CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2003; 15:1337-1362 (DOI: 10,1002/cpe.733)

Frameworks for incorporating
semantic relationships into
object-oriented database
systems

Michael Halper!"* T, Li-min Liu?, James Geller’ and Yehoshua Per]?

lDepartmem of Mathematics and Computer Science, Kean University, Union, NJ 07083, U.S.A.
2Department of Applied Mathematics, Chung Yuan Christian University, Chung-Li, Taiwan, Republic of China
3Computer Science Department, New Jersey Institute of Technology, Newark, NJ 07102, U.S.A.

SUMMARY

A semantic relationship is a data modeling construct that connects a pair of classes or categories and
has inherent constraints and other functionalities that precisely reflect the characteristics of the specific
relationship in an application domain. Examples of semantic relationships inclade part-whole, ownership,
materialization and role-of. Such relationships are important in the construction of information models
for advanced applications, whether one is employing traditional data-modeling technigunes, knowledge-
representation languages or object-oriented modeling methodologies. This paper focuses on the issue of
providing built-in support for such constructs in the context of object-oriented database (OODB) systems.
Most of the popular objeci-oriented modeling approaches include some semantic relationships in their
repertoire of data-modeling primitives. However, commercial OODB systems, which are frequently used
as implementation vehicles, tend not to do the same. We will present two frameworks by which a semantic
relationship can be incorporated into an existing OODB system. The first only requires that the OODB
system support manifest type with respect to its instances. The second assumes that the OODB system has a
special kind of metaclass facility. The two frameworks are compared and contrasted. In order to ground our
work in existing systems, we show the addition of a part-whole semantic relationship both to the ONTOS
DB/Explorer OODB system and the VODAK Model Language. Copyright © 2003 John Wiley & Sons, Ltd.

KEY WORDS: semantic relationship; object-oriented database; object-orented modeling; part—whole relation-
ship; metaclass

1. INTRODUCTION

Semantic relationships—binary associations between classes or categories of objects that are more
than mere ‘named links’—are fundamental to human cognition and reasoning. Examples of semantic

*Correspondence to: Michael Halper, Department of Mathematics and Computer Science, Kean University, Union, NJ 07083,
US.A.
TE-mail: mhalper @kean.edu

Published online 22 September 2003 Received 15 February 2002

~Copyright © 2003 Tohr Witey & Sons; L-td: - Revised 28 Qctober 2002 = = ===

Accepted 2 November 2002

1338 M. HALPER ET AL, %

relationships are the part-whole relationship [1-5], ownership [6-9], materialization {10,11] and the
role-of relationship [12—15]. Due to their importance in human thought, they also play a pivotal role
in the construction of information models for applications. In addition to serving as a link between
a pair of classes, a relationship of this kind carries inherent semantics in the form of constraints and
other functionalities—such as inheritance, operation propagation or specialized query capabilities-—
that allow a given enterprise to be modeled more precisely [16,17]. This is the case whether one
is using traditional data-modeling techniques like SDM [18] and extended ER [19,20], knowledge-
representation languages such as Telos [21] and K-Rep {22] or object-oriented modeling methodologies
including OMT [23], Booch [24,25], UML [26-28] and Coad/Yourdon [29].

In this paper, we focus on the issue of bringing the power and expressiveness of semantic
relationships to object-oriented database (OODB) systems [30--37]. The reason for concentrating
on such systems is the popularity of object-oriented modeling techniques and the use of OODBs
as their implementation vehicles for persistent storage. While the popular object-orienfed modeling
methodologies, like OMT, UML and Coad/Yourdon, include semantic relationships as modeling
constructs, few, if any, commercial OODB systems provide intrinsic support for their use.
This engenders the unacceptable situation where in order to gain persistence for an application, some
of its sophistication in modeling the enterprise of interest must be given up. This directly contradicts
the promise of OODBs for the precise modeling of complex applications.

We present two different frameworks for incorporating semantic relationships into the repertoire
of built-in modeling primitives provided by OODB systems. These frameworks, in effect, extend
the underlying object model to include additional semantics, bringing the OODB system more
closely in line with the various object-oriented analysis and design methodologies. An application
designer wishing to use a semantic relationship is not burdened with the task of having to hand-
code constraints, integrity checks and other behavioral elements associated with the relationship.
Instead, the designer simply specifies the semantic relationship in a declarative manner {either
textually or pictorially) in the database schema. Thereafter, it is solely the responsibility of the
OO0DB system to ensure that the proper semantics of that relationship are maintained throughout the
entire lifetime of the database. For example, a ‘part” or ‘whole’ object will exhibit the appropriate
behavior from the moment it is instantiated by one application until the time it is eventually deleted by
another.

The first framework can be utilized for most existing commercial OODB systems, e.g. ONTOS
DB/Explorer (*ONTOS’ for short) [38,39], ObjectStore [39—41] and Versant [42]. It only demands that
the host OODB system support manifest type [43]. In other words, each object in the database must have
the ability to identify its class when queried. The framework primarily exploits the standard OODB
subclass inheritance mechanism to define all additional behavior befitting the semantic relationship
of interest. For example, objects that might participate in the relationship are given the means for
establishing, dissolving and modifying occurrences of the relationship. Built into these capabilities is
the guararntee that the proper semantics will be enforced with respect to any transaction. Furthermore,
objects are given the ability to respond to queries concerning the relationship, allowing for the retrieval
of related objects. _

The second framework has the more stringent requirement that the OODB system support the kind
of metaclass facility described in [44,45]. This framework utilizes a special metaclass to augment
application classes and their instances in such a way as to give them the additional functionality needed
for the semantic relationship of interest.

