International Journal of Intelligent and Cooperative Information Systems
Vol. 2, No. 2 (1993) 107-125

© World Scientific Publishing Company

DESIGN AND IMPLEMENTATION OF A
KNOWLEDGE-BASED QUERY PROCESSOR.

NABIL &. ADAM and ARYYA GANGOPADH! -

MS/CIS Department, G5M, Rutgers University, Newark, NJ 07102, USA
JAMES GELLER

CIS Depariment, New Jersey Institute of Technology, Newark, NJ 07102, USA

Received 15 January 1993
" Revised 1 May 1993

ABSTRACT

This paper deals with query processing using semantic knowledge in relational databases.
“The Select-Project-Join {SPJ) conjunctive class of queries are dealt with in this paper.
We propose to optimize highly repetitive queries by using semantic transformations in
addition to syntactic transformations. Thus, we generate a set of pre-optimized queries.
This set contains queries that are semantically equivalent to, syntactically different from,
and more efficient to process than the user queries that we started with. The issues we
address in this paper are: how to map a user gquery to a query that is in the set of
pre-optimized and already optimized queries, how to search efficiently through the set
of pre-optimized queries and set of semantic rules, and how to incorporate new queries
to the set of pre-optimized queries, so that the number of queries that can be optimized
using this method increases with the passage of time. Furthermore, we suggest some ideas
of handling queries that do not have any semantically equivalent counterpart in the set
of pre-optimized queries. We have tested the performance of the proposed method. An
algorithm for mapping is implemented in Prolog. A database schema is implemented in
the INGRES database management system. We have adopted a database schema that
is widely used for measuring performance in the semantic query optimization literature.

Keywords: Database systems, knowledge base, pre-optimized queries, semantic query
optimization.

1. Introduction

Query optimization refers to the process of transforming a user query into

an equivalent query that can be processed more efficiently. The transformation
could be syntactic (as in the case of conventional query optimization) or sernantic
(as in the case of semantic query optimization). In conventional query optimiza-
tion (e.g. [2,3,7,12,15,17,19,25]) the execution strategy that is implied by a user
query is transformed into a more efficient one through the use of statistics on
database usage, join algorithms, query decomposition, indices, and syntactic re-
arrangements. An execution strategy refers to a complete sequence of operations,
e.g. join and project, that the database management system (DBMS) must perform

167

108 N. R. Adam, A. Gangopadhyay & J. Geller

in order to answer the query. On the other hand, semantic query optimization
(e.g-[1,4,6,9,10,11,13,14,18,21,20,22,23]) makes use of semantic knowledge about the
database to transform a user query into a semantically equivalent and operationally
more efficient one. Two queries are semantically equivalent if they result in the
same answer under any state of the database that conforms to the semantic integrity
constraints. ' .

In semantic query optimization, the database is divided into two distinct parts,
the intensional database (IDB) and the extensional database (EDB). The IDB repre-
sents the semantic knowledge about the database, and consists of semantic integrity
constraints and deductive rules. The EDB is the actual database instance. When
a query is posed to the DBMS, the query is transformed into a semantically equiv-
alent form, by using the IDB and some logical inference rules. Since there-could be -
several equivalent queries to the original one posed by the user, alternative queries
are compared by a conventional query optimizer to determine the least costly query
which is then processed.

The research on semantic query optimization has been motivated by the no-
tion of utilizing the knowledge about the database in processing a user query. The
research done in this area can be grouped into developing: semantic query op-
timizers (e.g. [13,14,21,22]), IDB (e.g. [9]), algorithms for efficient search of the
IDB (e.g. [20]), and automatic knowledge acquisition and maintenance of the IDB
{e.g. [24,25]). Studies such as [4], [6] and [11] have demonstrated the potential
benefits of semantic query optimization.

Typically, a large percentage of user queries are preprogrammed and highly
repetitive (e.g. [22, p. 36]). Conventional query optimizers allow for precompilation
of such queries, i.e. the execution plan for each of these queries is stored in the
DBMS and is accessed whenever the query is executed. As a result, the need to
start the optimization process from scratch every time such a query is issued is
climinated. We propose to adopt the same concept in the context of semantic
query optimization. That is, initially we generate a “set of pre-optimized” queries,
Qp, that is made up of the “optimized” version of each preprogrammed and highly
repetitive query. The optimization is done semantically as well as syniactically. To
illustrate, consider a hypothetical database system that consists of the relations in -
Fig. 1, and has the IDB shown in Fig. 2 (adapted from [14, p. 48-51]).

The following abbreviations are used in Figs. 1 and 2.

N

SName: Ship’s name.
OName: Owner’s name.
SType: Ship’s type.
Dwt: Dead weight (the actual weight of cargo carried).
e PName: Port’s name.

o FType: Port’s facility type.
e Type: Cargo type.

» LNG: Liquefied natural gas.

Design and Implementation of a Knowledge-Based Query Processor 109

SHIPS (SName,OName,SType,Draft,Dwt,Capacity,Regist.ry)
PORTS (PName,Country,Depth,FType)

CARGOES (SName,PName,Shipper,CType,Quantity, Dollar,Policy}
OWNERS (OName,Location,Assets,Business)

POLICIES (Policy,Issuer,Coverage}

INSURERS (Issuer,Insurercountry,Capitalization)

Fig. 1. Relations.

R1: (Dwt > 350) = (FType ="ofishore”)

R2: (Dwt > 300) = (Business = “leasing”)

R3: (Coverage £ Dollar)

R4: (Quantity € Capacity)

R5: (CType ¢ {"LNG", “refined” } A (Dollar > 500) = (FType = “general”)
Ré: (Dwt > 150) = SType = “supertanker”]

R7T: (Dollar > 3000) A (SType = “supertanker” } => (Issuer = “Lloyds")
R8: (Business = “petroleum”) = (CType € { “LNG", “refined”, “oil"})
R9: {CType = “LNG")=> (SType = “Pressure vessel”) ‘
R10: (SType = “supertanker”) = (Dwt > 150) :

Fig. 2. The intensional database.

