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Evaluation and Application of a Semantic Network
Partition

James Geller, Yehoshua Perl, Michael Halper, Zong Chen, and Huanying Gu

Abstract—Semantic networks (SNs) are excellent knowledge
representation structures. However, large semantic networks are
hard to comprehend. To overcome this difficulty, several methods
of partitioning have been developed that rely on different mixes
of structural and semantic methods. However, little has appeared
in the literature concerning the question whether a partition of
a semantic network creates subnetworks that agree with human
insight. We address this issue by presenting a comparison between
the results of an algorithmic partitioning method and a partition
created by a group of experts. Subsequently, we show how a
network partition can be used to generate various partial views of
a semantic network, which facilitate user orientation. Examples
from the Unified Medical Language System (UMLS) SN are used
to demonstrate partial views.

Index Terms—Semantic network (SN), evaluation, partitioning,
semantic type, orientation, subnetwork, partial view.

I. INTRODUCTION

SEMANTIC networks (SNs) [1]–[3] are excellent reposi-
tories for conceptual knowledge. The standard representa-

tion of every existing SN is a graphical language; although in-
ternally in a computer, SNs are represented by some kind of
symbolic knowledge representation formalism. Well-designed
small SN diagrams are easy to understand and interpret. How-
ever, the same does not hold true for large SNs. At the same
time, only large SNs are of any practical use. Diagrams of large
SNs are confusing in the best case and completely “unreadable”
due to intersections and overlaps in the worst case. This situa-
tion is somewhat reminiscent of the difficulties in understanding
programming language code before the popularization ofmod-
ular programming. Due to the nonlinear nature of SNs, it has
taken much longer to develop structures similar to the mod-
ules in programming. Recently, methodologic approaches for
generating such modules have become available under names
such aspartitioning. Various methods for partitioning SNs have
appeared in the literature. Some of them are algorithmic, e.g.,
[4]–[6], while others are semantic, e.g., [7]–[9]. However, these
approaches typically leave questions open about whether the re-
sulting partitions are meaningful in the eyes of human experts.
In this paper, we present a study evaluating the results of the
partitioning method of [4].
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We are still left with the problematic situation of small
diagrams helping comprehension, but large complex diagrams
overwhelming the viewer. It is widely believed that “a picture
is worth a thousand words.” Diagrammatic representations
make use of the high bandwidth of the human vision channel.
Moreover, certain operations are hard wired into the human
vision system, such as line detection. However, in a jumble of
intersections it is hard to detect and follow a line. Contrary to
popular belief, zooming does not help in such a case, because
it typically makes the end points of the line disappear from
the viewing surface. The only resolution to this contradiction
is to carve outmeaningfulviews from an overwhelming SN
diagram. Such views need to contain a few select elements that
are chosennot by physical distance but by semantic proximity.
The partition of [4] allows us to formulate several partial views
of a SN that conform to this principle, and we will define these
views in detail below.

Many practical applications of SNs can be found in medical
informatics. The one SN that probably has the widest distribu-
tion in the field is the SN [10] of the Unified Medical Language
System (UMLS) [11]. The SN serves as a high-level abstrac-
tion for the Metathesaurus (META), which is the UMLS con-
cept repository. While the methods of [4] are completely gen-
eral, we chose the UMLS SN for our study, as few other SNs
are as widely known.

Section II describes how we evaluated an algorithmic parti-
tion of SN by comparing it with a partitioning of SN created by
human experts. Section III discusses how to utilize the partition
by offering views to orient the user to the UMLS SN. Section IV
contains conclusions.

II. EVALUATING AN ALGORITHMIC PARTITIONING

The hypothesis underlying this paper is that although the par-
titioning technique of [4], yielding what is called thecohesive
partition, is based primarily on structural aspects, it still cap-
tures semantic considerations. That is, even though the cohesive
partition is the result of an algorithmic process, it still yields
meaningful and useful (to a human) “graphical modules.” From
a content point of view, each element of the partition, called
a semantic-type collectionin [4], is expected to be a unified
group of nodes describing some specific subject area. In other
words, we assume that if two nodes (calledsemantic types) in
the UMLS SN have identical (or even approximately identical)
sets of relationships, then they are also close semantically. How
can we evaluate whether an algorithmically obtained partition
is meaningful to human experts? To address this question, we
submitted the algorithmic partition of [4] for review to one of
the UMLS contractors. His judgment was—taking into account
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Fig. 1. Event tree hierarchy with results.

the constraints expressed by Chenet al. [4]—that the partition
looks acceptable from a semantic perspective [12].