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:1337—_1362

@ INCORPORATING SEMANTIC RELATIONSHIPS INTO OODB SYSTEMS 1339

Both frameworks were created to satisfy the two following major conditions. (1) They should not
cause any upheaval in the underlying OODB system. That is, there should be no need to rewrite a
portion of the system. (2) They should not alter the environment that an application developer is used
to working in. For example, it must not introduce exotic syntax into the preferred data manipulation
language of the OODB system,

The only other assumption made by our frameworks is in regard to the properties of the semantic
relationship. Specifically, we assume that it can be formally described in terms of characteristic
dimensions, each of which captures one aspect of its nature [2,5,46]. In this way, the semantics of
the relationship can be specified in an entirely declarative fashion, allowing for complete inclusion
within the OODB schema. Such analyses have previously appeared for part—whole [2], ownership
[6,9], materialization [10,11], and can be done for the role-of relationship [12-15].

To ground our work, we will demonstrate the vse of the two frameworks in incorporating the part
relationship [1-5] into existing OODB systermns. We will use the first to introduce the part relationship
into ONTOS. The second will allow us to provide the VODAK Model Language (VML) [45,47,48]
with the relationship. Both these implementations have been completed and the metaclass for the part
relationship has been distributed with VML’s standard metaclass library. The two implementations
serve to demonstrate the viability of our approach. A semantic relationship can indeed be added to an
OO0DB system without causing an upheaval and without altering the customary development environ-
ment. They also show that OODB systems can fulfill the promises of enhanced modeling capabilities.

In related work in this area, a- meta-obhject protocol has been used for the inclusion of semantic
relationships in CLOS [10]. An extensive discussion of semantic relationships and their role in data
modeling can be found in [16]. The set-membership relationship [49] has been shown to have a
significant bearing on the definition of semantic relationships.

The treatment of user-defined relationships as “first-class’ constructs in OODBs was expounded in
the seminal paper of Rumbaugh [50] and was extended in [51] and [52], both of which permit additional
constraints on the user-defined relationships. The relationship construct of [31] has been included in
the Fibonacci language [53], while that of [52] has been implemented in ADAM [54], a Prolog-based
OODB system. The SORAC model {55] utilizes relationships as a means for specifying constraints
on designs in a knowledge-based/object framework. In this paper, we present and compare a pair of
general frameworks that can be utilized for the incorporation of semantic relationships into a wide
range of available OODB management systems. A preliminary presentation of the first framework has
previously appeared in [56]. An earlier treatment of the second framework appeared in [57].

The rest of this paper is organized as follows. In Section 2, we discoss the general structure that
a semantic relationship must have in order for it to be amenable to our frameworks. We also give a
description of the part relationship. The first framework is introduced in Section 3 and its utilization
for the incorporation of a part relationship into ONTOS is discussed in Section 4. Section 5 presents
the details of our second framework. The applcation of the second framework for the VML part
relationship is described in Section 6. Conclusions appear in Section 7.

2. FORMAL STRUCTURE OF A SEMANTIC RELATTIONSHIP

In order for a given semantic relationship to be amenable to our frameworks, it must be formally
describable in terms of a coliection of what we call characteristic dimensions. Each of these dimensions

Copyright (€ 2003 John Wiley & Sons, Ltd. ~ Concurrency Computal.: Pract. Exper. 2003, 15:1337-1362

1340 M. HALPER ET AL. %

formally denoctes the semantics of one aspect of the relationship. For example, in the case of
the part relationship (which we will describe further below), the exclusiveness dimension handles
the exclusiveness constraints associated with parts and wholes; the inheritance dimension deals with
the relationship’s property inheritance aspect.

In general, we assume an occurrence R of a semantic relationship R can be written as follows:

Rl = (dlyd29"',dﬂ) (1)

where di € Di,d2 € Da,...,d, € D, and Dy, D2, ..., D, are the domains of the respective n
characteristic dimensions of the generic semantic relationship R. The d; together denote the entire
semantics for the occurrence R; of the semantic relationship R. For example, 41 might denote the
exclusiveness constraint that Ry must exhibit, while, say, d3 is a specific property to be inherited via R).
The part—whole semantic relationship (part relationship, for short) is composed of four characteristic
dimensions: (1) exclusiveness, (2) multiplicity; (3) dependency; and (4) inheritance. The formal
structure of a part relationship between the ‘part class’ B and the ‘whole class’ A is as follows [2]:

Pp.a={x%26,(T, A, @)

where yx, «, § and (T, A, ®) are the values of the four respective dimensions. It should be noted
that the value of the final dimension, inheritance, is defined to be a triple itself. Instead of formally
describing the interpretations of the various dimensions, we will briefly discuss each of them in an
informal fashion in the following. A formal presentation can be found in [2].

The exclusiveness dimension provides constraints dealing with the distribution of parts among
wholes. An example would be a power boat having its engine exclusively at any one time: no other boat
would be allowed to have that same engine simultaneously, just as we would expect. Such a constraint
is called global-exclusiveness. Our model also supports a variation called class-exclusiveness [2,58],
as well as sharing, where a given part can be a constituent of any number of wholes concurrently.