Suppose that the following is among the highly repetitive queries. Throughout
the rest of the paper we will express queries in SQL syntax.
q1 : select (SName) from CARGOES, POLICIES where (Coverage < Dollar).

Without semantic optimization, the processing of this query requires performing
a join operation. Making use, however, of the rules included in the IDB, specifically
R3 (Fig. 2), results in eliminating the constraint from the query ¢i.

In this case, @, would include the following fransformed version of q1:

g : select (SName) from CARGOES. _

Both ¢; and gy are semantically equivalent since they produce the same result
ander all instances of the database that satisfy the integrity constraints. -This,
however, does not stop the user from issuing the query in the form of ¢;.

Thus, we end up with a set of pre-optimized queries that may be syntactically
different from user queries. This necessitates a mapping mechanism to “map” a
user query to a semantically equivalent pre-optimized one. In addition, we need to
ensure that the set Q, is kept up-to-date with respect to any changes in the IDB.
The rules in the IDB are expressed in first-order Horn clause form.

In this paper, we address the generation, representation, and maintenance of
the pre-optimized query set. We also present a methodology for utilizing the set of
pre-optimized queries in the context of semantic query optimization.

1.1. Research Objectives

The goal of the paper is to develop and implement a methodology for utiliz-
ing the set of pre-optimized queries in the context of relational database systems.
We restrict ourselves to the SPJ (select-project-join) conjunctive types of queries.

110 N. R. Adam, A. Gangopadhyay & J. Geller

Specifically, our research goal is to deal with the following issues:

(i) Optimization of user queries using pre-optimized queries. This requires ad-
dressing the following: '

e Generating the set of pre-optimized queries.

¢ Representing the IDB and the set of pre-optimized queries.

e Mapping a user query to a sernantically equivalent pre-optimized query, thus
extending the use of the pre-optimized query set to user queries that are
syntactically different but semantically equivalent. A preliminary version of
an algorithm that addresses this issue is discussed in Sec. 3. -

e Searching efficiently through the IDB and the set of pre-optimized queries.

e Updating the set of pre-optimized queries against changes in the semantics
of the database. -

(i) Optimizing queries that do not have any semantically equivalent counterpart
in the set of pre-optimized queries.

(iii) Tmplementing and testing the proposed method.

(1v) Performance Analysis of the proposed method: We first develop a database
- model of an a.pphcatlon area. Next, we test whether the benefit (measured by
reduction in response time) of the algorithm is more than its overhead cost.
This can be done as follows: Let the net savings resulting from the algorithm
be §(t), system response time with the algorithm be C(t), and system response
time without the algorithm be R(t). Then, our aim is to ensure the following
inequalities:

8(t) > 0, where ,
S =R —C@) .

The rest of the paper is organized as follows. A brief discussion of related
previous work is presented in Sec. 2. The proposed methodology and analysis of its
performance are discussed in Secs. 3 and 4 respectively. Our conclusion and some
future research directions are discussed in Sec. 5.

. 2. Previous Work
2.1. Algorithms for Query Improvement

'One of the early publications in this area is [9] where the authors take an object- |
oriented view of the database. They develop a framework for query improvement
(optimization) and describe the details of a system for knowledge-based query pro-
cessing (KBQP). The system consists of a knowledge base that contains constraints
about the set of objects in the database. A query is viewed as a combination of
a number of subexpressions. The system contains techniques which are programs
that attempt to modify the subexpressions in such a way that a more efficient
query is generated. Examples of such techniques are domain refinement and map-
ping substitution. New facts may be generated at the time of the modification of

Design and Implementation of ¢ Knowledge- Based Query Processor 111 -

the subexpressions. These are added to the knowledge base by a knowledge base
compiler. '

King [13,14] describes a system called QUIST {Query Improvement through
Semantic Transformation), which is a heuristics based SQO that uses the iIDB to
generate semantically equivalent queries. The notion of semantic equivalence is
formally defined in [14]. Semantically equivalent queries are generated by adding
and/or deleting constraints from the original query. In order to restrict generation of
queries to only potentially profitable ones, several heuristics like tndez introduction
join elimination, scan reduction, join introduction and delection of unsatisfiable
condilions are used.

Jarke et al [11] describes a PROLOG front-end to a relational database sys-
tem. The system translates a tuple-oriented PROLOG query into an intermediate
set-oriented language of database calls that is referred to as DBCL. Syntactic query
simplification techniques that attempt to reduce the number of joins in a query
are applied within DBCL. Semantic integrity constraints (value bounds, functional
dependencies and referential constraints) are next applied for semantic query sim-
plification. The resulting “optimized” query expressed in DBCL is then translated
into SQL.

In [10] Jarke describes an algorithm based on graph theory, where an inequality
constraint is represented in the form of a directed query-graph, and functional
and key dependencies are expressed in a FD/KD graph. Tableau and syntactic
simplification techniques are used to optimize queries. The algorithm makes use of
key dependencies, functional dependencies and value bounds constraints.

A graph-theoretic approach towards developing a SQO is proposed in [22]. A
query is represented by a query graph which is a directed graph whose vertices
represent either the attributes (attribute vertices) or constants (constant vertices),
and edges represent the constraints imposed by the query. The algorithm derives
the canonical condensed form of the query through fransitive reduction. Next, the
query graph is semantically ezpanded by adding constraints to it. Two types of
constraints are used: subset constraints and implication constraints. The graph
obtained after semantic expansion is reduced by eliminating redundant relations
(relation elimination) and edges (edge elimination). Finally, the query graph is
converted from the condensed form back to its original form. It has also been
formally proven that the cost of processing the query after the transformation by
the above algorithm is less than that of the original query The implementation
architecture and test results are presented.