However, there is a difference between what experts accept as
a semantically sound partition and what they will do if assigned
the task of partitioning the SN according to their own semantic
considerations. To address this issue, the following study was
performed. The participants in this study were the five authors
of this paper, two additional Ph.D. students from our research
group, and one additional professor, all of whom have some
background knowledge of the SN. They performed the task as
part of a weekly research seminar. The participants did not have
a time limit and submitted their work when they were satisfied
with it. Each participant received a page of instructions (see Ap-
pendix) and two pages with diagrams of the IS-A hierarchy of
the SN, i.e., the two trees rooted atEvent andEntity . Fig. 1
shows the Event tree in a format similar to the one shown to the
participants. However, the number lists attached to the nodes
were not given to the participants. These numbers are experi-
mental results.

The instructions are a simplified version of a human-machine
methodology we have used previously to partition an OODB
schema of the MED terminology [7]. The opportunity for the
simplification arises out of the fact that the MED schema is a
DAG while the SN is a tree. At the same time, they take into con-
sideration the cohesive partitioning rules [4], e.g., the need for
singly rooted collections and the prohibition against Singleton
leaves.

Note that although the instructions seem quite elaborate, they
only define structural limitations such as “no single nodes al-
lowed” or “groups must be connected.” These limitations are
necessary to make the computation of a valid comparison score
between the partition of the subjects and the algorithmically ob-
tained partition possible. On the other hand, our instructions do
not limit the semantic decisions of the subjects, who still have
the complete freedom to assign semantic types to groups of their
choice.

Fig. 2. A portion of Entity hierarchy.

Participants were also given verbal instructions about how to
solve an example problem of a subnetwork rooted atEntity (see
Fig. 2) approximately as follows.

“The figure is scanned top-down by a domain expert to iden-
tify semantic-type collections. SinceEntity is the root of the
tree, it should be the root of a semantic-type collection. Scan-
ning down fromEntity , the semantic typePhysical Objectstill
belongs to the subject area ofEntity since both are very gen-
eral terms. However, the next semantic type down,Organism,
is significant and starts a new subject area of living creatures
which is different from theEntity subject area.Organism has
seven children, each of which is a specific kind of organism dif-
ferent from the general subject area ofOrganism. However, five
of them are leaves and, therefore, do not qualify to begin sepa-
rate semantic-type collections. Only two nonleaf children of
Organism, Plant, and Animal , start new semantic-type col-
lections. Scanning further down, the only nonleaf descendants
of Animal areVertebrate andMammal which are judged to
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Fig. 3. Semantic partition of a portion of Entity hierarchy.

be in the semantic-type collection rooted atAnimal . Fig. 3,
containing four semantic-type collections (each enclosed in a
dashed bubble) shows the resulting partition.”

Most importantly, the participants did not use any knowledge
of the non-IS-A relationships that were used by the structural
partitioning method. Therefore, the participants relied exclu-
sively on their understanding of the semantic types, based on
the names and positions of nodes in the SN IS-A hierarchy. Ex-
cept for Z. C. and Y. P. the participants also did not study the de-
tails of the cohesive partition. (Before performing the study, Z.
C., under the supervision of Y. P., applied the partitioning tech-
nique by hand and reviewed the resulting cohesive partition. Y.
P. reviewed parts of the cohesive partition.)

Evaluating the results showed that the partitions of different
participants were quite different. Fig. 1, the Event tree, shows
for every node which participants marked it as a root. (Partici-
pants are numbered from 1 to 8. The number 0 denotes the co-
hesive partition [4].) For instance,Activity is labeled (3, 6, 7,
8), meaning that it was marked by subjects 3, 6, 7, and 8 as a
root. Since 0 is not listed,Activity was not chosen as a root by
the cohesive partitioning algorithm. The figure shows how sub-
jective semantic decisions are.

