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Abstract. Class hierarchies form the backbone of many implemented knowledge represen-
tation and reasoning systems. They are used for inheritance, classification and transitive
closure reasoning. Part hierarchies are also important in artificial intelligence. Other hier-
archies, e.g. containment hierarchies, have received less attention in artificial intelligence.
This paper presents an architecture and an implementation of a hierarchy reasoner that in-
tegrates a class hierarchy, a part hierarchy, and a containment hierarchy into one structure.
In order to make an implemented reasoner useful, it needs to operate at least at speeds
comparable to human reasoning. As real-world hierarchies are always large, special tech-
niques need to be used to achieve this. We have developed a set of parallel algorithms and
a data representation called maximally reduced tree cover for that purpose. The maximally
reduced tree cover is an improvement of a materialized transitive closure representation
which has appeared in the literature. Our experiments with a medical vocabulary show
that transitive closure reasoning for combined class/part/containment hierarchies in near
constant time is possible for a fixed hardware configuration.
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1. Introduction

One original goal of artificial intelligence (AI) has been to provide computers
with human-like capabilities in a number of areas such as natural language
understanding, reasoning, learning, natural language generation, and image un-
derstanding. The Turing test (Turing, 1950) has been considered as a measure of
our success in areas such as reasoning and natural language processing. As AI
developed, it became clear that this goal was, and still is, elusive, and to date no
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general version of the Turing test has been passed by any program. It has also
become clear that the Turing test itself is not sufficient to test many human abil-
ities that seem rooted in factors such as perceptual processing. For that purpose,
some researchers have argued that the Turing test should be replaced by a more
general total Turing test (Harnad, 1989).

Even if we limit ourselves to a subfield of AI, namely reasoning, it is necessary
to relax some requirements that are implied by a comparison of AI reasoning
with human reasoning, in order to do successful research. Let us first make a
list of which requirements are implicit in the phrase ‘provide computers with
human-like reasoning capabilities’:

1. A reasoning algorithm needs to be implemented.

2. The algorithm needs to cover a combination of different forms of reasoning
that humans are able to perform.

3. The algorithm needs to produce reasoning results that are either provably
correct or comparable to human reasoning in its correctness. There is deep
disagreement in the field which one of these two requirements needs to hold.

4. The algorithm needs to run at a speed comparable to human reasoning.

5. The algorithm needs to operate on large knowledge bases, comparable in size
to human knowledge, without any performance degradation.

It is possible to classify all current reasoning research paradigms based on which
of the above conditions are observed, and which are relaxed or ignored. In our
research, we have been insisting on large knowledge bases and fast responses,
while relaxing the requirement for universality of the reasoning algorithm. Indeed,
we are limiting ourselves to transitive closure reasoning in class hierarchies. Most
previous work on transitive closure reasoning is limited to a single hierarchy,
typically the IS-A hierarchy. We present algorithms for transitive closure reasoning
in a hierarchy that combines IS-A, PART-OF and Contained-in relations. The
combination of these different kinds of relations into one hierarchy creates new
difficulties for which we will present solutions.

Reasoning in class hierarchies is important for modeling human reasoning and
has also been used in a number of application areas. For instance, class hierarchies
have been used in data mining and real-world classification applications such as
classifying documents into subject categories under the Library of Congress
scheme, or classifying World Wide Web documents into topic hierarchies. The
deeper logical interrelations between the concepts in a taxonomy, as well as an
extensive classification, have been improved by introducing efficient hierarchy
encodings in digital library applications (Schwartz, 1999; Geffner et al., 1999).

Classification algorithms have been developed in order to extract interest-
ing information (Taylor et al., 1997; Zupan et al., 1997), to improve prediction
accuracy (Greiner et al., 1996), to discover meta-rules as a guidance for find-
ing multiple-level association rules in databases (Han et al., 1996; Srikant and
Agrawal, 1997), to deal with semantic heterogeneity problems in cooperative infor-
mation systems (Han et al., 1998), and to mine sequential patterns for discovering
concepts across all levels of a taxonomy (Srikant and Agrawal, 1996). All these
studies have in common that effective classification rules covering generalization
and specialization in determining the range of queries, pruning data or mining
data can be identified using multiple levels of abstraction. As realistic hierarchies
and taxonomies are large, any such systems stand to gain from improvements in
hierarchy representations.



Efficient Transitive Closure Reasoning 307

The limitation to special-purpose reasoning is not sufficient to produce fast
reasoning with large knowledge bases. Two additional ingredients are necessary,
and they are high-performance computing and good data organization. We will
first discuss the use of powerful high-performance computing, specifically, parallel
computing. Several researchers have used the combination of special-purpose
reasoning and parallelism. The approach of (Shastri, 1988) is connectionist. Other
approaches have been based on symbolic AI (Hillis, 1985; Waltz and Stanfill,
1988; Waltz, 1990; Kitano and Higuchi, 1991; Evett et al., 1993). Barnden and
Srinivas (1992) have combined symbolic and connectionist techniques in order to
reap the benefits of both approaches. We will give extensive justifications for the
need of high-performance computing in Section 2.1.

Besides special-purpose reasoning and high-performance computing, another
necessary ingredient of our research is organizational. We need to use good data
representations for the hierarchies that we want to reason with. We are using a
representation called materialized transitive closure (Agrawal et al., 1989, 1990). We
have adapted materialized transitive closures to high-performance computing. In
Section 3 we will describe our data representation in more detail. To summarize,
this paper reports on our work on representations and algorithms for transitive
closure reasoning over large knowledge bases, containing combined relational
hierarchies, on high-performance hardware.

This paper is organized as follows. Section 2 describes our motivations. Section
3 summarizes our previous work on massively parallel reasoning (Lee and Geller,
1993, 1995, 1996a, 1996b; Lee, 1997). In Sections 4 and 5 we concentrate on
the definitions and algorithms necessary for intuitively correct reasoning with
combined relations and for implementing this kind of reasoning within our
massively parallel paradigm. Section 6 describes experimental results of our work
with the InterMED. Section 7 contains our conclusions. A preliminary version of
this paper appeared in Lee and Geller (1996b).

