap to bq is defined by maximizing the access relevance value 
ARV(P) over all paths P(ap, bq), that is, over all the paths P(ap, aik) and all the paths 
P (b h, bq), for all inter-OODB connections (ai~, bjl) between all possible contact classes 
ai~ E OODBi and all possible contact classes bj~ ~ OODBj. 

AR(ap, bq) = max ARV(Pz) 
z 

max WF(AR(ap ,  ai~), W(ai~,bi~),AR(bj~,bq) ) 
(all inter--OODB connections(aik ,bjl )) 



00DBi OODBj 

94 MEHTA ET AL. 

1 2 3 4 5 6 7 8 

1 1 0 0 0 0 0 0 0 

2 0 I 0 0 0 0 0 0 

3 0 0.25 I 0.5 0 0 0 0 

4 0 0.5 0.5 I 0 0 0 0 

5 0 0.5 0.12 0.06 1 0.6 0 0.4 

6 0 0.25 0.06 0.03'0.5 1 0 0.2 

7 0 0.5 0.2 0.4 0.25 0.5 1 0.6 

8 0 0 .18  0.3 0.15 0.35 0.7 0 I 

Figure 7. Computation of access relevance, Table 3: AR for departmental OODB. 

We assume that using the efficient algorithms of Section 3, access relevances for OODBi 
and OODB.i are already computed and stored. All-pair access relevances for OODBi 
(OODB.i) are stored in a matrix ARi (ARi). Thus we have a simple algorithm to compute 
AR(ap, bq) as follows (see figure 7): 

procedure Compute_AR_IM_OODB (ap, bq : class); 
begin 
(1) 
(2) 
(3) 

AR[ap, bq] := 0; 
for each inter-OODB connection (ait, bj~) such that 

aik E OODBi and b h 6 0 0 D B j  do 
ARIa e, bq] := max (ARIa e, bq ], WF(ARi [ap, a& ], W[aik, b h ], ARj [b h, bq ])) 

end 
Suppose we want to find the access relevance between student and department .  In 

step 1, AR[ap, bq] is set to zero. In the for-loop of step 2, for each inter-OODB connection 
we try to find the maximum access relevance value. Two access relevance matrices for 
registration OODB and departmental OODB are shown in Table 2 (Section 3.1) and Table 3, 
respectively. The steps of algorithm Compute_ARdM_OODB for computing AR (for WF 
= PRODUCT) from student to depar tment  using two alternative inter-OODB connections 
(R12, D5), and (RI0, D8) are shown below. 

1. AR[R2, D8] := 0 
2. AR[R2, DS] := max (AR[R2, D8], WF (AR[R1, R121, W[R12, D5], AR[D5, D8])) 

:= max (0.0, WF (0.3, 0.5, 0.4)) := max (0.0, 0.06) := 0.06 
3. AR[R2, D8] := max (AR[R2, D8], WF (AR[R2, R10], W[R10, DS], AR[DS, DS]) 

:= max (0.06, WF (0.151, 0.5, 1.0)) := max (0.06, 0.075) := 0.075 

The complexity of this algorithm is O(c) where c is the number of inter-OODB con- 
nections from OODBi to OODBj. Typically in IM-OODBs c is a constant or a sublinear 
function of n, such as log n or ,,/-ft. Hence this is a very efficient algorithm, which is 
appropriate for online computation. 



COMPUTING ACCESS RELEVANCE FOR PATH-METHOD GENERATION 95 

7. An IM-OODB containing many OODBs 

Consider, for example, an IM-OODB with 5 0 0 D B s :  OODBA, OODBB, OODBc, 
OODBD, OODBe. Denote a class of OODBA (OODB~, OODBc, OODBD, OODBe) 
by ai (b~, ct, dk, ej), respectively. Consider an inter-OODB PM from al, to bq which 
involves classes of all 5 0 0 D B s .  This is an indirect inter-OODB PM. The corresponding 
path P in G can have, for example, the form 

(ap (=ait), ai2 . . . . .  ai,,, e jl, e j2 , . . . ,  ej,~, dk,, dk2 . . . . .  dk~, Cl,, % . . . . .  cry, 
bm~, bin2 . . . . .  bmz(= bq)). 