Table I demonstrates the high variability of subject responses.
The table shows intersubject agreement. The number in row
and column indicates how many roots subjectand subject

agree on. For instance, subjects 3 and 5 agree on 21 roots.
Table II shows agreement between the cohesive partition and
the subjects’ partitions. The average intersubject agreement is
21.22. The average agreement of the subjects with the cohesive
partitioning is 21.125.

Although individual participants’ responses varied greatly,
when accumulating all responses, some choices were made by
a majority of subjects. Our approach is to identify a concept as
the root of a semantic-type collection if at leastparticipating
subjects chose this concept as a root. We subsequently computed
recall and precision of the human subjects relative to
the results of [4]. We will refer to as the cutoff value. We
then varied as an independent variable and computedand

TABLE I
INTERSUBJECTAGREEMENTMATRIX

TABLE II
ALGORITHM-SUBJECTAGREEMENT

TABLE III
RESULTS OFEVALUATION

over all concepts of the hierarchy as dependent variables. We
also computed Rijsbergen’s value which combines precision
and recall into one number as

In Table III, the columns are: cutoff value; number of roots
marked by at least subjects; number of roots marked by at
least subjects that were also identified by the cohesive parti-
tioning; recall; precision; and value.

The value peaks at a cutoff of 6. However, thevalues
are almost identical for the cutoff values 3, 4, 5, and 6. The

value of about 0.8 indicates similarity between the cohesive
partition and aconsensus partitionderived from nodes which
were marked by at least subjects .

There is, of course, a tradeoff between recall and precision.
For example, with an impressive precision of 0.909, at least six
subjects marked 20 out of the 28 roots of the cohesive partition,
corresponding to a recall of 0.714. The recall increases to 0.892
when at least three subjects marked 25 out of 28 roots of the co-
hesive partition, but the precision decreases to 0.714. A middle
point between 3 and 6, balancing recall and precision, is ob-
tained for the cutoff value of 5. At least five subjects marked 23
of the 28 roots of the cohesive partition for a precision of 0.766.
Thus, our evaluation shows the usefulness of the cohesive parti-
tion and the high degree of agreement with the partition obtained
by our subjects. This supports the claim that the cohesive parti-
tion is an effective semantic partition of the SN.
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Fig. 4. Behavior-collection subnetwork.

III. U SING THEPARTITION FOR ORIENTATION TO THE SN

Above, we compared the need for modularity in SW develop-
ment with the need for partitioning in SNs. The need for mod-
ularity of program code arose primarily out of difficulties in
maintaining a growing base of installed software. Similarly, it
should be easier to maintain SNs if they have been partitioned
into groups of nodes.

In this section, we will show how a meaningful partition of a
SN can be used to generate partial views of it, which are easier to
understand than the whole network. We stress again that partial
views are in no way specific to the UMLS SN. However, as all
examples in [4] were given based on the SN, we continue with
it.

The professionals who maintain the META of the UMLS
performing operations such as adding a new concept, split-
ting a concept that is found to have two different meanings
(homonym), changing the semantic-type classification of a
concept, etc., need to be well oriented to META. Achieving
such an orientation is difficult due to META’s size and com-
plexity. The abstract view of META provided by the SN can
help toward reaching such an orientation. However, SN itself is
too large and complex to be laid out on a computer screen. The
SN’s partition, which provides compact partial views of SN,
can help us in this regard.

Our purpose is to provide various views that enable the user
to study each element of SN, i.e., each semantic type and each
relationship (IS-A relationship or semantic relationship) within
a network small enough to be conveniently displayed on a com-
puter screen. Those views show semantic types and their re-
lationships within the vicinity of the relevant neighboring se-
mantic types. Proper use of such views will enable a user to gain
comprehension of the SN or parts of the SN of interest.