2. Research Motivation

2.1. Why High-Performance Computing?

It is not immediately intuitive to everybody why high-performance computing
should be needed to achieve fast reasoning. A number of previous publications
have addressed this question in the context of AI (Hillis, 1985, 1988; Shastri,
1988; Waltz, 1988, 1990). However, we will briefly summarize arguments why
high-performance computing appears necessary, both for modeling human rea-
soning and in several related application areas.

1. Intuition of scalability: People are amazingly fast at many tasks, e.g. face
recognition. While we don’t know how this is achieved, we propose the following
strawman algorithm. Every known face is stored as a feature vector on its own
processor. A test face, which needs to be recognized, is translated into a feature
vector and broadcast to all processors. The test feature vector is compared in
parallel to all the stored feature vectors. Every processor reports a similarity value
and the result is the feature vector with the largest similarity value. Intuitively,
this recognition method will scale up well as long as there are more parallel pro-
cessors available than feature vectors.1 Since scalability has been a major problem

1 Increasing the number of processors will lead to increased broadcast times.
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in knowledge representation, any methodology that appears to be scalable should
receive consideration.

2. Evidence of parallelism in the human brain: The human brain operates in
parallel, and it seems like a good idea to imitate this feature, regardless of the
fact that airplanes don’t fly like birds. How do we even know that the human
brain operates in parallel? Feldman (1982) has argued for a hundred-step rule of
mental processing in the following way. Neurons are very slow processors. Many
human tasks, such as face recognition, can be performed in about 500 ms. If
the cycle time of a neuron is about 5 ms, then one neuron can perform at most
100 operations for a typical everyday problem. As we don’t assume that a few
neurons can perform face recognition in 100 processing cycles, it follows that
large amounts of neurons need to be active at the same time.

In newer research, Thorpe et al. (1996) demonstrated that certain decisions,
such as whether an image depicts an animal or not, are made in about 150 ms.
That means that the brain needs only about 30 cycles to solve a problem that
is still beyond the reach of implemented AI. Since the human brain is still the
only cognitive processor that has passed the Turing test, it appears beneficial to
incorporate parallelism into reasoning systems.

3. Benefits of raw computing power: Estimates show that the brain seems to be
of enormous memory and computational power, containing about 100 billion
neurons. Many of these neurons have direct connections to between 1000 and
10,000 other neurons (Schwartz, 1988). The memory capacity of the brain has
been estimated at 10,000 trillion bytes and its processing speed at 1,000,000 trillion
arithmetic operations per second, give or take a factor of 100 (Schwartz, 1988).

Having raw computational power available seems at least helpful in achieving
the appearance of intelligence. In a historic event, Deep Blue II defeated chess
world champion G. Kasparov in May 1997 3 1/2 to 2 1/2. Nobody, not even Deep
Blue’s designers, claimed that the machine has any form of human-like intelligence.
Chess is considered an easy AI task, because it is accessible, deterministic, semi-
static, and discrete, following the analysis of Russel and Norvig (1995). The
real world tends to be inaccessible, non-deterministic, non-episodic, dynamic, and
continuous. Maybe with more power, more difficult tasks will become solvable.

We are firm believers that a quantitative improvement becomes at a certain
point a qualitative improvement (Geller, 1993). Interestingly, Kasparov (1997)
himself has used just this phrase:
From a certain point on, it seems, at least in chess, that enormous quantity turns into quality.
[Translated from German]

There are numerous other examples in technological history, where an improve-
ment in speed of one or two orders of magnitude has led to complete changes in
culture and even history (cars, airplanes, microprocessors, computer networks).
Having seen examples where raw power led to remarkable qualitative improve-
ments in system behavior, there is justification for investigating high-performance
computing approaches to AI.

4. Successful parallel applications: Even in fairly applied research areas such as
data mining, high-performance computing has been a useful tool (John and Lan-
gley, 1996; Carino and Jahnke, 1998). Parallel processing allows one to answer
complex queries in very large knowledge bases in fractions of a second (Stoffel et
al., 1997). Parallel high-dimensional proximity joins (Shafer and Agrawal, 1997)
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and parallel searching for text inference in natural language applications such as
information extraction, text understanding, and machine translation (Harabagiu
and Moldovan, 1998) have been studied. Parallelism was adopted in collective
search for economic dispatch problems in the cooperative agent domain (Song et
al., 1999). Parallel architectures have been designed for high-speed image recog-
nition (Farroha and Deshmukh, 1995). Recently, cellular computing has been
introduced (Sipper, 1998, 1999) as an extension of massive parallelism for more
efficient computation, in terms of speed, cost, power dissipation, information stor-
age, solution quality and potential for addressing much larger problem instances.

2.2. Why Transitive Closure Reasoning?

AI has defined many different tasks that require reasoning. Let us choose two
paradigmatic examples: transitive closure reasoning and theorem proving. The
second requirement in the list of requirements in Section 1 says that the algorithm
needs to cover all kinds of reasoning that humans are able to perform. Transitive
closure reasoning is routinely performed by humans. Inheritance reasoning, which
is closely related to transitive closure reasoning, is a mental operation that humans
perform daily.

Inheritance reasoning has been heavily investigated in AI. IS-A hierarchies
have been a main staple in knowledge representation and reasoning since Quillian
(1968). The number of papers on other hierarchies is, comparatively, much smaller.
However, PART-OF has received some attention (Schubert, 1979; Schubert et
al., 1983, 1987). Specifically, in Schubert et al. (1987) the importance of transitive
closure reasoning in IS-A and PART-OF hierarchies has been well explained, so
that we don’t need to elaborate on it in this paper. We have previously done
research on PART-OF hierarchies, especially on inheritance reasoning (Halper et
al., 1992, 1993, 1994, 1998).