This path involves 4 inter-OODB connections: (ai,,, ejj ), (ejw, dk, ), (dk~, ell ), and (%, bml ). 
Others are intra-OODB connections. The access relevance value ARV(P(ap, bq)) for a 
weighting function WF is 

ARV( P(ap, bq)) = WF(AR(ai~, ai,,), W(ai,,, ej,), AR(ejl, ej,o), W (ej,o, dkl), AR(dlq, dkx), 
W(dkx, Cl,),AR(cl,,Clr), W(Cly,bml),AR(bml,bmz)) 

The access relevance from ap to bq is defined by maximizing access relevance values 
ARV(P) over all paths P(ap, bq). Suppose for the moment that all those paths actually 
traverse these 5 0 0 D B s  in the same order of the above mentioned P, i.e., (A, E, D, C, B), 
Then we obtain 

AR(a e, bq) = max ARV(P z (ap, bq)) 
z 

= maxWF(AR(ap,ai, ,) ,  W(ai,,,ej~),aR(ejl,ej,~), W(ej~,dkl),AR(dk,,dk,~), 
W(dkx,cll),AR(ch,clr),  W(Cly,bm,),AR(bm,,bq)) 

where max is taken over all possible inter-OODB connections ( ai,, , e jl ), ( e jw , dkj ), ( dk:, , ct, ), 
(%, bm~). The pair (ai,,, e h) stands for any pair of contact classes, such that ai,, is in OODB A, 
ej~ is in OODBE and there exists an edge between ai,, and ej~. There might be several such 
edges, and maximization is done by selecting the one edge that leads to the largest overall 
access relevance value. The same applies to the other pairs of OODBs. The ARV(P)s 
are precomputed for each OODB. The access weights of the inter-OODB connections are 
known to the IM-OODB system. 

If the number of such connections between every two OODBs is c then our optimization 
has to select from c 4 possibilities. Furthermore there are many more possible patterns of 
paths from OODBa to OODBB using different subsets (whose number is an exponential 
function of the number of OODBs) and different orders (whose number is a factorial function 
of the number of OODBs). Thus, it is not practical to extend the computations of the previous 
section to the case of many OODBs. Furthermore, paths may return to an OODB several 
times using each time different classes. 

Thus, we shall look for a solution which involves modeling the graph representation 
G(V, E) of the IM-OODB as an auxiliary small graph H(U, D). For each OODB, U will 



96 MEHTA ET AL. 

o o o .  ooo  " 

loor~% 
G(v, n) H(U, "_.._...2) 

Figure 8. Two graphs G(V, E) and H(U, D) for IM-OODB with many OODBs. 

contain a node for each contact node of the OODB and an extra center node representing 
a variable node of the OODB. This variable node will at each time represent another node 
(possibly a contact node) of the OODB. However, the graph H contains only one such 
node for each OODB, keeping the number of nodes of H relatively small. Each OODB is 
represented by a clique of its contact classes and a star with its variable class as center and 
its contact classes as end points. That is, for each OODB, D will contain "clique" edges 
connecting each pair of contact nodes and "star" edges connecting the variable node to each 
one of the contact nodes. In addition, D contains an edge for each inter-OODB connection 
of the IM-OODB (figure 8). The inter-OODB edges have given access weights. For clique 
edges we define the access weight as the access relevance in G between the two nodes 
of the edge, which are precomputed for each OODB, e.g., WH(ejl ,  ej~) = AR(ej~, e i,o). 
While H is described in figure 8 as a bidirectional graph, since in general we can have a 
path from every node to every other node, the access weights are usually different for both 
directions unless the original OODB schemas are bidirectional. The access weight of a 
star edge varies. Whenever the center node ai represents a specific node e.g., ai,, then the 
access weight of  a star edge (ai, ai,,) is defined as the access relevance AR(ai, ai,) in G, 
i . e . ,  WH(ai ,  ai,,) = AR(ai, ai,,). Note that when a star node ai represents a contact node ai, ' 
then, by our definition in Section 2.3, AR(ai, ai,,) = 1. 