- The multiplicity dimension specifies the number of parts of a certain kind that can be used in the
construction of a whole. For example, a power boat may be defined to contain up to two engines. On the
other hand, lower-bound constraints in this dimension can be used to capture essentiality among parts
and wholes. The table of contents and index may be modeled as essential parts of a book. As another
example, journal articles may be constrained with a (3, 10)’ section mu1t1p11c1ty meaning that any
article must have at least three sections and at most ten.

The dependency dimension deals with the deletion semantics of parts and wholes, i.e. the way
the deletion operation is propagated between such objects. The deletion of the whole may imply the
deletion of one or more of its parts or vice versa. As an example, the existence of a bicycle may be
predicated on the existence of a constituent frame. If the frame is deleted from the database, then the
bicycle should also be deleted. In the other direction, the deletion of a large CAD/CAM structure in its
entirety may imply the deletion of the structure’s constituent objects.

The inheritance dimension specifies which properties are inherited by the whole from the part, or the
other way arcund, and how the inheritance takes place. As we have discussed in [59,60], there is a great
deal of subtlety that distinguishes part—whole inheritance from ordinary subclass (IS-A) inheritance in
OO0DB schemata. Among the distinctions is the fact that part—whole inheritance has both a schema-
level (i.e. intensional) aspect and an instance-level (i.e. extensional) aspect. A power boat, in general,
has the property ‘horsepower’ by dint of its having engines; a specific boat has the horsepower of the

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computar.: Pract. Exper. 2003; 15:1337-1362

% INCORPORATING SEMANTIC RELATIONSHIPS INTO OODB SYSTEMS 1341

Vehicle
manufacturer
vehicleld
Car Boat
/horsepower /horsepower

4\ (horsepower) /} (+[horsepower])

0.2

Engine

horsepower

Figure 1. Example OODB schema with part relationships.

engine that happens to be installed in it. Moreover, if the boat is capable of having multiple engines,
then its overall horsepower is the sum of the horsepowers of its engines.

An example OODB schema, containing a part schema, is shown in Figure 1. The schema is drawn
using a variation of the OMT notation [23,61]. A part relationship is a line connecting the part class
with the whole class. The whole class is distinguished by a diamond at the end of its line. The schema
contains four classes: Vehicle, Car, Boat and Engine. Both Car and Boat are subclasses of Vehicle and,
therefore, inherit its two properties manufacturer and vehicleld. There are two part relationships: one
between Engine and Car and the other between Engine and Boat. Both exhibit global exclusiveness as
denoted by the large X’s adorning the lines. Car’s relationship with Engine is single-valued (indicated
by the open circle near Engine), meaning that a car can have no more than one engine. On the other
hand, a boat can have up to two engines which is denoted by the full circle near Engine and the ‘0..2°
range value.

For conciseness, we have omitted any other classes that might have part relationships to Car and Boat
(as indicated by the ellipsis). We have also kept the number of intrinsic properties low. Vehicle has two,
as noted above. Car and Boat do not have any. The class Engine has one intrinsic property: the attribute
harsepower. Both Car and Boat inherit Vehicle’s two properties via ordinary subclass inheritance.
Furthermore, they both inherit Aorsepower (as denoted by the ‘/’ preceding it) via their respective

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper 2003; 15:1337-1362

1342 M. HALPER ET AL. %

part relationships. The labels ‘4 (horsepower)’ and *t{+[horsepower])’ on the part relationships will be
explained in Section 4.1.

3. THE FIRST FRAMEWORK FOR ADDING A SEMANTIC RELATIONSHIP TO AN
OO0DB SYSTEM

Qur first framework for incorporating a semantic relationship into an QODB system was influenced by
the original Object Database Management Group (ODMG) standard [32,36] as utilized, for example,
by ONTOS. In that arrangement, which can be called persistence via inheritance, a special ‘root class’
is introduced (e.g. in the system library) to serve as the root of the persistent hierarchy [62]. It defines all
the behavior needed to satisfy the notion of persistence. For example, the class would typically define a
‘put object’ method that causes the target object to be written to the database. Any class whose instances
are meant to be persistent must be derived, either directly or indirectly, from the persistent root class.
Objects, therefore, acquire their persistence (behavior) via inheritance from this root. ODMG calls this
root class Persistent_Object, while ONTOS calls it OC_Object* [38].

In our framework, a special root-class provides all the functionality necessary for objects to
participate in the semantic relationship of interest. For example, in the case of the part relationship
[1-5], whose implementation we will be focusing on, a class called PartWholeObject would define the
behavior (methods) necessary for abjects (more specifically ‘parts’ and ‘wholes’) to establish, dissolve
and mmodify part—whole connections among themselves. It would also furnish query methods that would
allow the flexible retrieval of related parts and wholes. These methods would be entirely responsible
for ensuring that any activity carried out with respect to the part relationship is done in accordance
with the desired part semantics. As such, no burdensome hand-coding of integrity checks would fall
on the shoulders of an application designer. The designer declares the intended part semantics with the
assurance that the semantics will be maintained by the OODB system.