Transitive closure reasoning is not limited to hierarchical relations such as IS-
A and PART-OF. It pervades human reasoning in other forms also. For instance,
a human can answer ‘Is an elephant bigger than a can opener’? if he knows that
an elephant is bigger than a person, and a person is bigger than a can opener.

Transitive closure reasoning also plays an important practical role. For in-
stance, it is used in aggregating objects, referring to their parts without specifying
a level of decomposition (Horrocks and Sattler, 1999) and combining results of
individual passes of data-pruning processes in data-cleansing tasks (Hernandez
and Stolfo, 1998). Plexousakis (1993) proposed a representation language, called
Telos, to represent structural, temporal and assertional knowledge in the form of
deductive rules and integrity constraints and also for the incremental maintenance
of the computed transitive closure for knowledge bases. In Horrocks and Sattler
(1999), an extensive study of role hierarchies, including part–whole, transitive,
and inverse relations, was performed. Joslyn and Rocha (1998) have shown how
to formally combine various uncertainty representations in a taxonomic structure,
capturing both syntactic and semantic generalization.

Transitive closure reasoning that combines IS-A relations with other relations,
such as PART-OF, has received little attention. An exception is a seminal paper
by Winston et al. (1987) that combines different binary transitive relations into
a single reasoning process. However, not every conclusion that can be drawn in
such a case is correct. Winston et al. describe a condition when such reasoning is



310 Y. Lee and J. Geller

correct. For example, with the premises:

(1) Wings are parts of birds.
(2) Birds are creatures.

we can consider the following two conclusions:

(3) Wings are parts of creatures.
(4) * Wings are creatures.

We have obtained a reasonable conclusion (3) while (4) is an invalid conclusion.
Winston et al. (1987) introduced a hierarchical priority ordering among the
hierarchical relations, such that combined inclusion relation syllogisms are valid
if and only if the conclusion expresses the lower relational priority appearing in the
premises. In this paper, we are addressing combined relational transitive closure
reasoning, following Winston et al.’s paradigm. For an alternative approach to
this problem see Cohen and Loiselle (1988).

2.3. Why Good Data Structures?

The need for good data structures is normally not questioned. However, it is
always helpful to have better data structures, and Schubert has introduced a par-
ticularly good data structure, which represents the materialized transitive closure
of an IS-A hierarchy. His representation permits transitive closure reasoning in
constant time, practically independent of the height of the knowledge base. In our
previous work we have developed techniques and algorithms for dealing with two
weaknesses of Schubert’s approach: (1) Schubert did not present (incremental)
update algorithms; and (2) Schubert’s original approach is limited to trees. We
have dealt with problem (1) by using massive parallelism (Lee, 1997), and with
problem (2) by adapting a representation of Agrawal et al. (1989, 1990), that
permits closures of directed acyclic graphs (DAGs), to parallel processing.

Currently, there is great interest in directed acyclic inheritance graphs for
dynamic and complex objects. Van Bommel and Beck (1999) show experimental
results from comparisons of several incremental update methods for multiple
inheritance hierarchies. Among their many interesting results, we find that while
a top-down incremental update algorithm minimizes the storage needs for hier-
archies of less than 300 nodes, for larger hierarchies Agrawal’s approach (1989)
is better. Our recent study (Han and Lee, 2000) analyzed the time and space
complexity for several well-known encodings including Boolean matrix (War-
shall, 1962), matrix multiplication (Munro, 1971; Fischer and Meyer, 1971),
improved matrix encodings such as Ait-Kaci et al.’s (1989) and Ganguly et al.’s
(1994) and also Agrawal et al.’s (1989). During the analysis, we noticed that
the matrix-based encodings (Warshall, 1962; Munro, 1971; Fischer and Meyer,
1971) require constant storage space, i.e. O(n2), and excessive encoding construc-
tion time, i.e. O(n3 log n). Ait-Kaci et al.’s (1989) and Ganguly et al.’s (1994)
constant time verification results appear to be underestimates. In Han and Lee
(2000), we showed that the actual estimates for their representations should
be O(n/ log n). We also derived (Han and Lee, 2000) that Agrawal et al.’s en-
coding requires less space for real-world problems and less construction time
compared with the encodings of Warshall (1962), Munro (1971), Fischer and
Meyer (1971), Ait-Kaci et al. (1989), and Ganguly et al. (1994). Several transi-
tive closure studies (Ebert, 1981; Ioannidis et al., 1993; Schmitz, 1983; Nuutila,
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1994) are based on strong component computing of Tarjan (1972). Specifically, a
reachability-based transitive encoding (Nuutila, 1994) called the compact succes-
sor set is based on Tarjan’s depth-first spanning tree algorithm and Agrawal et
al.’s encoding. The primary concern of this encoding seems to be fast transitive
closure construction time. However, since the spanning tree construction is a
part of preprocessing in our approach, we are more interested in optimization
of encoding storage than in tree construction time. Agrawal et al. (1989) proved
that the spanning tree constructed by their approach is optimal in terms of
space requirements for storing the encoding. Furthermore, it is not clear whether
the encoding of Nuutila (1994) is appropriate for our reasoning model, which
requires a reasoning process combining several different relations. In the future,
we will investigate whether or not our approach can be combined with this
encoding.

2.4. The MED Medical Vocabulary as Application Area

Research on reasoning with large knowledge bases is often performed with
random graphs as simulated knowledge bases, because few real knowledge DAGs
are widely available. One knowledge base, a DAG that contains IS-A and PART-
OF relations, is the Medical Entities Dictionary (MED) (Cimino et al., 1994).
The MED is a very large vocabulary, incorporating over 60,000 concepts and
over 84,677 hierarchical links. The MED is not publicly available, but a subset,
the InterMED, is accessible over the Web and was used in our research.