Definition 14. A path P between two center nodes in H is called proper if (1) all the 
rest of the nodes are contact nodes, (2) the sequence of edges except for the two end edges 
(which are star edges) consists of inter-OODB edges and clique edges such that no two 
clique edges are consecutive. 

In general, the path will have inter-OODB edges and clique edges in alternating order, 
but a proper path may sometimes use only one contact node of an OODB rather than two, 
in which case this is the only node of the path which belongs to this OODB. 



COMPUTING ACCESS RELEVANCE FOR PATH-METHOD GENERATION 97 

Lemma 2. For every path Q between two center nodes in H there exists a proper path R 
such that AR(R) > AR(Q). 

Proof: Due to space limitations we need to omit the following proofs, which can be found 
in Mehta et al. (1993). [] 

L e m m a  3. For every most relevant path P from a node ap to a node bq in G there exists 
a corresponding proper path Q in H from the center node ai to the center node br,, such 
that AR(P) = AR(Q). 

Lemma 4. For every proper path Q from center node ai representing ap to center node 
bm representing bq in H there exists a pair of nodes ap E OODBA and bq E OODB. and 
a corresponding path P from ap to bq in G such thatAR(Q) = AR(P). 

The omitted proof is based on the definition of H and works in reverse order to the 
previous proof. 

Theorem 2. A most relevant path Q connecting a pair of center nodes a i and bm in H 
which represent nodes ap and bq in different OODBs in G has a corresponding most relevant 
path P in G from ap tO bq such that AR(P) = AR(Q). 

The theorem implies that for calculating the access relevance from node a e in OODBA to 
node bq in OODB8 we take the nodes ai and bm in H to represent ap and bq, respectively, 
and calculate the access relevance in H from ai to bin. In this way, for each pair of classes of 
different OODBs, we can find the access relevance by applying the single source algorithm 
from Section 3 (i.e., PRODUCT_AR) of complexity min(O([U[ 2, O(ID] log ]D])) which 
uses the precomputed access relevance of the given OODBs. Clearly ] U ] << I V [ holds here. 

This calculation will yield a most relevant path in G taking into account the different 
possible subsets of OODBs traversed and their different possible orderings in the path, as 
edges of a most relevant path could be from different OODBs. Intuitively, we have replaced 
the graph G by the much smaller graph H and can apply to H exactly the same techniques 
that we used within a single OODB (Section 3). 

The above calculation takes into account even the possibility of traversing through an 
OODB more than once. One such case occurs when there exists a most relevant path in H 
between two contact nodes of one OODB using at least one node from another OODB. To 
see this, refer back to Graph H in figure 8. Assume that we are looking for a most relevant 
path from Nl to Ns. It is possible that such a path consists of (NI, N2, N~, N4, Ns). When 
the access relevance between N2 and N4 was computed in OODBA alone, the "shortcut" 
through N3 was not available (see figure 8). However, such a path is considered when 
modeling with H. Another such case occurs when a most relevant path in H contains two 
clique edges of the same OODB, which are not consecutive in the path. Note that in such 
a case it may happen that the two intra-OODB paths corresponding to two clique edges 
of the same OODB share a non-contact node. But then the most relevant path contains a 
cycle which can be removed without decreasing the access relevance as explained regarding 
Property 1 (from Section 2.3). 



98 MEHTA ET AL. 

Figure 9. 

OODB A OODB B 

An efficient computation of access relevance. 