In general, for a semantic relationship R, a root class defining its associated generic behavior is
added to the OODB system’s class library. Its name will have the form RR'Object, where R’ denotes
the converse relationship of R. The name is used to convey the fact that objects participating in the
R (binary) semantic relationship can potentially do so in the role on either side of the relationship.
For the part relationship, the root class is denoted PartWholeObject. Objects participating in part—
whole connections must be instances of classes that are derived from PartWholeObject. Such objects
can be parts or wholes or both depending on the specific relationships. An engine, for example, is part
of a car, but an engine also has its own parts. Hence, an engine is both a part and a whole object or,
as the root’s name conveys, an engine is a ‘PartWholeObject’. Of course, some objects may only be
parts and others may only be wholes. In the case of the ownership relationship [9], the root class would
be OwnerOwnedObject: some objects play the role of owner, some play the role of owned object and
some may play both roles.

The class RR'Object and its relation to a pair of application classes, A and B, connected via
the semantic relationship R is shown in Figure 2 using an OMT-like notation. {The R relationship
connecting B to A is drawn as a dashed arrow labeled with *R’.) The class RR Object defines the set

FWe will forgo the prefix and just refer to it as Object from here on.

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:1337-1362

% INCORPORATING SEMANTIC RELATIONSHIPS INTQ OODB SYSTEMS 1343

RR'Object

Methods: th, B2,..., 5

A B

Methods: o, @, ..., 0y Methods: 71,72, ..« Vn

Figure 2. The root class RR'Object and its relation to application classes participating in semantic relationship R.

of behaviors (methods) 8 = {1, Ba2. ..., A} that is required for participation in the relationship R.
Therefore, both A and B must be defined as subclasses of RR'Object in order for them to inherit
the set of methods 8 and, in turn, endow their respective instances with the appropriate behavior for
participating in the R relationship. This behavior augments the intrinsically defined sets of behaviors
o = {o,02,..., ¢t and y = {y1,92,..., ¥a} of A and B, respectively. We show an example of
this scenario in Figure 3, where instances (objects) of A and B are drawn as rounded rectangles.
Each instance of B is connected to one or more instances of A via occurrences of the relationship
R (drawn as wavy arrows). Such connections are established via a method in 8, provided originally
by RR'Object. In fact, all manipulations of such connections (like creating, deleting, updating and
querying) are defined by 8.

Of course, in a database design tool it would not be necessary to explicitly show the subclass
relationships connecting the application classes A and B to the root RR'Object as in Figure 2.
These subclass relationships can be inferred from the R relationship linking B to A.

Because the object behavior associated with a semantic relationship R is specified generically at the
level of the root class RR'Object, it is necessary that the database schema’s entire set of occurrences of
the R relationship be run-time accessible. (We will use the term °R-schema’ to denote the entire set of
occurrences of the R relationship or, equivalently, that subschema which is the edge-induced subgraph
[63,64] of the overall OODB schema with respect to R.} This allows for the proper maintenance of
the semantics with respect to specific R relationships. For example, is it acceptable to attach a given
engine to a given car? Will such a connection violate a declared exclusiveness constraint? A program
might attempt to attach a door to an engine! A consultation of the R-schema will reveal that no such
attachments are permitted.

The database’s R-schema is made available at run-time by augmenting the QODB system’s data
dictionary with an additicnal class called R-Relationship. Each R relationship appearing in the
application schema is represented by an object r that is an instance of R-Relationship in the data
dictionary (hence the class’s name). Such an object r is, in effect, the formal description of its

Copyright € 2003 John Wiley & Sons, Ltd. Concurrency Computal.: Pract. Exper. 2003; 15:1337-1362

1344 M. HALPER ET AL

RR/Object

Methods: 81, B2,..., 0

|

A R B
e]
Methods: a3, a2,..., 00, Methods: v1,72, ..+ s ¥n
Schema Level
oY
/--(—AT - (B) Instance Level
aug | =~ YU
R, ~
N T T T e o o
(A) ___ " ®
aug [[T---77 Tvus
N 7 —
a0 e
(A) o (B)
K~ __/——__'___—’ o
aUf | T YUB
e N Me—
T -l (@)
17us
N~

Figure 3. Instances of application classes A and B connected via relationship R.

corresponding R relationship, containing some declarative form of the relationship’s semantics®.

~For-example; r-would-have the properties-source=class-and-target-class-denoting; respectively, the-—--oos et

source class and target class of the relationship. Additionally, r would have separate properties—and
associated access methods—to hold each characteristic dimension value d; from Equation (1). As an
illustration, we show in Figure 4 the mapping of the R relationship connecting class B to class A
(Figure 2) into its data dictionary representation. The dotted arrow denotes ‘is an instance of”.

$Note that this is consistent with the common practice of OODB systems where, data dictionaries often comprise classes whose
instances represent the various components of the O0DB schema like its classes, attributes, methods, eic. ONTOS, for example,
has a data dictionary of this form.

Copyright € 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:1337-1362

@ INCORPORATING SEMANTIC RELATIONSHIPS INTO GODB SYSTEMS 1345

Application Schema { Data Dictionary

R-Relationship

Properties: Source Class
Target Class
&
Characteristic
dimensions

Methods: Readers for properties

/:\

(R-Relationship)

A B

e R __ —_— Source Class: B

Methods: o Methods: ~y Target Class: A

(Values of Characteristic
dimensions)

Methods

Figure 4. Representation of the R relationship from B to A as an object in the data dictionary.

Overall, the extension of R-Relasionship is the entire R-schema. It is not necessary that
R-Relationship be an actual constituent of the system’s data dictionary. In fact, it could simply be
another application class that functions in the capacny of a meta-level class. We make no assumption
about any special access features for it.