An example of a combined relational query which can be answered with
the MED is the following. Is it the case that Aspirin may be coated? Aspirin
itself is represented in the MED as a concept. This concept might have several
descendants according to different common preparations, such as pills, drops, or
capsules. Capsules consist of two parts: the active ingredient and the coating.
Thus, the answer is ‘Yes, Aspirin can be coated.’

Other researchers have combined medicine and knowledge representation. Be-
cause a common language is a prerequisite for integrating disparate applications
in health care, formal representations based on description logics are increasingly
used for medical knowledge. Recent interest in medical reasoning and strong mo-
tivation to use shared medical conceptualizations have led to the implementation
of large-scale formal reasoning in medical ontologies (Rector et al., 1998).

GALEN’s experience (Rector et al., 1997) raises two interesting issues: how
to make an ontology based on description logics easy to use and understand,
and what features are required for an effective ontology and description logic.
In addition, transitive closure reasoning in part–whole hierarchies as well as
concept specialization and role propagation have been investigated. Integrating
knowledge base technology with database systems provides flexible answering of
queries (Chu et al., 1996). Rector et al. (1998) have pointed out that combined
relational hierarchies are extremely common in existing medical classifications
but there are major limitations of their use for formal reasoning (e.g., how
to differentiate ‘kind-of’ and ‘PART-OF’). The transitive relations need to be
expressively formalized despite the computational cost, and that computational
cost is acceptable in practice (Rector et al., 1998). In dealing with large amounts
of medical data, PARKA-DB (Hendler and Stoffel, 1999) presented scalable
and high-performance computing using an ontology and relational database
techniques.
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Fig. 2. (a) IS-A hierarchy; (b) directed acyclic graph (DAG) of class hierarchy.

3. Efficient Representations for Class Hierarchies

This research has focused on building an efficient transitive closure reasoner,
called Hydra, that can dynamically assimilate any transitive, binary relation and
efficiently answer queries using the transitive closure of all those relations (Lee,
1997). Hydra can dynamically insert new concepts or new links into its knowledge
base.

An important problem we solved was how to map a given class hierarchy
onto a space of parallel processors. The most obvious intuitive choice is to assign
every class of the hierarchy to a single processor. However, this intuitive choice
does not carry over to the links between classes (Lee and Geller, 1993). We
have developed a three-step mapping (Fig. 1) to deal with this problem. In this
section we will only describe the representation of the IS-A backbone of the class
hierarchy. The combined relational hierarchy will be described in Section 4.

Step 1: We are modeling a microworld by a class hierarchy. Concepts of the
world are represented by classes that are connected by IS-A links. In the simplest
possible case this hierarchy is a tree. In Fig. 2(a), an example of such an IS-A hi-
erarchy is shown. The IS-A relation is transitive. The node Feline is connected by
one IS-A arc to the node Mammal, which means that every Feline is a Mammal.
Due to the transitivity of the IS-A relation, every Siamese is also a Mammal, etc.
More interesting than trees are directed acyclic graphs with multiple inheritance.
We are limiting ourselves to singly rooted DAGs by introducing an artificial root
‘Thing’ whenever necessary (Fig. 2(b)). DAGs will be discussed in Step 2(c) below.

Step 2: The hierarchy of nodes is mapped onto a set of those nodes, so that every
node is annotated with one or more number pairs. This is called the node set
representation. The number pair assignment was developed based on Schubert
et al.’s (1983, 1987) special-purpose reasoner, which permits transitive closure
reasoning in constant time (in a tree), practically independent of the size of the
knowledge base.
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Step 2(a): A spanning tree of the DAG is constructed. (If the knowledge base is
a tree, this step is omitted.) Many efficient spanning tree construction algorithms
are available. Tarjan’s (1972) depth-first approach, in particular, is well known
and widely used in various applications, including compiler construction. There
are several reasons we employed Agrawal et al.’s approach instead. First, since
the spanning tree construction is a part of preprocessing in our approach, we
are more interested in optimization of encoding storage than in tree construction
time. Agrawal et al. (1989) proved that the spanning tree constructed by their
approach is optimal in terms of space requirements for storing the encoding.
Second, our reasoning model and our node set representation were built based on
Agrawal et al.’s encoding. Therefore, their spanning tree algorithm was chosen,
as will be further explained below.

Step 2(b): The nodes in the (spanning) tree are annotated with number pairs. The
first number in every number pair indicates after how many steps this node was
reached in a preorder traversal of the spanning tree. This is called the preorder
number. (For historical reasons this traversal is done from right to left.) The
second number in a number pair of a node A is the maximum of all the preorder
numbers that appear under A. This is called the maximum number. We call the
number pairs obtained in this way tree pairs and use the notation [π µ] for them.

These number pairs can be used for verifying a transitive relation between
any pair of nodes in the spanning tree without actually traversing the path from
one node to the other node. For instance, in Fig. 2(a), we may conclude that a
Cheetah is an Animal, because [7 7] is contained in [3 9].

Step 2(c): For trees every node needs only one number pair. However, for DAGs,
a node might need several number pairs. Let us assume that a node A in the
DAG is reachable through a link, which is not part of the spanning tree, from
a node B (B below A). If B has a number pair P that is not contained in (or
equal to) any number pair at A, then P needs to be ‘propagated’ upward from B
to A. We call the number pairs obtained by propagation graph pairs and use the
notation (π µ) for them. Agrawal’s spanning tree algorithm is optimal, because
it minimizes the number of graph pairs. However, we will explain below how we
can improve the representation for a parallel environment.

Now all transitive relations can be verified by comparing number pairs. How-
ever, as some of the nodes have several pairs, this is not a constant time operation
anymore. For example, (Fig. 2(b)), Siamese is a Domestic Animal because [8 8]
of Siamese is equal to (8 8) of Domestic Animal. (Equality is a special case of
containment.)