We can further improve the efficiency as follows. We realize that a most relevant path 
from ap to bq starts and ends with a center node in H but contains no other center nodes. 
Furthermore, the access weights of the star edges in an OODB change with the choice of 
the source and target classes in the OODBs, but the rest of the access weights of D are 
independent of this choice. Thus, we define a subgraph I = (U1, Dj) o f / 4  where the 
star subgraphs are omitted, i.e., each OODB is represented in I only by the clique of its 
contact classes. Now, we can precompute the access relevance for all pairs of nodes in I 
by applying the single source algorithm of Section 3 I UI times resulting in a complexity of 
min(O (]Uj ] 3, O (1Ull I Dil log ]DI I)). The result is stored in an access relevance matrix AR1 
for I.  Now a most relevant path between arbitrary classes ap E OODBA and bq E OODB~ 
is represented as a concatenation of three paths P 1 (ap, ai), P2(ai, bm), and P 3 (bin, bq) 
where ai and bm are contact classes of OODBA and OODBB, respectively. The path P 1 
( P 3) is a most relevant path of OODBA (OODBB) and P 2 is a most relevant path of I .  Thus, 

AR(ap, bq) --- max WF(AR(ap, ai), ARI (ai, bm), AR(brn, bq)) 
(contacts ai 6OODBa ,bin ~OODBB ) 

Now all these access relevances are precomputed and AR(ap, bq) is found with complex- 
lty O(CACB), where ca and CB are the numbers of contact classes of OODBA and OODB~, 
respectively (figure 9). As explained in Section 6, these numbers are typically constants or 
sublinear functions of the numbers of classes in the OODBs. Thus, we achieve a very fast 
online algorithm for computing access relevances between classes of different OODBs. 

8. Conclusion 

In this paper we have discussed efficient algorithms for computing access relevances in an 
OODB as well as in an IM-OODB. We have used access relevance as a guide for PMG (Mehta 
et al., 1993), for automatic generation of PMs in OODBs, to support retrieving and updating 
distant information for a user lacking complete knowledge of the conceptual schema. We 
have introduced the notion of access weight as a measure of frequency of traversal of a 
connection during the operation of an OODB. Access weights are used to further define 
access relevance as a measure of the connection between two indirectly related classes. For 



COMPUTING ACCESS RELEVANCE FOR PATH-METHOD GENERATION 99 

such an OODB, we have developed algorithms of complexity O (n e log n) for computing 
access relevance using the t-norm PRODUCT. 

We have also discussed computation of access relevances in an IM-OODB. The connec- 
tions between classes of different OODBs are realized using PMs. We started with a special 
case of an IM-OODB containing two OODBs and derived an online algorithm for computa- 
tion of access relevance values. Then we used a hierarchical approach to derive an online al- 
gorithm for the computation of access relevances in an [M-OODB containing many OODB s. 
Both these algorithms use precomputed access relevances for each component OODB. 

Acknowledgment 

We gratefully acknowledge the valuable comments that we received during the process of 
anonymous review. 

References 

Aho, A., Hopcroft, J., and Ullman, J.D. (1983). Data Structures and Algorithms, Reading, MA: Addison-Wesley 
Publishing Company. 

Alashqur, A.M., Su, S.Y.W., and Lam, H. (1989). OQL: A Query Language for Manipulating Object-Oriented 
Databases. In EM.G. Apers and G. Wiederhold (Eds.), Proceedings of the Fifteenth International ConJ~rence 
on Very Large Databases, pp. 433--442~ 

Alhajj, R. and Arknn, M.E. (1993). A Query Model for Object-Oriented Databases. In Proceedings c~[' the Ninth 
International Col~[erence on Data Enginering (pp. 163-171). Los Alamitos, CA: IEEE Computer Society Press. 

Bertino, E., Negri, M., Pelagatti, G., and Sbattella, U (1992). Object-Oriented Query Languages: The Notion and 
the Issues. IEEE Transactions on Knowledge and Data Engineering, 4, 223-237. 