In [4,5,6] Chakravarty et ol. present a two-phase approach to semantic query
optimization: semantic compilation and semantic query transformation. This ap-
proach is applicable to both deductive as well as relational databases. In the seman-
tic compilation phase, a theorem prover generates compiled axioms from the 1DB,
EDB and the set of integrity constraints. These compiled axioms are associated with
integrity constraint fragments, called residues, to form semnantically constrained ax-
ioms (SCA). The first step in semantic query transformation is query/residue mod-

112 N. R. Adam, A. Gangopadhgay & 1. Geller

ification, which refers to adding residues to the query using the SCAs and some
criteria for residue simplification. The next step consists of generating semantically
equivalent queries. Three strategies are discussed: (1) generate all possible seman-
tically equivalent queries, estimate the cost of each query, and select the least costly
one, (2) use heuristics such as index introduction and join elimination, to produce
only the promising queries and select the least costly one, and (3) combine query
generation and cost estimation in one step to generate only the optimal query.

As evident from the above literature review, the notion of making use of pre-
optimized queries in the context of semantic query optimization has not been ex-
plored. Our proposed work is an attempt towards this goal.

3. Methodology
3.1. Generaling the Pre-optimized Query Sel

The initial step of our research work calls for generating the set Q,. To ac-
complish this step we first need to identify all preprogrammed and highly repetitive
queries. These queries can then be optimized using semantic as well as conventional
. optimization. Since the optimization will be done off-line, response time is not much
of a concern. Each preprogrammed and highly repetitive query is processed in terms
of the following two levels (e.g. [20]).

At the first level, the entire space of semantically equivalent queries is 1dent1ﬁed
by applying the various relevant rules in the IDB. This step can be done manually
(e.g. [20]) or can be automated (e.g. the query generation part of QUIST [14]).

At the second level, a conventional query optimizer is used to determine the
optimal execution plan for each of the queries identified at the first level. The
query that results in the most efficient execution plan is then added to Qp.

3.2. Representing the Pre-optimized Query Set

A given query g; can be viewed as consisting of two parts [22, p. 352]: the target
attributes part (hereafter referred to as the retrieval part), which is denoted by .
gia = {a1, a2, ..., @z}, and a conjunction of join as well as restriction specifications’
(hereafter referred to as the constraint part), denoted by gic = {gicy» @icar - -5 Gic, }
Furthermore, for a given rule B; we refer to its antecedent and consequent parts as
R;a and R;c respectively. '

In order to efficiently maintain and search through the set Q, = {gp,, tpsy -+ =»
gp,}, We propose to maintain a framework similar to the one depicted in Table 1,
where we associate with each attribute @; in the database four lists:

Rquerys; = {j | ai € gp;o} = indices of pre-optimized queries whose retrieval
_part includes a;, :

Cguerys, = {j | @i € gp;c} = indices of pre-optimized queries whose constraint
part includes a;, : :

" Arules, = {j | i € R;j4} = indices of rules whose antecedent part includes a;,

and

Design and Implementation of a Knowledge-Based Query Processor 113 -

Crule,, = {j] ¢; € Rj¢} = indices of rules whose consequent part includes a;.

Thus, given a user query gy, the set of potentially semantically equivalent queries
is given by: '

{8p;,7 € {Rquerys, N Rquerya,... N Rquery,, }, where @i € quq, for i =
1,2,...,k}.

For illustration purposes, We use the set of pre-optimized gueries depicted in
Fig. 3.

gp, * select (s.0Name) from SHIPS s where (s.5Type = “supertanker”)

gpq: select (c.Shipper, c.Quantity} from CARGOES c where {c.CType = “LNG” and ¢.PName =
“Marseilles” }

gps: select (s.ONarne, c.Quantity) from SHIPS s, CARGOES ¢, PORTS p where (s.Dwt < 60 and
s.SName = c.SName and c.CType = “Refined petroleum” and c.PNAME = p.PNAME and
p.country = “Denmark”) _ .

gpy: select (s.OName) from SHIPS s, OWNERS o where (o.Business = “leasing” and 0.OName =
s.OName and
s.5Type = “supertanker” and s.Dwt > 350 and s.SName=c.SName and c.PName =
. “Marsei]lw?’) .

gps? select (s.OName) from SHIPS s where (s.5Type= "bulk carrier” and s.Dwt > 200)

gpg! select (s.0Name} from SHIPS s where (s.5Type= “Refrigerated vessel"}

Fig. 3. The pre-optimized query set Qp. .

Table 1 describes how the pre-optimized queries and the IDB can be represented
in the framework discussed above.

Thus, the Rquery list of SHIPS.OName contains {1,3,4, 5,6}, which means that
pre-optimized queries g1, g3, ¢4, g5, and ge have this attribute in their retrieval parts.
Similarly, the Cquery list of SHIPS.5Type equals {1, 4, 5, 6}, indicating that the
attribute SHIPS.SType is used in the constraint parts of pre-optimized queries qi,
g4, g5, and ge. Note that the join conditions (e.g. s.SName = c.SName in query gps)
are not included in the representation scheme. In a similar vein, the lists Arule and
Crule corresponding to the attribute SHIPS.SType indicate that SHIPS.SType is
used in the antecedent and consequent parts of rules R7 and R9, and R6 and R9
respectively.

To facilitate our discussion further, we use the < (succ) relation between queries.
The < () relation is defined as follows: for any two queries A and B, A < B, if
and only if all attributes mentioned in the constraint part of A are also present in
the constraint part of B. As an illustration of this definition, consider the following
example queries where g4 < ¢p-* '

ga: select OName from SHIPS where Dwt = 100.

qg: select OName from SHIPS where Dwt > 200 and ...

9Note that the < /> relation between queries as used here is different from the notion in which a
query is a subset of another if the data items retrieved by the former is a subset of the latter.

114 N. R. Adam, A. Gangopadhyay & J. Geller

Table 1: Representing the pre-optimized queries and IDB.