Step 2(d): Now links are no longer necessary and may be omitted. The anno-
tated nodes are placed in a set, the resulting node set representation. All relational
information is contained in the number pairs. The node set representation simpli-
fies the parallel update operations necessary to maintain a class hierarchy. More
details can be found in Lee and Geller (1993) and Lee (1997).

Step 3: The node set and the associated number pairs are mapped onto the
processor space of a high-performance computer. We have developed and imple-
mented a method for mapping this set-based representation onto a Connection
Machine (CM-5), called the Double Strand Representation. The Double Strand
Representation consists of two linear strands of processors (Fig. 1). In the tree
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pairs strand, every tree pair of a node is represented by one processor. In the
graph pairs strand, pairs of nodes represent ‘propagations’. One node in each pair
represents a propagation source, and the other node represents a propagation
target. (Do not confuse the pairs of processors with number pairs!)

In brief, our three-step mapping (Fig. 1) can be summarized as follows: class
hierarchy → directed acyclic graph → node set + number pairs → processor space.
As a result of this mapping we get nearly constant time responses for transitive
closure queries (Lee and Geller, 1995). For example, it takes as much time to
verify that a Cheetah is an Animal as to verify that a Cheetah is a Feline
(Fig. 2(b)). We are using the node set representation in a parallel computing
environment. However, because it is a pointerless representation, it may also be
used in distributed environments where large sub-hierarchies are represented on
networked workstations. We have described the construction of our representation
assuming a static world. However, most real-world reasoning situations require
evolving knowledge. It has been a major point in our previous research (Lee,
1997) to develop and implement parallel algorithms for updating a class hierarchy
represented by the Double Strand Representation.

4. Extension to Combined Relational Hierarchy

A combined relational hierarchy allows multiple relations to coexist in one knowl-
edge base. This permits transitivity through several different relations. However,
this leads to difficult tasks, both during construction of the representation and
during transitive closure reasoning. Below we explain how we have added com-
bined relational hierarchies to our representation of Section 3.

First, we are modeling a microworld by a combined relational hierarchy. This
hierarchy is then mapped onto a singly rooted DAG of classes with the following
constraints. The subgraph consisting of all the classes and all the IS-A links is a
connected DAG. To this DAG are added PART-OF and Contained-in relations
with the limitation that no cycles may be introduced by this process. Thus, the
final hierarchy is a DAG. In our models we have found that this representation is
sufficiently powerful to be of real interest. A more general approach would be to
allow for a union of three independent hierarchies I ∪ P ∪ C , where I is an IS-A
hierarchy, P is a PART-OF hierarchy, and C is a Contained-in hierarchy. An
analysis of this approach, which might introduce cycles, is beyond the scope of this
paper. Then we construct a spanning tree as before, limited to the IS-A relations.
This spanning tree becomes the backbone of the structure while the remaining
IS-A links and the other hierarchical relations form its branches. Figure 3(a)
shows the backbone and Fig. 3(b) shows the backbone and the branches of an
example.

Next, we add number pairs as we did for pure IS-A hierarchies. However,
the following questions arise: (1) How do we distinguish one relation from the
others? (2) How do we combine relations when required? Our representation,
extending what was described in Section 3, is generated as follows:

1. Construct spanning tree: We construct an optimal spanning tree of a given
combined relational DAG. Here we are using a new technique, different from the
one introduced by Agrawal et al. (1989). At every node with multiple parents, we
include the link to the parent with the maximum number of weak predecessors in
the spanning tree. Informally, a weak predecessor B of a node A is a predecessor
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which is reachable from A by an upward path containing at least one graph arc
and B is at the head of a graph arc. In order to formally define the notion of a
weak predecessor we need several auxiliary definitions which are closely following
the terminology of Agrawal et al. (1989). Alternative definitions have appeared
in the literature, e.g. the use of forward and cross-links (Nuutila, 1994).

Definition 4.1. A tree arc from B to A is an arc from B to A that is part of the
spanning tree. A graph arc from B to A is an arc from B to A that is not part of
the spanning tree.

Definition 4.2. A tree path from B to A is a path from B to A that consists of
tree arcs only. A graph path from B to A is a path from B to A that contains at
least one graph arc.

Definition 4.3. The set of predecessors of a node A is the set of all nodes that are
reachable from the node A by any arc or path.

Definition 4.4. The set of successors of a node A is the set of all nodes from
which the node A is reachable by any arc or path.

Definition 4.5. A tree predecessor A of a node B is a predecessor of B such that
A is reachable from B by a tree path.

Definition 4.6. A tree successor A of a node B is a successor of B such that B is
reachable from A by a tree path.

Definition 4.7. A weakly terminated path is a path that consists of a tree path of
length n, n > 0, followed by a single graph arc.

Definition 4.8. A weak predecessor A of a node B is a predecessor of B, such that




A is at the end of a weakly terminated path from B to A
OR

Some node X exists, such that X is a weak predecessor of B,
and A is at the end of a weakly terminated path from X to A.

Thus, we are constructing a spanning tree by always choosing the parent that
has the maximum number of weak predecessors. If there is a node P which is
a weak predecessor of C and also a tree predecessor of C , we count the weak
predecessors of C without P . If there are several parents with equal maximum
numbers of weak predecessors, we randomly choose one. Maximality is impor-
tant, because it allows us to prove a result (Lee and Geller, 1996a) discussed at
the end of step (3) below.

2. Assign tree pairs: We assign a pair of preorder and maximum numbers to
every node of the spanning tree. Preorder numbers and maximum numbers are
generated as in Section 3, Step 2(b).