We will first list the various kinds of views followed by ex-
amples. Later, we will describe a scenario of a user employing
a sequence of such views to achieve a satisfactory degree of ori-
entation. We will need the following definitions.

Definition (Induced Subnetwork):Let be a net-
work where is the set of nodes and is the set of edges. Let

be a subset of nodes. The induced subnetwork ofis
where , that is, contains

edges of where both nodes of such an edge are in.

Fig. 5. Behavior-collection environment.

Definition ( -Collection Subnetwork):Let be a se-
mantic-type collection of the cohesive partition of the SN. The

-collection subnetwork is the induced subnetwork of.

The collection subnetwork contains the edges that are internal
to the collection. Fig. 4 shows theBehavior-collection subnet-
work. It contains three semantic types, two IS-A relationships,
and three semantic relationships.

The collection subnetwork shows the internal connections of
the collection. However, this is not sufficient for studying the
full significance of the semantic types of the collection since
it does not include the external relationships of those semantic
types. For considering the external relationships of the collec-
tion, we need the following.

Definition ( -Collection Environment):Let be a se-
mantic-type collection of the cohesive partition of the SN.
The -collection environment is a network containing the

-collection subnetwork and all the (external) relationships of
the SN for which only one semantic type is in.

The other semantic type of each such relationship is not in-
cluded in the environment. Every semantic type that is outside
of the environment is labeled with “?.” Fig. 5 shows theBe-
havior-collection environment containing three semantic types
of the collection and three internal relationships. There are 22
external relationships incident on theBehavior-collection sub-
network’s nodes, 13 of which (five kinds) are exiting the collec-
tion, and nine of which (four kinds) are entering the collection.
These 22 relationships belong to seven kinds of relationships
(two kinds of relationships are both entering and exiting) which
are displayed in Fig. 5. We do not display all the 22 occurrences
of the relationships since the semantic types at the other ends of
the relationships, which can distinguish the occurrences of the
relationships, are outside the figure. A figure containing 22 ex-
ternal relationships along with their “other end” semantic types
will be too large to appear readably on a screen and will not be
helpful for orientation. Note that the relationshipissuein, inher-
ited byBehaviorand its children fromEvent, is not shown. Fur-
thermore, in order to prevent clutter, the exiting relationships of
Behavior inherited by both children are not displayed in Fig. 5.
They can be deduced, using the rules of inheritance. The one ex-
ception is the relationshipassociatedwith, exiting Individual
Behavior, since its target is refined.

We now need the following two definitions.
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Fig. 6. (Behavior, Pathologic Function)-adjacency subnetwork.

Definition (Adjacent Collection):Two semantic-type collec-
tions and (of the cohesive partition of the SN) are adjacent
if there exists a semantic typein and a semantic typein
such that there is a relationship (either IS-A or semantic) con-
necting to or vice versa in the SN.

Definition [ -Adjacency Subnetwork]:Let and be
two adjacent semantic-type collections. The -adjacency
subnetwork contains the -collection subnetwork, the -col-
lection subnetwork, and all relationships of the SN with one se-
mantic type in and one semantic type in.

Fig. 6 shows the (Behavior, Pathologic Function)-adjacency
subnetwork. It shows, in addition to the two collection subnet-
works, the interactions between their semantic types. There is
one edge fromBehavior to Mental or Behavior Dysfunction
and one edge in the opposite direction. There is also one edge
from Pathologic Function to Behavior and one edge fromIn-
dividual Behavior to Pathologic Function.

We will now present a scenario showing how a user can em-
ploy a sequence of various such views to achieve orientation to
the SN. Note that each of these views can conveniently be dis-
played on a computer screen.