Relatiﬁn Attribate Raquery Cquery Arule Crule
SHIPS SName { { { {}
" CName {1,3456) {} {3 {}
SType { {1458} {7910} {69}
Dradt 0) 0 Y,
Dwt {} {3,4,5} {1,2,8} {10}
Capacity A1 { {3 {4}
Registry { { {4 4
FPORTS PName {3 {24} {} {3
Country {3 {3} {} {3
Depth {} { {3 {
FType 3 { 0 {1,5}
CARGOES SName {} {0 {1 {
_PName 0 249 O {
Shipper { { {3 {}
CType { {2,3} {5,9} {8}
Quantity {2,3} {1 {3 {43}
Dollar 0 { {73 {3
_ Insurance {} {} { {3
OWNERS OName {1,34,56} {} {} {3
Location {} {} {} {3
- Assets {3 {} {3 {}
Business {3 {4} . {8} {2}
POLICY Policy { {1 {3 {3
Issuer {} {} { {7}
Coverage {3 {1 {1 {3}
INSURERS Issuer { { {3 {7}
Insurercountry {} {} {3 {}
Capitalization {} {} - {} {}

Now, consider the following two user queries:

gu,: select (s.ON arﬁe) from Ships s where (s.Dwt > 200)

Gu,: select (c.Shipper, c.Quantity) from CARGOES ¢, SHIPS s where (s.SType =
“Pressure vessel” and c.PName = “Marseilles”)

. Design and Implementation of a Knowledge-Based Query Processor 115

Using the above framework, we see that with respect to gu, , the set of potentially
semantically equivalent queries = {gp,, Gp;) Gp.s ps» ps}, Since Rqueryoname =
{1, 3, 4, 5, 6}. Similarly, with respect to gu,, the set of potentially semantically
equivalent queries = {gp,, gps }, since RqueryQuantity = {2, 3}.

In Sec. 3.4, we carry this example to completion.

3.8. Maintaining the Pre-optimized Query Set

For maintaining the pre-optimized query set, we have two concerns. The first is
to ensure that the pre-optimized query set @, is updated when ecither the database
schema is changed and/or new highly repetitive user queries are identified. We
propose maintaining metadata about Qp, which would include such information
as which integrity constraints and deductive rules are related to which ¢, € Q.
Whenever ‘a constraint and/or rule is deleted, added, or modified the queries in
@, that have constraints either directly or indirectly related to the newly deleted,
added, or modified constraints are identified and each such query is re-optimized
semantically and syntactically. '

Typically, the majority of user queries can be predetermined for most database
applications. It is on this premise that menu-driven systems are built. In a menu-
driven system, the user interacts through a set of hierarchically organized menus,
where each menu has a set of predetermined options. A user can formulate a
query by selecting a path through the menu structure. Thus, the queries that can
be supported are implicitly represented in the menu structure. Determining user

. requirements is also a fundamental step in the design of database systems. The
repetitiveness of user queries has also been noted in the literature on semantic
query optimization (e.g. [22, p. 360]).

Thus, only a small percentage of the user queries might not have a semantically
equivalent counterpart in Qp. A statistical record of the frequency of failure to
map a user query to any pre-optimized query in Qp is kept. A predetermined cutoff
point can be selected such that any query whose frequency of occurrence exceeds
this cutoff point will be semantically optimized and the new semanticaily optimized
query will be added to @,. This would account for such situations as adding one
or more new attributes to existing relations. '

In case of the deletion of an attribute from a relation, the pre-optimized queries
for which that attribute appears in the retrieval part are taken out of Qp. Those
pre-optimized queries for which the deleted attribute appeared in the constraint
part are reoptimized.

Statistical data of the frequency of usage of each pre-optimized query could be
kept so that those pre-optimized queries that have reduced usage patterns can be
identified and subsequently deleted.

The second concern is to ensure that the set Q, is free from redundancy. The
pre-optimized query set is initially generated from the highly repetitive queries.
This is done by the database administrator.? Once Q, is formed, we repeatedly try

¥The definition of “hizhly repetitive” queries has to be developed empirically. On the one hand,

116 N. R. Adam, A. Gangopadhyay & J. Geller

to semantically map each query in @, to another query in Q. If a map is found,

one of the queries is kept and the others are removed from Q. This would ensure

that Q, is free from redundancy.

3.4. An Algorithm for Mapping e User Query to a Pre-optimized One

The mapping algorithm presented here has two functions: (a) searching effi-
ciently through the IDB and the Q, to identify the potentially applicable rules and
semantically equivalent queries respectively, and (b) establishing semantic equiva-
lence between g, and one of the queries identified in the search process. The search
process makes use of the representation scheme presented in Sec. 3.2.

~ Given a gy whose retrieval part is guq = {1, 02,...,a:} and the constraint part
is gue = {Gucys Quegs - - + s Guen }» e first identify the set @ C @Qp, where the retrieval
part of each query in @y is the same or a superset® of that of g,.

The next step is to attempt to map a given user query to a semantically equiv-
alent one g, € Q. If such a query exists, it is executed instead of the original user
query g,. There are three ways of mapping a user query gy to a pre-optimized query
gp: (1) eliminating redundant constraints that are in g4 but not in g5, (2) adding
constraints in g, that are present in ¢, but not in g, (provided these new constraints:
can be derived from those mentioned in ¢y, and (3) replacing some constraints in
¢. by some in g, (provided after such replacements g, remains semantically equiv-
alent to its original form). The algorithm makes use of function Implies, which is
described in Fig. 4. The detailed steps of our algorithm are given below:

Step 0: Identify the set of potentially semantically equivalent queries, @ = {qj, |
j € {Rquerys, N Rquerya, ...N Rquery,, }, where a; € qua, fori=1,2, ..., k}.

/* Q; contains all queries in @, whose retrieval parts are either equal to or are
supersets of that of g, */ _

Step 1: Identify all queries ¢} € Q;, that satisfy the following property: Qp > Qu-as
follows:

(1) Identify the set of queries

=g i€ {v::'quer;:,r,,lﬂC‘g'uerg.;‘,,,l ...NCyquery,, }, where c; is an atiribute .

in gye, fori=1,2,...,n}.
(il) Let @, =Q; NG5
(iii) If @ is empty, then goto Step 3, else continue.
Step 2: Let Found = false, and Temp = Q).

~ /* Found is a boolean variable that returns true if a semantically
equivalent query is found in @}, and false otherwise. Temp is a tempo-
rary set of pre-optimized queries that is initialized to Q},. The algorithm

inclusion of a guery in @, would improve the chances of getting a semantically equivalent mapping
of a user query. On the other hand, this would increase the search time for determining such a
mapping.