3. Propagate pairs: Our transitive closure reasoning mechanism works based on
an extension of a number pair propagation algorithm introduced in Lee and
Geller (1996a). There we proved that if there is a tree path from σ to τ, we can
achieve the effect of having all graph pairs of σ at τ, without actually propagating
these pairs to τ, resulting in an additional saving of space. In other words, instead
of propagating number pairs along all graph arcs, we propagate them to weak
predecessors only. Above ‘achieve the effect of having all graph pairs’ means
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Fig. 4. (a) Agrawal’s propagation; (b) maximally reduced propagation.

that we can perform constant time subclass verification and all operations that
rely on subclass verification, including propagation itself. We call the resulting
structure the maximally reduced tree cover (Fig. 4(b)). If a number pair would be
propagated to a node where an existing number pair encloses it, this propagation
is not performed.

Now we need to integrate relations other than IS-A into our number pair
representation. For this purpose, we introduce a data element called relation
type. Each relation is associated with a relation type and a priority. Figure 4(a)
shows propagation based on Agrawal’s approach (1989) and Fig. 4(b) shows our
approach. When a graph arc is inserted from Ω to σ with the relation type x, we
propagate the pair x(π µ) only to σ instead of propagating x(π µ) up to all tree
predecessors of σ (including τ).

In this paper we assume that the possible relation types are s (for IS-A; the
letter s is from subclass), p (PART-OF), and c (Contained-in). In Fig. 5, we assign
the lowest priority (1) to IS-A, the intermediate priority (2) to PART-OF, and the
highest priority (3) to Contained-in (Winston et al., 1987).

Now we have to describe how the relation type of a number pair is transformed
during propagation. For this we define two rules. The propagation behavior de-
pends on the link type and the relation type that is propagated.

Rule 1. If a tree pair is propagated along a link, it is transformed in the process
into a graph pair with the relation type R of the link.

s[x y] R−→ R(x y)

In the above schema, s stands for the IS-A relation type, and R stands for the
relation type of the link. Since the priority of the relation type s (IS-A) is lowest
among all the relation types, the relation type of the propagated pair will always
be replaced by the relation type R associated with the link.

Rule 2. If a pair with a relation type K with relational priority X is propa-
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Fig. 5. An example of a combined relational hierarchy.

gated along an edge with a relation type L with relational priority Y then the
result of

K(x y) L−→ R(x y) is R =

{
K iff Y 6 X
L iff Y > X

and R is the relation type of the pair at the head of the edge. Informally, the
result of the propagation of a pair along a link is the relation type of higher
priority of the relation types of the pair and of the link.

In Lee and Geller (1996a) we have shown that the number of number pairs
introduced in this way is smaller than in the optimal tree cover of Agrawal
(1989). In (Lee, 1997) we have shown that the maximally reduced tree cover for
combined relational hierarchies is sufficient for the efficient parallel execution of
all necessary retrieval and update operations.

4. Eliminate links: The set of all nodes together with their tree pairs and graph
pairs is generated.

5. Map nodes onto processors: All the nodes and their associated number pairs
are mapped onto the Double Strand Representation (Fig. 6).

In Fig. 5, ‘Water is a Fluid’ exactly because the number pair of Water s[8 8]
is contained in the pair for Fluid s[5 11]. For more details, see (Lee, 1997; Lee
and Geller, 1993, 1995, 1996a).

For an example of propagation (Fig. 5) assume that a PART-OF arc from
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Plasma to Blood was just inserted. Now the tree pair s[9 9] and the graph
pair c(8 8) need to be propagated to the nodes (Blood, Heart) (Lee and Geller,
1996a). Therefore, this pair s[9 9] is propagated through a PART-OF relation
from Plasma to Blood, and a Contained-in relation from Blood to Heart. The
tree pair s[9 9] of Plasma is propagated through PART-OF to Blood, resulting,
by Rule 1, in the pair p(9 9). Continuing from Blood to Heart, the pair p(9 9)
needs to be changed to c(9 9), by Rule 2. This allows us to process queries such
as ‘Is Plasma a part of Blood’? and ‘Is Plasma contained in Heart?’

In contrast, the graph pair c(8 8) at Plasma has a Contained-in relation type
and its priority is higher than that of the PART-OF relation of the arc from
Plasma to Blood and is equal to the priority of the Contained-in arc from Blood
to Heart. Therefore, the pair c(8 8) is propagated to Blood and Heart with its
own relation type, by Rule 2. Because Heart has a pair c(8 8) and Water has a
pair s[8 8], we can conclude that Heart contains Water. This uses the number
pairs to determine that a relation exists, and the relation type c to determine the
kind of the relation.

5. Transitive Reasoning in Combined Relational Hierarchy

In this section we show that we can achieve constant time responses (for a given
machine size) for parallel transitive closure queries in a combined hierarchy.
Assume that R1, R2, . . . , Rn are hierarchical relations.

Definition 5.1. A target of transitivity, τ, is a node at the upper end of a path that
is used for transitive closure reasoning.

Definition 5.2. A source of transitivity, σ, is a node at the start (lower end) of the
path that is used for transitive closure reasoning.

Definition 5.3. A path P from σ to τ is purely transitive iff P = σ R1 σ1 R2 σ2 . . .
Rn τ, and R1 = R2 = . . . = Rn.

Definition 5.4. A path P from σ to τ is combined transitive (σ Rx τ) iff P = σ
R1 σ1 R2 σ2 . . . Rn τ, and Rx is such that Priority(x) = Maximum(Priority(R1),
Priority(R2) , . . ., Priority(Rn)), and at least one Ri 6= Rj .

Both transitivities satisfy the following property: If σ R1 σ1 . . . σn Rn τ holds, then
(σ R τ) & (R = R1 or . . . R = Rn). Importantly, pure transitivity reasoning and
combined transitivity reasoning can be done in one step. We will present how
these mechanisms can be integrated during reasoning.

Lemma 5.1. Pure transitivity in IS-A path. Let Rx be an IS-A relation (Rx =
Rs). If σ Rx τ holds through a pure inference path, then, after applying our
propagation algorithm from Step 3 of Section 4, the target τ or one of its tree
successors will have a number pair with the relation type x = s propagated from
σ or from one of its tree predecessors.