For example, in the case of the part relationship, the data dictionary class would be PartRelationship.
Instances of PartRelationship would each denote a single occurrence of the part relationship in the
schema. Such an cbject would contain the values of ail its part relationship’s dimensional data:
exclusiveness, multiplicity, dependency and inheritance (see Section 2). We stress that in order to
use our methodology for a semantic relationship R, a formal dimensional decomposition of R’s
semantics is needed. Such analyses have appeared for parts [2], ownership [6,9] and materialization
[10,111.

It is important to distinguish the purpose of the two classes RR'Object and R-Relationship. The root
class RR'Object defines additional behavior {and implicit structure) for objects that are designed to
participate in the semantic relationship of interest; it directly provides this functionality via ordinary

Copyright (© 2003 John Wiley & Sons, Lid. Concurrency Computat.: Pract. Exper. 2003; 15:1337-1362

1346 M. HALPER ET AL. : %

subclass inheritance (see Figure 2). On the other hand, the class R-Relationship in the data dictionary
maintains detailed information about each R relationship in the OODB schema using a separate
instance (see Figure 4). Overall, the extension of R-Relationship is the R-schema of the entire OODB
schema. This arrangement differs from previous proposals (e.g. [50,52]) in that actual R-connections
between objects are not maintained as objects themselves. Only the schema-level R relationships
connecting pairs of classes appear in the database in the form of objects (within the data dictionary),
This avoids the proliferation of objects that are required to represent the numerous cbject-to-object
(i.e. instance-level) occurrences of the various R relationships. An R-connection between a pair of
objects is maintained within the scope of those objects by utilizing the behavior and structure provided
by RR'Object.

In addition to the classes RR'Object and R-Relationship, the framework also requires a pair of
utility programs to complete the integration. The first program, called LoadRSchema, is responsible
for populating the extension of the class R-Relationship before the actual underlying QODB—
corresponding to the schema—can itself be populated. That is, it must load all the information
concerning R relationships from some source schema specification, which could be a special text file
or a diagram. For simplicity, we chose the text-file option in our integration of the part relationship
into ONTOS, described in the next section. (Of course, a simple extension to a diagramming tool
like ObjectMaker [65] could serve the same purpose.} Additionally, the LoadRSchema program is
responsible for gnaranteeing the integrity of the configuration of the R relationships appearing in
the schema. For example, a cycle in the R-schema may not be permitted. It would be the job of
LoadRSchema to test for this condition and raise an error if it were detected.

The second program is called the R-preprocessor. There are typically aspects of the semantic
relationship R that must be maintained directly in the definition of classes that participate in the R
relationship, but cannot be inherited from RR'Object. Such aspects may include R’s creation semantics
and inheritance behavior, particularly when the implementation is in the context of a C++-binding [33]
with the OODB system. In order to properly incorporate these, it may be necessary to alter the class
definitions themselves. This is done using the R-preprocessor. We do not permit these alterations to
constitute any special syntactic or operational extensions. Fortunately, they are often just the addition
of some new methods, which can be done in a straightforward manner. Our experience is that the
preprocessor is not difficult to produce. The R-preprocessor typically needs to consult the extension
of class R-Relationship. Therefore, this preprocessor step is defined to come after the use of the
LoadRSchema program.

To summarize, our methodology for the incorporation of some semantic relationship R into an
existing OODB system consists of the two following major components.

1. A ‘root’ class, called RR'Object, from which all classes whose objects participate in the semantic
relationship must be derived. '

2. A data dictionary class, called R-Relationship, that is used to provide run-time accesmblhty to
the occurrences of the semantic relationship that appear in the OODB schema.

Additionally, a pair of support programs, LoadRSchema and R-preprocessor, will also be required.
Note that this first framework only assumes that the underlying OODB system supports manifest
type [43]. In the next section, we will show how this approach allows for the inclusion of useful part—
whole functionality into the QODB system. For example, we will see how a whole obJect can retneve
all its parts, or how an attribute can be inherited along a part link.

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:1337-1362

% INCORPORATING SEMANTIC RELATIONSHIPS INTO OCDB SYSTEMS 1347

4. ONTOS PART RELATIONSHIP

In this section, we describe the specific components that make up the implementation of the
part relationship in the context of the ONTOS OODB management system. We present the data
dictionary class PartRelationship and the program LoadPartSchema. Next, we describe the root
class PartWholeObject and the Part Preprocessor. This closely resembles the ordering in which an
application designer is likely to utilize the components as an application is being built.

ONTOS uses C++ as its primary data definition and manipulation language. For this reason, any class
definitions or code fragments that we present will be specified in C++. Every ONTOS database contains
a data dictionary comprising a group of system-defined classes, the instances of which maintain run-
time accessible information about all application classes. One of the classes in this group is Typel,
which ONTOS uses to support manifest type. An instance of Type represents a single application
class in the schema; such an instance contains the name of its corresponding class and other relevant
information. Overall, the extension of Type is the entire set of classes in the schema. Each object in
an ONTOS database is inherently endowed (at creation-time) with a reference to the instance of Type
representing its class. As such, any object can be directly queried in order to retrieve its type.