CIn this case projection is used to arrive at the user’s desired attributes.

. Design and Implementation of a Knowledge-Based Query Processor 117

attempts to establish semantic equivalence between its first element and
qu. If it fails, that element is eliminated from the Temp set. The process
continues until either Temp is reduced to a null set or a semantically
equivalent query is found. */ :

while (not Found) and {Temp # @} do
{

(i) Let g, be the first query in Temp.

(i1} Let Found = Implies (que, ghc)- /* Does quc imply ‘.lpc ? ¥
(iii) If Found then let Found = Implies(gp;, Gue — qp,,) /¥ Check if any constraint
in gy that are not in gf, can be derived from gj,. */

(iv) If (not Found) then Temp = Temp - lgp]- /* If gy, does not imply qpc */
} /* while */
If (Found) then return g; and exit, otherwise continue.

Step 3: Identify all queries ¢, € @} that satisfy the following property: ¢y < qu.

(i) Let @5 = Q) — @
(i) Identify the set of queries, Q":
* = {qu | i € {Cquery., U Cquerye, .. UCqueryc'“}, where ¢; € gu., for
- i=1,2,...,n}.
. (iii) Let @y QP %

(iv) HQp is empty, then goto Step 5, else continue.

Step 4: ldentify a query g, that is semantically equivalent to g, from the queries
in Q. We proceed as follows:

(i) Let Found = false, and Temp = Q-
(ii) while (not Found) and (Temp # 0) do
{
(a) Let g5 be the query corresponding to the ﬁrst query in Temp
(b) Let Found Implies (gpe, que). /* Does gy, imply guc 7 */
(¢} If Found then let Found = Implies{guc, gpe— quc) /* Check if any constraint
in g, that are not in guc can be derived from guc. */
(d) If (not Found) then Temp = Temp — [g]. /* If g, does notimply quc 7 */

} /* while */
(iii) If (Found) then return q;; and exit, otherwise continue.

Step 5: Identify a pre-optimized query g, from the rest of the pre-optimized
queries in the set Q.

(i) Let Q) = @7 — Q5.

118 N. R. Adam, A. Gangopadhydry & J. Geller

(ii) Let Found = false, and Temp = Q.
(iii) while (not Found) and (Temp # 8} do
{

(a) Let g, be the query corresponding to the first index in Temp.
(b) Let Found = Implies.(g)%, quc)- ' ' ')
(¢) If (Found) then let Found = Implies (quc, ¢pe)- :

(d) If (not Found) then Temp = Temp - [g,'].

} /* while */
iv) If (Found) then return ¢ otherwise return NIL. Exit the mapping algorithm.-
p

The mapping algorithm, as discussed above, can handle the Select-Project-Join
(SPJ) (conjunctive) class of queries. As shown in [16], establishing equivalence
between two arbitrarily complex boolean expressions is an NP-complete problem.
The algorithm is thus restricted in its ability to handle queries with deeply nested
constraints.

The function Fmplies can handle transitive implications of any level. Thus, if we
have rules in the IDB such that, A = B, B = C, then it concludes A = C. We
avoid getting into infinite loops by stopping when any constraint is revisited.

Function Implies {(gpremises Gderivea)s boolean;

{

J* 9premise and guerived aTe two sets of constraints. The function attempts to
derive the constraints in ggeriveq from those in gpremise, using the rules in the IDB.
prem ng

*f .

(i) I gderivea = @ then Implies = true. Return,
(ii} Else {
' (a) Identify the set of rules o : :
(b) {Bp | p € {Arulee, U Arulec, U... Aruleg }, where ¢; € gpremise, fori=1,72,...4 !
being the number of attributes mentioned in gpremiase }-
/* Rp contains all rules in the IDB whose anieccedeni parts refer to some
attribute(s) that are mentioned in gpremsse. */

(C) Let Qdermad—on!y = Qderived = Qprsmue: with Gderived—only = U;=1 Qderived—onlyy) -
where 7 is the number of constraints in qde,-.ud_a,,,y
(d) Let Flag = true, k = 1.
/* Flag is a boolean variable that returns true if all constraints qderwed—-on!yk
can be derived from gpremises and felse otherwise. */

{e) While (Flag) and (k < r) do
{

i. Tdentify the set of rules _
{Ra] d € {Crulec; UCrulec, U...Crule.,}, where ¢; € gderived—onlyy, for i =
1,2, ..., n. n being the number of atiributes mentioned in ggerived—onty, }+
/ *Rg contains all rules in the IDB whose consequent part.s refer to some
attribute(s) mentioned in gerived—only, -« */

Fig. 4. Function Implies

Design and Implementation of a Knowledge-Based Query Processor 119

ii. Let Rpg = Rp NE&a-

/*Rp4 contains all rules in the IDB whose antecedent parts refer to some
attribute{s) mentioned in gpremise, and consequent parts refer to some at-
tribute(s) mentioned in gdepiyved—only, - Since we are interested in deriving
Qderived—onlyy fTOM Qpremise, We focus only on these rules. */

iil. Find a rule from R4, that has the following form: gpremise; = -« = Gderived—onlyy:
where gpremise; is any constraint in gpremise- Hno such rule is found, thenset Flag
to false.)

ivvk=k+ 1.
} /* While */
Implies = Flag.

}
} /* Implies */

Fig. 4. {Continued)

3.4.1. Examples

In this section, we explain the above algorithm with the help of some examples,

Example 1: In this example, g, > ¢y.
: select (s.OName) from SHIPS s where s.SType = “supertanker” and

s.Dwt > 350 and c. PName = “Marseilles”.
Step 0: From Table 1, Rguery of s.ONAME = {1,3,4,5,6}. Thus Q; =
{1,3,4,5,6}.

Step 1: From Table 1, Cquery; sType = {1,4,5,6}, Cquerys pwt = {3,4,5},
and Cquerye pName = {2,4}. Thus, @3* = {1,4,5,6} N {3,4,5} N {24} = {4},
Q,=Q; Q" = {4}. Since Q;, is not empty we continue to Step 2.