Proof. By contradiction, assume that the target τ or a tree successor of τ has a
graph pair s(π µ) from the source σ or one of its tree successors, although an arc
A in the inference path from σ to τ is not an IS-A relation. Since the IS-A relation
has the lowest relational priority among all relations, the pair s(π µ) cannot be
propagated through an arc A unless the relation type of s(π µ) changes to the
relation type of the arc A (Rule 2 of Section 4). Therefore, the pair (π µ) cannot
be associated with the relation type x = s. This results in a contradiction. q
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Fig. 6. Double Strand Representation.

Lemma 5.2. Combined transitivity. Let Rx be a relation. If a source σ relates by
Rx to a target τ because of a combined inference path from σ to τ, the target
τ or one of its tree successors must have a number pair with relation type x
propagated from the source σ or one of its tree predecessors.

Proof. By using Rule 2 of Section 4 and maximally reduced propagation, this is
trivial. q

Theorem 5.1. If τ (or a tree successor of τ) has a pair that contains (or is equal
to) a pair from σ (or a tree predecessor of σ) then the relation type of the pair
of τ (or a tree successor of τ) tells the relation which actually holds between σ
and τ.

Proof. We prove the theorem by using the above two lemmas. If the relation is an
IS-A relation, the query is an instance of IS-A pure transitivity reasoning (Lemma
5.1). Otherwise, the query is an instance of combined transitivity reasoning or
pure transitivity reasoning with other relations (Lemma 5.2). q

Now we will show how to answer queries within our paradigm in parallel. We
divide pure transitivity into two subcases: one for an IS-A relation and another
for other hierarchical relations. A description of pure transitivity with other
relations will be omitted for space reasons (Lee, 1997).

First we introduce some specialized parallel processing terminology. A pro-
cessor may be active or inactive. A parallel variable (pvar) is an array (possibly
multi-dimensional) where every component is maintained by its own processor
and all values are usually changed in the same way and in parallel on all active
processors. In the algorithm, variables marked with !! are parallel variables, and
operations marked with !! or involving parallel variables are parallel operations
(TMC, 1988).

The parallel variable pre!! contains for every node its preorder number, max!!
stands for a parallel variable that contains for every node its maximum number,
and reltype!! stands for a parallel variable that contains for every number pair
its relation type. The functions prenum(), maxnum(), and tree-pair() retrieve the
preorder number, maximum number, and the tree pair, respectively, for the given
argument.

Additionally, the variable Φγ represents the lower bound of the graph pairs
strand and Φτ represents the upper bound of the tree pairs strand. The parallel
function self-address!! returns IDs of all active processors and oddp!! contains
TRUE on a processor if the processor’s ID is an odd number. The parallel control
structure ‘For all active processors in Parallel’ describes what operations should
be performed on all active processors.

Informal Algorithm: Pure Transitivity with IS-A (σ, τ)

1. Activate every processor that contains a pair with the IS-A relation type (s).
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2. (Case 1: a tree path from σ to τ)
Among active processors, check whether the tree pair of σ is contained in or
equal to the tree pair of τ.

3. (Case 2: a graph path from σ to τ)
Among active processors, check whether any processor has a tree pair of τ or
a pair of a tree successor of τ at an odd processor ID = x, and the processor
with ID = x + 1 contains a pair [propagated] from the tree predecessor of σ
or from σ itself.

4. Iff Case 1 or Case 2 is the case, return ‘yes’.

We now show a function IS-A-VERIFY that performs pure subclass verification.
If τ is a tree predecessor of σ (by IS-A-VERIFY-1) or τ is a graph predecessor
of σ (by IS-A-VERIFY-2), then σ IS-A τ. As every tree pair has a relation type
s, it is not necessary to check the relation type in IS-A-VERIFY-1.

IS-A-VERIFY (σ, τ: Node): BOOLEAN
// B is-a A iff IS-A-VERIFY returns TRUE.

return(IS-A-VERIFY-1(σ, τ) OR
IS-A-VERIFY-2(σ, τ))

IS-A-VERIFY-1 (σ, τ: Node): BOOLEAN
// If τ is a tree predecessor of σ, then
// the tree pair of τ subsumes the tree
// pair of σ. Note that all tree pairs
// in the tree pairs strand are associated with
// the relation type s (IS-A), thus a relation type
// check is not required.

For all active processors in Parallel
If (prenum(tree-pair(σ)) >!!

prenum(tree-pair(τ)) &&
maxnum(tree-pair(σ))6!!

maxnum(tree-pair(τ)) &&
self-address!!() 6!! Φτ) Then

return TRUE

Now we show how to verify that σ IS-A τ when τ is a graph predecessor of σ.
Remember that a pair (U, V ) in the graph pairs strand is used to represent a
propagation. The tree pair in the odd processor (U) is used to represent a node
τ and the graph pair in the even processor (V ) is used to represent a node which
propagates its tree pair to τ. Therefore, we are looking for a pair of processors
(U, V ) such that the tree pair of τ or of one of its tree successors is contained
in the processor U and the graph pair of σ or one of its tree predecessors is
contained in the processor V . In the following mark!![x] := y means that the
pvar mark!! on the processor with the ID x is assigned the value y.

The first part of IS-A-VERIFY-2 locates a U processor that represents the
node τ or a tree successor of τ (by maximally reduced propagation). If any such
processor is found, then the mark is set on the V processor with the address of
U + 1. In the second part, all marked processors are activated. If any pairs that
were propagated from σ or any of its tree predecessors (by maximally reduced
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propagation) are found on V , then TRUE is returned. We omit the initialization
of mark!! .

IS-A-VERIFY-2 (σ, τ: Node): BOOLEAN
// Activate every occurrence of the tree pair of
// τ or its tree successors associated with the
// s relation type in the graph pairs strand. Set
// the parallel flag mark!! on the right neighbor
// processors of the active processors.