4.1. The class PartRelationship

The class PartRelationship enhances the ONTOS data dictionary with information about all the part
relationships appearing in the given OODB schema. Each of its instances denotes exactly one of the
schema’s part relationships (see Figure 4). Information about a specific part relationship between two
classes can be obtained at run-time by guerying one of these objects.

The public interface for PartRelationship is shown belowl. There we see eight methods that
permit access to the values of the dimensional data for a specific part relationship. Also note that
PartRelationship is a subclass of Object, making the part relationship information persistent.

c¢lass PartRelationship: public Object
{
public:
char* partClassName (vcoid);
char* wholeClassName (void} ;
exclusiveness t exclusiveness(void);
int minMultiplicity(veid);
int maxMultiplicity(wvoid);
dependency t dependency {void};
gat_of_ inherited_properties upSet (void);
set_of inherited_properties downSet (vcoid);

1i

The first two methods partClassName and wholeClassName return the names of the two
classes related by the part relationship: namely, the part relationship’s part class and whole class,

Twe omit the prefix “OC”.
I For the sake of brevity, we have omitted some additional utility methods.

Copyright @ 2003 John Wiley & Sons, Lid. Concurrency Computat.: Pract. Exper. 2003; 15:1337-1362

1348 M. HALPER ET AL, @

respectively. Exclusiveness provides the value of the exclusiveness dimension of the part
relationship. Possible values are GLOBAL EXCLUSIVE, CLASS_EXCLUSIVE and SHARED [2].

minMultiplicity and maxMultiplicity return the values of the multiplicity dimension.
A value of zero for the maximom multiplicity is interpreted as infinity, meaning that there is no upper-
bound restriction on the number of parts (from the specific part class) that can relate to a whole (from
the related whole class).

The value of the part relationship’s dependency dimension is retrieved via dependency. Potential
values are PART_ON_WHOLE (if the whole is deleted, the part is deleted too}, WHOLE_ON_PART
(if the part is deleted, its whole goes as well} and NIL (indicating a lack of dependency semantics for
the part relationship). '

upSet and downSet deal with the inheritance dimension of the part relationship. We use the term
‘upSet’ to denote the set of properties that are inherited by a whole class from its associated part class
in a particular relationship. The term “up’ denotes the movement from the part to the whole. The upSet
of a part relationship can be empty, indicating that there is no upward inheritance with respect to that
part relationship. The term ‘downSet’ is defined analogously: it is the set of properties that are inherited
by the part class from the whole class, upSet and downSet must be disjoint to avoid circular definitions.

According to our theory, each inherited property has an associated operator that is applied when an
instance-to-instance transfer of data values occurs. In order to capture this, we declare the elements of
upSet and downSet to be pairs (p_name, op), each consisting of a property name p.name and an oper-
ator op. The interpretation of a pair (p_name, op) in the upSet is as follows. The propetty p_name is in-
herited by the whole class from the part class and the operator op is applied when a propagation of data
occurs to a whole from its part(s) with respect to p.name. An element of the downSet is interpreted sim-
ilarly. Presently, we provide a fixed set of potential operators for a schema designer to choose from (e.g.
arithmetic sum). Theoretically, though, any symmetrical operator is a viable choice for this role [2,60].

As an example, let us refer back to Figure 1. The classes Car and Boat both inherit the property
horsepower through their respective part relationships with Engire. However, Car’s is an ‘invariant’
inberitance: the value of the horsepower for a given car is identical to the value of the horsepower for
its part engine. This information is conveyed by the label ‘1 (horsepower)’ on the part relationship,
with ‘4’ denoting the direction of the inheritance. In this case, the operator op is simply the identity
operator for the data type of horsepower at Engine. In other words, no transformation of the value
takes place. This is denoted by the absence of any operator symbol. In contrast, Boa?’s is an ‘additive
transformational” inheritance: the horsepower of a boat is the sum of the horsepowers of its constituent
engines [60]. In this case, the operator is denoted by the ‘+’ prefixing ‘[horsepower]” in the label on
the part relationship between Engine and Boat.

In ONTOS, before a database can be populated all the information about the database’s schema
must be loaded into the data dictionary, consisting of the class Type among others. ONTOS provides
a program called classify that performs this task. It takes as its input C++ header files containing class
definitions and creates instances of Type (and other classes), effectively loading the entire schema—as
data-—and making it available at run-time.

Our program LoadPartSchema performs the analogous task of loading the ‘part schema’ into the
database. It creates one instance of PartRelationship for each part relationship that appears in the
schema. LoadPartSchema is also responsible for doing consistency checks that ensure a viable part
schema. The input to LoadPartSchema is a file, called the ‘part schema file’, containing the simple
textnal specifications of all part relationships.

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:1337-1362

ﬁ INCORPORATING SEMANTIC RELATIONSHIPS INTO OODB SYSTEMS 1349

4.2. The class PartWholeObject

After declaring in the part schema file that a class A participates in a part relationship, it is then
necessary to derive A from the class PartWholeObject, which will endow all instances of A with the
behavior required to be parts or wholes. This is true for classes that serve only as part classes (i.e. leaves
of the part hierarchy), only as whole classes (i.e. roots of the part hierarchy) or as both (i.e. interior
nodes of the hierarchy). In practice, we expect that a significant percentage of the classes will appear
as both part and whole classes with respect to different part relationships, with their instances playing
the simultaneous roles of parts and wholes. If a class is a leaf (i.e. it has no parts), its instances will not
utilize the functionality appropriate to wholes, such as the retrieval of their parts.