Step 2: Found = false, Temp = {4}. We enter the while loop. q; = gp4.
Function Implies is invoked. gpremise = {5-5Type= “supertanker” s.Dwt >
350, c.PName= “Marseilles” }. From Fig. 3, qderived = {o.Business = “leasing”,
8.SType = “supertanker”, s.Dwt > 350, c.PName = “Marseilles” }. Gderived—oniy
= {o.Business = “leasing”}, and r = 1. From Table 1, Arule, sType = {7,9,10},
Arules pwt = {1,2,6}, and Arule. pName = {}. Rp = {7,9,10} U {1,2,6} U {}
= {1,2,6,7,9,10}. Flag = true, we enter the While Joop. k = I. From Ta-
ble 1, Crule, Business = {2}. Since there is only one attribute mentioned in
derived—onlyx, Bd = {2}. R,qa = {1,2,6,7,9,10} N {2} = {2}. From Fig. 2, R2
= (Dwt > 300) = (Business = “leasing”). gpremise, = 8.DWt > 350, and this
is a stronger constraint on the same field (namely s.Dwt). Hence we conciude
that rule R2 can be applied to derive the constraint o.Business = “leasing’.
k = 2. Since k > r, we exit the While loop. Function Implies returns true.
Thus, Found is assigned frue. This causes an exit from the While loop, and
we return gpq as the semantically equivalent query and stop.

120 N. R. Adam, A. Gango_badhyay & J. Geller

Example 2: In this example, o < Qu-

gyl

select (c.Quantity) from CARGOES ¢ where _
e.CType = “LNG” and c.PName = “Marseilles” and 5.SType = “Pressure

Vessel”

Step 0. From Table 1, Rquery of c.Quantity = {2,3}. Since, the retrieval part

of g4 contains only one attribute, @ = {2,3}.

Step 1: From Table 1, Cquery..crype = {2,3}, Cqueryc PName = {2,4}, and

Cquery,. SType = {1456} @ = {23} n {24} n {1456} = {}. Conse

quently, Q is empty, and we go to Step 3.

Step 3: Q" = {2,3} - {} = {2,3}. From Table 1, Cqueryc.crype = {2,3},

Cqueryc.PNamc = {2 4}1 and Cguery,, S5Type = {1 4,5 6} Thus, Q = {2 3}

U {24} U {1456} = {1,2,345,6}. @, = {23} N {123,456} = {23}.

Consequently, Q;: is not empty, and we go to Step 4.

Step 4: Found = false, Temp = {2,3}. We enter the while loop. Function

Implies is invoked. ggerived = {¢.CType = “LNG”,c.PName = “Ma.rseﬂles”,‘
s. SType = “supertanker”}. The first query in Temp is gpp. Thus qp = Gp3,

and qpc = gpremise. From Fig. 3, gpremise = {¢.CType = “LNG” c.PName =

“Marseilles”}. Thus, qderived—onty = {5.5Type = “Pressure Vessel”’}. From
Table 1, Arule,.crype = {5,9}, and Arule. pyame {}. Thus, R, = = {5,9}. Flag
= true, we enter the While loop. ¥ = 1. From Table 1, Crule, sType = {6,9}.

Since there is only one attribute mentioned in gaerived—oniys, Ra = {6,9}. Rpa
= {5,9} N {6,9} = {9}. From Fig. 2, R9 = (CType = “LNG")= (SType =
“Pressure vessel”). Since gpremise, = {¢.CType = “LNG”}, we use R9 to
conclude Gaerived—oniy,- k = 2. Since k > r, we exit the while loop. Found is
assigned true. We return g, as the semantically equivalent query and stop.

Example 3: In this example, g, ¥ qu, and ¢ £ qu-

Qy :

select (s.OName) from SHIPS s where s.Dwt > 150.

Step 0: From Table 1, Rquery, sName = {1,3,4,5,6}. Since, the retrieval part

of gy contains only one attribute, @y = {1,3,4,5,6}. '
Step 1: From Table 1, Cquerys pwt = {3/4,5}. Since there is only one at-

tribute in que, Q5* = {345}, @ = Q;NQ;* = {34,5}. Since Q, is not

empty we contmue to Step 2.

Step 2: Found = false, Temp = {3,4 5} We enter the while loop. Function

Implies is invoked. gy, and hence, , Jpremise = {s.Dwt > 150}. The first query

- in Temp is gp3- Thus qp = gp3, qpc = Qderived. From Flg 3, Qderived—only =

{s.Dwt < 60, c. CType = “Refined petroleum”, p.country = “Denmark”}, and
r = 3. From Table 1, Arule, pw: = {1,2,6}. Thus, R, = {1,2,6}. Flag = true,
we enter the While loop. k& = 1. From Table 1, Crule, puw: = {10}. Since
there is only one attribute mentioned in gierived—onty,, Ba = {10}. Rpa =
{1,2,6} N {10} = {} Since R,q is empty, we set Flag to false. Implies returns
false. Since Found is false, we reduce Temp by its first element. Thus Temp

Design and Implementation of a Knowledge-Based Query Processor 121

={4,5}. In a similar manner, we can test queries gps4 and gps for semantic
equivalence. We are not giving the detailed steps here, but it can be verified
that neither g4 nor gps will satisfy the requirements for semantic equivalence.
Thus, Temp will eventually be reduced to @, and we will exit the while loop.
Found will be still false, and thus we continue to Step 3 of the algorithm.

- Step 3: @} = {1,3,4,5,6} - {3,4,5} = {1,6}. quc = {s.Dwt > 150}. From Table -
1 Cquerys pws = {3,/4,5}. Thus, @* = {3,4,5}, and @, = {1,6} N {345} =
. {}. Since Q; is empty, we go to Step 5.