There are 28 semantic-type collections in the cohesive parti-
tion of the SN. Each is named after its unique root semantic type.
Thus, a user can identify (according to search interest) a desired
semantic-type collection which is called thefocus semantic-type
collection. As an example, let the focus semantic-type collec-
tion be theBehaviorcollection. Next, the user can view the se-
mantic-type collection subnetwork of the focus semantic-type
collection. Fig. 4 gives an example of theBehavior-collection
subnetwork, where a user sees its three semantic types and the
relationships connecting them. However, the user cannot get a
full understanding of these semantic types without reviewing
all their external relationships. The focus semantic-type collec-
tion environment captures all the external relationships of the se-

mantic types of the focus semantic-type collection. Fig. 5 shows
theBehavior-collection environment. There are many relation-
ships defined for the environment which are not shown in Fig. 5.
If all the relationships of this environment were included in the
figure, it would not fit on a screen anymore. Furthermore, the
collection environment view does not include the semantic types
on the other side of the external relationships, which are needed
for full study of the semantic types’ structure. (Note that the user
will not be able to use the -collection environment view as it
is typically too large. It is described here only to demonstrate
the need to view all these external relationships.)

To overcome this information overload, we will divide the
task of reviewing all the external relationships of the focus col-
lection into a sequence of small tasks using views that fit on a
computer screen.

The external relationships of the focus semantic-type collec-
tion are divided into disjoint sets according to the collections
containing the semantic types on the other side of the relation-
ships. For example, the 22 external relationships of theBehavior
collection are divided into ten different sets, according to the
semantic-type collections containing the other ends of the re-
lationships. For instance, consider the external edges between
theBehaviorcollection and thePathologic Functioncollection.
To review such a limited set of external relationships, the user
utilizes the -adjacency subnetwork for the pair ofand

collections. For example, Fig. 6 shows the (Behavior, Patho-
logic Function)-adjacency subnetwork. It shows four of the 22
external relationships of theBehaviorcollection and can be con-
veniently displayed on a screen. One can review all the external
relationships of theBehaviorcollection by reviewing ten such
adjacency subnetworks, each of which is small enough for dis-
play and study. Of course, if one were interested in only some of
these external relationships, fewer such adjacency subnetwork
views would be necessary.
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It is clearly much easier to get an understanding of each of the
semantic types of a collection and the interactions among them
separately from figures such as Figs. 4 and 6 than to get such
knowledge from a complete diagram of the SN. In the network,
these aspects are hidden in the overall structure of a large di-
agram, which does not even show the inherited relationships.
Concentrating only on the connections between the semantic
types of two semantic-type collections at a time, the user can
cope with a small network and a limited number of relation-
ships. Such a network is small enough to be displayed on a com-
puter screen and is easier for a user to comprehend. By dividing
the orientation task of the whole SN into subtasks of compre-
hending many small networks, the difficulty of the task is mean-
ingfully reduced.

IV. CONCLUSION

In this paper, we have addressed a common criticism of SN
partitioning methods, namely that their results may not agree
with the intuition of human experts about how to partition an
SN into meaningful groups of concepts. We evaluated the par-
titioning method of [4] by comparing its results with the results
of experts who partitioned the SN into meaningful logical units
based on their understanding of the domain. We found, on av-
erage, good agreement, with a peak F value of 0.799.

We then constructed several views of the UMLS SN, based
on the cohesive partition [4], which make it easy to perform an
organized study of the SN or of well-chosen parts of it. These
views are perfectly general. We have demonstrated them with
the SN of the UMLS because it is widely known. As the SN
itself is an abstraction of the UMLS META, our views will make
it easier to study, understand, and use the META.

APPENDIX

INSTRUCTIONS TOEXPERIMENTAL SUBJECTS

You are given two sheets. Each sheet contains a tree diagram.
Each tree diagram is a part of an SN called the UMLS. Each
node in a tree stands for a medical class. Each arrow connects
a specific class to a more general class. A leaf node is a node
without children.

The purpose of this experiment is to partition each tree of
classes into subtrees, such that the classes of each subtree form
a logical group describing one subject matter. A single leaf node
does not constitute a group. Your task is as follows.

1) Start at the root node of the tree.
2) Scan through the tree downwards.
3) Whenever you judge that a nonleaf class is important

AND is quite different from its parent class, mark it with
a star. This class will be called a “new root.”

— A marked class starts a group below it.
— The name of a marked class is also the name of the

group below it.
— Each unmarked class belongs to the group of its closest

root class above.
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