The definitions of the classes from Figure 1 are given below, showing derivations from
PartWholeObject:

class Vehicle: public Objeact

public:

string manufacturer (veid);

void set_manufacturer(string aManufact);
int wvehiclelId({void) ;

void set_vwvehicleId({int aVehicleId);

}i

class Car: public Vehicle, PartWholeCbject

{
bi

class Boat: public Vehicle, PartWholeQObject

{
}i

class Engine: puklic PartWholeObject

{
public:
int horsepower (void} ;
void set_horsepower (int aHorsepower};

}i

The class Vehicle is defined as a subclass of Object, meaning that its instances can be persistent.
The classes Car, Boat and Engine are all defined as subclasses of PartWholeObject. This implies that
instances of those three classes can participate in part relationships and be made parts and wholes with
respect to each other in accordance with the schema. In other words, cars, boats and engines exhibit
the behavior of parts and wholes. Car and Boat are additionally subclasses of Vehicle and inherit its
properties.

As mentioned above, we have omitted the intrinsic properties from the definitions of Car and Boat.
Vehicle has the intrinsic properties manufacturer and vehicleld. (Note that the class definitions only
display the public interfaces; namely, the reader and writer methods for the properties.) Engine has the
property horsepower. It should be noted that the inheritance of horsepower by Car and Boat is not
shown at the moment. This issue will be discussed further below.

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Compuiat.: Pract. Exper. 2003; 15:1337-1362

1350 M. HALPER ET AL ﬁ

Due to the subclass relationships between Car and Vehicle and between Boat and Vehicle, we
could alternately declare Vehicle itself to be a subclass of PartWholeObject. In that case, the direct
derivations of Car and Boat from PartWholeQObject would be unnecessary, as the two classes would
inherit their part/whole capabilities via Vehicle. We chose the above specification to demonstrate what
the multiple inheritance from PartWholeQObject and another class would look like, Moreover, if we
were to define Vehicle as a subclass of PartWholeObject, then all vehicles wouid have the potential
of being decomposed into parts within the OODB. While that is fine for the schema shown, it may
not be desired if the schema were expanded to include other kinds of vehicles. For example, one may
wish to include motorcycles in the database, but not maintain their explicit part decompositions. In that
situation, there is no reason to endow motorcycles with part/whole functionality by inheritance from
Vehicle.

The public interface for PurtWholeObject, which contains six methods, is as follows:

class PartWholeObject: public Object

{
public:
Beool addPart (PartWholeObject *aPart);
Beool removePart (PartWholeObject *aPart);
Bool replacePart (PartWholeObject *oldPart, PartWholeObject *newPart);
set_of_ PartWholeObject getParts(void);
set_of_ PartWholeCbject getWheles (void) ;
void deleteQbject {(Bool deallocate);

i
The methods defined here by PartWholeObject constitute the minimal set of behaviors required by
any part—-whole model incorporating our characteristic dimensions as described in Section 2. If these
behaviors are not made available, then the semantics of parts and wholes cannot be properly maintained
by the OODB system. As defined, these behaviors are invoked with respect to a whole object in order to
create, delete, update and query part connections. Part—whole dependency semantics are also captured.

addPart creates (if allowable) a part—whole connection between the given part object and the target
object, which then becomes the whole object in the relationship. removePart dissolves a connection
between a whole and a part. replacePart is the atomic operation defined as removePart
followed by addPart. Inherent in these behaviors are the integrity checks that guarantee the proper
maintenance of the semantics of the prescribed part relationships—making OODB parts behave like
real-world parts. As an example, addPart will not allow a car to be connected to a boat and it will
not allow three engines to be connected to a boat (see the schema in Section 2). Such decisions can
be readily made by consulting the instances of PartRelationship in the data dictionary. {The details of
the algorithm that addPart implements can be found in [59].) These integrity services are provided
without the need for an application designer to write specific code. This is an example of the power
of our framework. Simple declarative specifications in the four characteristic dimensions result in a
complex behavior mirroring the expected real-world behavior. '

No explicit ‘add whole’ operation is included to complement addPart because, in our view, the
construction of objects with respect to part hierarchies is inherently a bottom-up process: wholes are
built up from lower-level parts. However, an operation ‘add whole’ is invoked implicitly by addPart.
Therefore, to implement addWhole (a, b}, simply apply addPaxrt (b, a}.

The part connections that a given object is involved in can be queried with the use of getParts
and getWholes. getParts returns the entire set of immediate parts of the target object. To obtain

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:1337-1362

% INCORPORATING SEMANTIC RELATIONSHIPS INTQ OODB SYSTEMS 1351

a ‘parts explosion’ of an object to a certain depth or an unlimited depth, this method can be applied
recursively. getWholes is defined analogously.

deleteObject is invoked with respect to an object when that object is to be deleted from the
database. delete0bject encodes the combined deletion semantics of all the target object’s various
part relationships, including, for example, the antomatic propagation of the deletion operation to all
other part and whole objects that are dependent on the target [59].

4.3. The part preprocessor

The final component of the part relationship software for ONTOS is a preprocessor that operates on
the class definitions (i.e. C++ header files) of an application. The preprocessor has two primary chores
that involve the angmentation of the definitions of classes participating in the part hierarchy: (1) the
inclusion of code that ensures the legitimate creation of parts and wholes; and (2) the inclusion of
reader methods for the properties inherited via part relationships. We discuss these two issues in the
following.