Step 5: Qp' = {1,6}-{} = {1,6}. Found = false, Temp = {1,6}. We enter the
while loop. Function Implies is invoked. The first query in Q;" is gp1. Thus
q;" = gp1. From Fig. 3, q;; , and hence gpremize= {s.5Type = “supertanker” },
aerived = {8.Dwt > 150}, and r = 1. From Table 1, the Arule, spype =

{7,9,10}. Thus, R, = {7,9,10}. We set Flag to true and enter the While loop.

k=1 Gderived—only; — {s.Dwt > 150} From Table 1, the CTUIC,'Dwg = {10}

Thus, Rg = {10}. Rpq = {7,9,10} {10} = {10}. From Fig. 2, we find that

the antecedent of rule R10 is s.Stype = “supertanker”, which is gpremise, s and

the consequent part of rule R10 is s.Dwt > 150, which is gderived—only, £ =

9. Since k > r, we exit the While loop. Since Flag is true fanction Implies

returns trie. Function Implies is invoked a second time. Now, gpremise = fue;

and gacrived = Gye- From Table 1, Arule, put = {1,2,6}. Thus, Rp = {1,2,6}.
Qderived—only = {8-5Type = “supertanker” }. Flag = true, and s = 1. We enter

; the Whileloop. k = 1. qaerived—only, is 8-SType = “supertanker”. From Table
. 1, Crule, stype is {6,9). Thus, B, = {6,9). Rpa = {126} N {69} = {6}.
From Fig. 2, the antecedent part of rule R6 is gpremise, and the consequent

part of rule R6 is gaerived—only; - k = 2. Since k > r, we exit the While loop.

Since Flag is true function Implies returns true. Thus, we set Found to irue.

Since Found is true, we exit the while loop. Since Found is true, we return gp;

as the semantically equivalent query, and stop.

3.4.2. Correctness of the algorithm

) Theorem 3.1. If g is mapped onto g, by the above algorithm, then gy is seman-
tically equivalent o gp.

Proof. 3.1. Step 0 of the algorithm ensures that the set of target attributes of qu
is a superset of that of gu. This means that all attributes requested by g, will also
be retrieved by gp. The additional atiributes retrieved by gp but nol requested by ¢u
can be eliminated in subsequent processing.

The constraint parts of any two queries, qu and gp, can have the following general

forms:
Que: Cu, and ey, and ... oy,

@pe: Cp, and cp, and ... Cp,,.

122 N. R. Adam, A. Gangopadhyay & J. Geller

n and m are the number of constreinis in qu. and gp. respectively, and c; is a
consiraini of the form <atiribule rel-op ezpression>, where rel-op could be any
relational operator (>,>,=,#, elc.), and ezpression could be an atiribule, or a
numeric or string constant. For ezample, ¢; could be {dwt > 150).

If the algorithm maps qu to qp, the following must also be true:

Vei | ¢ € que and ¢ € gpe, Jej'| €5 € @pe and ¢; & Que, and ¢; = ... — ;.

Yer | e € gpe 6nd Cp & Que, 301 | €1 € que and 1 E Gpe, and 1 = ... > .

Given the above, any constraint that is in g, but not in q, can be derived to from
those in gy, and vice versa, by modus ponens [8]. Thus, qp. and gy. are Iogzcally,
and thus, semantically equivalent.

3.5. Queries that have No Maich in the Set of Pre-oplimized Queries

- It is conceivable that there will be instances when a user query will have no
semanticaily equivalent counterpart in the set of pre-optimized queries. In process-
ing some of these queries, we can make use of the knowledge gained by attempting
to find a match in the pre-optimized query set. In this section, we propose some
heuristics for handling such cases. In general, the user query has to fall into one of
the following categones

(i) The user query differs from a pre-optimized query in the retrieval parts but
matches in the constraint parts. Thus the selection conditions of the two queries
are the same. Since the tuples selected by the two queries are identical, we can
replace the retrieval part of ¢, with that of ¢, and process the modified query.

(ii} The user query is a superset of one or more pre-optimized queries. If there are
several such queries, a workable heuristic is to select the one that is the largest
subset of the user query. The following steps are then performed.

o Process the following query: select * where gpc.
s Process the following query on the tuples selected from the previous step:
select gur where gue — gpe-

(iil) The user query is a union of two pre-optimized queries, tha.t is, que = gpe, U qpc,
Here there are two possibilities:

¢ gpe, and gpc, are mutunally exclusive: Process gpe, and gy, sequentially.
® (pc, and gpe, are not mutually exclusive:

- Process gy, .

- Process gpe, = 4pc,

(iv) The only other possibility is as follows: g, is either a subset, or neither subset
nor superset of g,.. In such cases, the user query has to be optimized using
one of the extant semantic query optimization techniques. However, we could
reduce the size of IDB for optimizing the query. Since the semantic equivalence .
is established by using rules that involve the constraints in the user query, we
could optimize g, by considering only those rules mentloned in the Arules

corresponding to the constraints in gy..

Design and Implementation of a Knowledge-Based Query Processor 123

4. Performance Analysis

In this section we present some results of performance testing of the mapping
algorithm presented in Sec. 3.4. The schema presented in Fig. 1 was used for the
experiments. There were 15 rules in the IDB and 34 queries in the pre-optimized
query set. The relations had the following sizes (number of tuples):

(i) SHIPS: 2000

(i) PORTS: 500

(iii) CARGOES: 2000
(iv) OWNERS: 200
(v) POLICIES: 400
(vi) INSURERS: 400

Four queries were processed, first in unoptimized forms, then in optimized forms.
The INGRES database management system was used to store the relations and
run the queries. The algorithm for mapping, Qp, and IDB were implemented in
Quintus.Prolog. The following timings were measured.

(i) Time to map gu to gp (Tm)-
(ii) Time to process qu (Tu).
(iii) Time to process gp (73)-

The results are shown in Table 2. As can be seen from Table 2, T, + Tp < T,in
all cases, with time savings ranging from 17% to 29%.

Table 2. Experimental results.