Biliris, A. and Panagos, E. (1995). A High-Performance Confignrable Storage Manager. To appear in Proceedings 
of the Ninth International Conference on Data Engineering, Taipei, Taiwan. 

Bonissone, EE and Decker, K.S, (1986). Selecting Uncertainty Calculi and Granularity: An Experiment in 
Trading-off Precision and Complexity. Machhze Intelligence Pattern Recognition, 4, 217-247. 

Butterworth, E, Otis, A., and Stein, J. (1991). The GemStone Object Database Management System. Communi- 
cations of the ACM, 20, 64-77. 

Cheiney, J.-E and Lanzelotte, R.S.G. (1992). A Model for Optimizing Deductive and Object-Oriented DB Re- 
quests. In E Golshani, Proceedings ~/'the Eighth International Cot!ference on Data Enginnering (pp. 385-392). 
(Ed.), Los Alamitos, CA: IEEE Computer Society Press. 

Czejdo, B. and Taylor, M. (199I). Integration of Database Systems Using an Object-Oriented Approach. In Proc. 
First International Work-~hop on lnteroperability in Multi-Database Systems (pp. 30-37). Kyoto, Japan. 

Czejdo, B. and Taylor, M. (1991). Integration of Database Systems and Smailtalk. In Proc. Symposium on Applied 
Computing, Kansas City. 

Elmasri, R. and Navathe, S.B. (1989). Fundamentals qfDatabase Systems. New York, NY: Benjamin/Cummings 
Publishing Co. 

Fankhauser, E, Kracker, M., and Neuhold, E.J. (1991). Semantic vs. Structural Resemblance of Classes, SIGMOD 
Record, "Semantic Issues in Multidatabase Systems', 34, 59-63. 

Fankhauser, E and Neuhold, E.J. (1992). Knowledge Based Integration of Heterogeneous Databases. In Proc. 
~)['the IFIP TC2/WG2.6 Cot~ference on Semantics c)f lnteroperable Database Systems, DS-5, Lorne, Victoria, 
Australia. 

Geller, J., Perl, Y., and Neuhold, E.J. (1991). Structure and Semantics in OODB Class Specifications, SIGMOD 
record, "Semantic Issues in Multidatabase Systems', 34, 40~1-3. 

Halper, M., Geller, J., Perl, Y., and Neuhold, E.J, (1992). An OODB Graphical Schema Representation. In Proc. 
1DS92: lnt. Workshop on Interfaces to Database Systems, Glasgow. 



100 MEHTA ET AL. 

Horowitz, E. and Sahni, S. (1989). Fundamentals of Computer Algorithms, Reading, MA: Computer Science 
Press, 

Kemper, A. and Moerkotte, G. (1990). Advanced Query Processing in Object Bases Using Access Support 
Relations. In D. McLeod, R. Sacks-Davis, and H. Schek (Eds.). Proc. of the Sixteenth International Conference 
on Very Large Databases, pp. 290-301. 

Kifer, M., Kim, W., and Sagiv, Y. (1992). Querying Object-Oriented Databases. In Proceedings 1992 ACM 
S1GMOD International Conf. on Management of Data (pp. 393-402). San Diego, California. 

Kim, W. (1989). A Model of Queries for Object-Oriented Databases. In P.M.G. Apers and G. Wiederhold (Eds.). 
Proceeding of the Fifteenth International Conference on Very Large Databases, pp. 423~-32. 

Kim, W. (1990). Introduction to Object-Oriented Databases, Reading, MA: The MIT Press. 
Klas, W., Neuhold, E.J., Bahlke, R., Drosten, K., Fankhauser, P., Kaul, M., Muth, P., Oheimer, M., Rakow, T., and 

Turau, V. (I 991). VML Design Specification Document. Tech. Report, GMD-IPSI, Germany. 
Klir, G.L. and Folger, T.A. (1988). Fuzzy Sets, Uncertainty and lnJormation, Prentice Hall. 
Kracker, M. (1992). A Fuzzy Concept Network Model and its Applications. In Proc. FUZZ-IEEE '92 (pp. 761-768). 