For all active processors in Parallel
If (reltype!! =!! ’s’ &&

pre!! >!! prenum(tree-pair(τ)) &&
max!! 6!! maxnum(tree-pair(τ)) &&
self-address!!() >!! Φγ &&
oddp!! (self-address!!())) Then
mark!![self-address!!() +!! 1]:= 1

// Test whether any marked processor has the tree
// pair with the relation type s from σ or from
// a tree predecessor of σ, as a graph pair. If this
// is the case, return TRUE.

For all active processors in Parallel
If (reltype!! =!! ’s’ &&

pre!! 6!! prenum(tree-pair(σ)) &&
max!! >!! maxnum(tree-pair(σ)) &&
mark!![self-address!!()] =!! 1) Then

return TRUE

Consider again our example of pure transitivity in Fig. 5: Is Water a Fluid? The
tree pair of Fluid s[5 11] contains the tree pair of Water s[8 11]. The answer
‘yes’ can be given by comparing these two tree pairs (by IS-A-VERIFY).

COMBINED-RELATION-VERIFY
(ξ: Relation Type; σ, τ: Node): BOOLEAN

// Activate every occurrence of the tree pair of τ and
// of its tree successors in the graph pairs strand
// associated with the relation type s. Set the parallel
// flag mark!! on the right neighbor processors of
// the active processors. Here s stands for IS-A.

For all active processors in Parallel
If (reltype!! =!! ’s’ &&

pre!! >!! prenum(tree-pair(τ)) &&
max!! 6!! maxnum(tree-pair(τ)) &&
self-address!!() >!! Φγ &&
oddp!! (self-address!!())) Then
mark!![self-address!!() +!! 1]:= 1

// Test whether any marked processor has the tree
// pair from σ, or from a tree predecessor of σ,
// as a graph pair with the relation type ξ. If this
// is the case, return TRUE.

For all active processors in Parallel
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Table 1. Experimental results for three approaches

Hierarchy type Reasoning type Run-time (s)

SCH Single transitivity IS-A-Verify-1 0.00042
IS-A-Verify-2 0.0082

CRH Pure transitivity IS-A-Verify-1 0.00042
IS-A-Verify-2 0.0084

Combined transitivity 0.0086

If (reltype!! =!! ξ &&
pre!! 6!! prenum(tree-pair(σ)) &&
max!! >!! maxnum(tree-pair(σ)) &&
mark!![self-address!!()] =!! 1) Then

return TRUE.

In the combined transitivity case the following algorithm COMBINED-RELA-
TION-VERIFY is used. The query ‘Is Water contained in Organ?’ would be
processed as follows. The procedure COMBINED-RELATION-VERIFY will be
invoked with a list of arguments (c, Water, Organ). First, we are looking for nodes
representing Organ and its tree successors. These nodes are associated with tree
pairs contained in s[3 4]. Whenever any of these nodes has received a propagated
pair from another node, its tree pair will appear on a U processor of a pair (U,
V ) in the graph pairs strand.

There we find Heart s[4 4] with a right neighbor Water c(8 8) (Fig. 6). In
the second stage we are looking for a tree predecessor of Water s[8 8] (or Water
itself), but with s replaced by the value c. This matches the pair c(8 8) identified
in the first step, and we can conclude that the answer is ‘Yes, Water is contained
in Organ.’ Due to parallel processing, the combined transitive closure query can
be answered in constant time.

An analysis of the parallel operations involved shows that both kinds of
queries can be answered with our parallel representation in constant time, in-
dependent of the size of the knowledge base (assuming constant machine size)
(Wang et al., 1989).

6. Experiments with the InterMED

We have performed a set of experiments that analyze the run-times for purely
transitive IS-A queries and combined relational queries using data from the
InterMED. For this experiment, we have used 2495 nodes, 3372 IS-A links, and
682 Pharmaceutic-component-of links from the InterMED. Note that the fan-
in and fan-out of the hierarchy are not of immediate experimental importance
because the node set representation eliminates the explicit IS-A links. The only
relevant factor is the number of graph pairs generated. The experiments were
performed on a Connection Machine CM-5 (TMC, 1988) programmed in *LISP.
For this purpose: (1) we created an IS-A hierarchy (SubClass Hierarchy, SCH);
(2) We created a combined relational hierarchy (Combined Relational Hierarchy,
CRH).

The results in Table 1 show that the run-times for transitive closure reasoning
in both hierarchies are the same within unit processor space (8K virtual proces-
sors). We show run-times for ‘normal’ transitive closure reasoning in the SCH
hierarchy, for pure transitivity reasoning and combined transitivity reasoning in
the CRH hierarchy.
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Fig. 7. An experiment of combined transitivity reasoning.

As another experiment, we measured how the number of relations is related
to the run-time of combined relational queries. Additional relation types were
created by a random generator. Fig. 7 shows that the run-time for combined
relational transitivity reasoning is independent of the number of relations in a
hierarchy. In summary, our combined transitive queries were executed in constant
time, as in a pure IS-A hierarchy.

7. Conclusions

Human reasoning relies heavily on hierarchical knowledge, including IS-A hier-
archies and PART-OF hierarchies. One kind of reasoning which makes use of
such hierarchies is transitive closure reasoning. In this paper, we have discussed
the need for fast transitive closure reasoning in combined relational hierarchies.
We have shown a representation and algorithms that allow correct, fast reasoning
in combined relational hierarchies. The representation relies on a pointer-free
materialized transitive closure which is adapted to a parallel high-performance
computer. We have shown how to combine IS-A, PART-OF, and Contained-in
relations, using a relation type, with the Double Strand Representation, and we
have introduced correct propagation rules for relation types. Our maximally re-
duced tree cover requires fewer propagated pairs than other previously published
materialized transitive closures. Our reasoning algorithms have been tested with a
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large medical vocabulary that contains IS-A, PART-OF, and Contained-in links.
Our analysis and experiments have shown that combined transitivity reasoning
can be performed in constant time, assuming constant processor space.
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