Timings in milliseconds

Q# | Tm Tp Tw Savings

1 217 | 5920 7400 17%

2 | 184 | 13880 | 19440 | 28 %

3 50 3580 5120 29%

4 50 | 5840 7700 24 %

5. Conclusion and Future Research

In this paper we have described a method for using the concept of precompi-
lation of queries in the context of semantic query optimization. We discussed the
issues of generating the set of pre-optimized queries, representing the intensional
database and the set of pre-optimized queries, identifying a semantically equivalent

124 N. R. Adam, A. Gangopadhysy & J. Geller

counterpart of a user query, searching through the intensional database for poten-
tially applicable rules, and maintaining the pre-optimized query set. Performance
issues of the mapping algorithm were also discussed. _

Furthermore we plan to study the performance of the system when applied to
three example databases which have been discussed in [12], {14} and [22] as well
as two real world example databases that we have access to. In order to ensure
anonymity, the name of the organizations will be withheld and some of the actual
data will be modified. _

Our study would entail a detailed analysis of the trade-off between optimization
and execution costs. Further we would test the individual and joint effects of the
following factors on the performance of the algorithm: the sizes of @, and IDB,
and the characteristics of g, and g, (specifically, the number of attributes in the
retrieval and the condition parts). '

Ways of integrating our proposed system with currently available algorithms
(e.g- [5,14,22]), will be explored. This integration means that if our proposed sys-
tem concludes that for a given user query, gu, no semantically equivalent query is
available in the set Q,, then a selected query optimization algorithm would then
begin generating the optimal semantically equivalent query (since, for any given
query gy, there could be more than one semantically equivalent queries) by making
use of the information so far gathered by our system.

References

[1] ¥. R. Adam, A. Gangopadhyay.and J. Geller, Knowledge based query processing
using preoptimized queries, in Proc. First Int. Conf. on Information and Knowledge
Management, Nov. 1992,

[2] P. Apers, A. Henver and S. Yao, Optimization algorithms for distributed queries, TSF
9, 1 (1983) 57-68. - :

{3] P. Bernstein, N. Goodman, E. Wong, C. Reeve, and J. Rothnie, Query processing
in SDD-1: A system for distributed databases, ACM Trons. Database Systems 6, 4
(1981) 602-625. _

[4] U.S. Chakravarty, D. H. Fishman and J. Minker, Semantic query optimization in ex-
pert systems and database systems, Ezpert Database Systems: Proc. First Int. Work-
shop. ed. L. Kershberg (Benjamin/Cummings, 1986) pp. 659-674.

[5] U. S. Chakravarty, J. Grant and J. Minker. Logic-based approach to semantic query
optimization, ACM Trans. Datsbase Systems. 15, 2 (1990) 162-207.

[6] U. S. Chakravarty, J. Minker and J. Grant, Semantic query optimization: Additional
constraints and control strategies, Ezpert Databuse Systems: Proc. Second Int. Work-
shop, ed. L. Kershberg (Benjamin/Cummings, 1987) 345-379. 7

{7] 1. Chen and V. Li, Optimizing joins in fragmented database systems on a broadcast
local network, JEEE Trans. Softw. Engin. 12, 1 (1989) 27-38.

{8] M. R. Genesereth and N. J. Nilsson, Logical Foundations of Artificial Intelligence
(Morgan Kaufmann, 1987). o

{9] M. Hammer and S. B. Zdonik, Knowledge based query processing, Proc. VLDB,
Montreal, Canada, 1980 pp. 137-147.

[10] M. Jarke, External semantic query simplification: A graph theoretic approach and its
‘implementation in PROLOG, Ezpert Database Systems: Proc. First Int. Workshop
ed. L. Kershberg (1986) pp. 675-690.

Design and Implementation of a Knowledge-Based Query Processor 125

[11] M. Jarke, J. Clifford and Y. Vassiliou, An optimizing PROLOG front-end to a rela-
tional query system, in Proc. ACM-SIGMOD Conf., 1984, pp. 296-306, _

[12] M. Jarke and J. Koch, Query optimization in database systems, Compt. Surv. 16, 2
(1984) 112-152. :

[13] J. King, QUIST: A system for semantic query optimization in relational databases,
in Proc. VLDB, Cannes, France, 1981, pp. 510-517.

[14] J. King, Query optimization by semantic reasoning {UMI Research Press, 1984).

[15] M. Mannino, P. Chu and T. Sager, Statistical profile estimation in database systems,
ACM Comput. Surv. 20, 3 (1988) 191-221,

[16] B. Nebel, Computational complexity of terminological reasoning in BACK, Artif.
Intell. 34 (1988) 371-383. _

[17] S. Pramanik and D. Vineyard, Optimizing join queries in distributed databases, IEEE
Trans. Softw. Engin. 14, 9 (1988) 1319-1326.

[18] X. Qian and D. R. Smith, Integrity constraint reformulation for efficient validation,
in Proc. VLDB (Morgan Kaufman, 1987) pp. 417-425. :

[19] T. Selis, Multiple-query optimization, ACM Trans. Database Systems, 13, 1 (1988)
23-52.

[20] S. Shekhar, J. Srivastava and S. Dutta, A formal model of trade-off between optimiza-
tion and execution costs in semantic query optimization, in Proe. VLDB (Morgan
Kaufman, 1988) 457467,

[21] 8. T. Shency and Z. M. Ozsoyoglu, A system for semantic query optimization, ACM
SIGMOD, 1987, pp. 181-195.

22] 8. T. Shenoy and Z. M. Ozsoyogin, Design and implementation of a semantic query
optimizer, JEEE Trans. Knowledge and Data Engineering, 1, 3 (1989) 344-361.

[23] M. Siegel, E. Sciore and S. Salveter, A method for automatic rule derivation to support
semantic query optimization, ACM Trans. Database Systems 17, 4 (1992) 563-600.

[24] M. D. Siegel, Automatic rule derivation for semantic query optimization, Proc. Second
Int. Conf. on Exzpert Database Systems, ed. L. Kerschberg, 1989, pp. 669-698.

[25] S. Yu, K. Ghu, D. Brill and A. Chen, Partition strategy for distributed query pro-

cessing in fast local networks, JEEE Trans. Softw. Engin. 15, 6 (1989) 781-793.