San Diego. 
Kracker, M. and Neuhold, E.J. (1989). Schema Independent Query Formulation. In Proc. 8th Int. Confi on Entity- 

Relationships Approach (pp. 233-247). Toronto, Canada. 
Lamb, C., Landis, G., Orenstein, J,, and Weinreb, D. (1991). The Objectstore Database System. Communications 

qf the ACM, pp. 50-63. 
Lanzelotte, R.S.G., Valduriez, P., and Zait, M. (1992). Optimization of Object-Oriented Recursive Queries Using 

Cost-Controlled Strategies. In Proc. 1992 ACM SIGMOD International Conference on Management of Data 
(pp. 256-265). San Diego, California. 

Litwin, W. (1985). Implicit Joins in the Multidatabase System MRDSM. IEEE-COMPSAC, pp. 495-504. 
Maier, D., Rozenshtein, D., Salvater, S., Stein, J., and Warren, D. (1987). PIQUE: A Relational Query Language 

Without Relations. In Information System, v, 12(3), 317-335. 
Maier, D. and Ullman, J.D. (1983). Maximal Objects and the Semantic of Universal Relation Databases. ACM 

Transactions on Database Systems, 8(1), 1-14. 
Martin, R. (1991). ONTOS Overview. In Proc. Executive Briefing on Object-oriented Database Management, San 

Francisco. 
Mehta, A. (1993). Algorithms for Generation of Path-Methods in Object-Oriented Databases. Doctoral Disserta- 

tion, CIS Dept., New Jersey Institute of Technology, Newark, NJ. 
Mehta, A., Geller, J., Perl, Y., and Fankhauser, P. (1993), Computing Access Relevance for Path-Method Generation 

in OODBs and IM-OODB. Research Report CIS-93-02, CIS Dept, New Jersey Institute of Technology, Newark, 
NJ. 

Mehta, A., Geller, J., Perl, Y., and Neuhold, E.J. (1993). The OODB Path-Method Generator (PMG) Using Pre- 
computed Access Relevance. In Proc. (~f the 2nd lnt'l Cot~ference on h!formation and Knowledge Management 
(pp. 596-605). Washington DC. 

Mehta, A., Geller, J., Perl, Y., and Neuhold, E.J. (1995). The OODB Path-Method Generator (PMG) Using Access 
Weights and Precomputed Access Relevance, (submitted for journal publication, under revision). 

Neuhold, E.J., Perl, Y., Geller, J., and Turau, V. (1989). Separating Structural and Semantic Elements in Object- 
Oriented Knowledge Bases. In Proc. Advanced Database System Symposium (pp. 67-74). Kyoto, Japan. 

Neuhold, E.L, Perl, Y., Geller, J., and Turau, V. (1990). A Theoretical Underlying Dual Model for Knowledge 
Based Systems. In Proc. First Int. Conf on Systems Integration (pp. 96-103). NJ Morristown. 

Neuhold, E.J., Perl, Y., Geller, J., and Turau, V. The Dual Model for Object-Oriented Databases. NJIT Technical 
Report CIS 91-30. 

Neuhold, E.J. and Schrefl, M. (1988). Dynamic Derivation of Personalized Views. In Proc. 14th International 
ConJerence on Very Large Databases, VLDB '88 (pp. 183-194). Los Angeles, CA. 

Schweizler, B. and Sklar, A. (1961). Associative Functions and Statistical Triangle Inequalities. Publicationes 
Mathematicae Debercen, 8, 169-186. 

Sheth, A.E and Larson, J.A. (1990). Federated Database Systems for Managing Distributed, Heterogeneous, and 
Autonomous Databases. ACM Computing Surveys, 22(3), 183-236. 

Zadeh, L.A. (1965). Fuzzy Sets. Information and Control, 8,228-353. 