4.3.1. Creating parts and wholes

The semantics of part relationships must be maintained throughout the entire lifetime of any object
starting at its “birth’. The creation semantics of the part relationship comprise two major constraints.
The first concerns the multiplicity dimension—no whole should initially have too few or too many
parts of a given type. The second constraint involves exclusiveness—no whole should initially have a
part that is already exclusively held by another whole.

In the C++/ONTOS environment, it is difficult, if not impossible, to extend the ordinary object-
creation facility in order to enforce correct part—whole creation semantics. Instead, the preprocessor
directly installs an ‘object generation’ (static) method make in each class of the part hierarchy.
This method’s parameters are defined to be those of the class’s constructor in addition to one for the
initial set of parts for the new object. When invoked, make creates an object that is guaranteed to satisfy
the part semantics from the outset; if it detects a potential violation, then it aborts the instantiation.

The following demonstrates the use of make for the classes Engine, Car and Boat™:

Engine::make (300, {});:
(2} Engine *eng2 Engine::make (1250, {});
(3} Engine *eng3 = Engine::make (1250, {});
(4} Car *car = Car::make ("Chevrolet", 7417, {engll});
{5} Boat *boat = Beoat::make ("Hatteras®, 98568, {eng2, eng3});

(1) Engine *engl

At line (1), an instance of Engine is created having a horsepower of 300. The empty braces denote the
empty set, meaning that no parts are to be initially installed in the new engine. (Our sample schema
indicates no part decomposition‘for Engine—any parts passed to make in this context would fead to a
failure.) Lines (2) and {3) each show the creation of a new engine having 1250 horsepower. Line (4)
creates a new instance of Car (with manufacturer Chevrolet and vehicle ID 7417} and installs ‘engl’

**The sets of parts included as arguments to make would technically need to be instantiated. We omit this and just use the
customary set notation.

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:1337-1362

1352 M. HALPER ET AL, : @

as its part. At line (5), a boat is created having the two engines ‘eng2’ and ‘eng3” as parts (and Hatteras
as its manufacturer and 98568 as its ID).
If line (5) were changed to

Boat *boat = Boat::make ("Hatteras", $8568, {engl, eng3i}):

then the creation of the new boat would have failed due to the fact that ‘engl’ is currently installed in
the car.

If a part relationship has a minimum multiplicity min greater than one, then the set-of-parts argument
to make must contain at least zain such parts, make will not allow the new whole object to come into
existence with a violation of this constraint.

4.3.2. Part—whole inheritance

A property inherited via a part relationship should be accessible in the same way as an intrinsic
property. The application programmer should see no distinction between the two. For example, we
would like to obtain the value of the property horsepower for the car we have created above as follows:

car->horsepower () ;

The problem is that no reader method for horsepower appears in the public interface for Car, even
though the inheritance was declared in the part schema file. Therefore, the compiler will flag this
statement as an error. .

To avoid this problem, the preprocessor augments the definitions of any classes that have been
declared to receive properties via part inheritance. After the part schema load step, the preprocessor is
called upon to scan the entire extension of PartRelationship looking for inheritance situations. When it
finds one, it appends an appropriate reader method to the proper header file. In general, the form of
such a method for an inherited property looks like

<property type> <property name>{void)

// Computation and return of value here.

H

The method’s name, which is identical to the name of the inherited property, is obtained directly from
the part schema. The same is true for the required computation, which we show above in a comment.
The return type of this method (i.e. the inherited property’s type) is obtained by examining the source
property. Note that access to inherited property values is done ‘lazily’ (i.e. on demand).

In the following, we demonstrate the way the inherited property horsepower is accessed for a car
and a boat. It should be noted that it is exactly the same as accessing ordinary properties.

{1l) cout << car-shorsepower{);
{2) cout << boat->horsepower();

At line (1), the value prinied is 300, the value of the horsepower of ‘engl’ which is currently installed
as the car’s part. On the other hand, line (2) produces 2500 because the boat has two engines, ‘eng2’
and ‘eng3’ and the value is defined to be the sum of the horsepowers of the constituent engines.

Copyright © 2003 John Wiley & Sons, Ltd. . Concurrency Computat.: Pract. Exper. 2003; 15:1337-1362

% INCORPORATING SEMANTIC RELATIONSHIPS INTO OODB SYSTEMS 1353

has-instance-type / Instance Type T /

Class C
J7;

7
Object O
)
Figure 5. A class, its instance type and a class instance.

5. THE SECOND FRAMEWORK: METACLASS-BASED SYSTEMS
5.1, Metaclasses, classes and objects

The second framework for integrating a semantic relationship into an OODB system is based on the
notion of metaclasses as defined in [44,45]. Any target system must be equipped with a metaclass
facility of that kind in order for this framework to be applicable. One such system is VML, whose data
model and metaclass facility are described in the following.

A class in a VML database schema serves as both an object generator and a container for its extension
(i.e. the set of all objects that it has created) [37]. However, a VML class does not directly define the
structure and behavior of its instances. This is done by an associated object type, called the instance
type of the class. This association is depicted in Figure 5, where we use a parallelogram to denote
the instance type and a dotted arrow to denote ‘is an instance of’. Note that the set of behaviors u
(and structure) is ‘passed through’ the class from the instance type to the instances.

The notion of a metaclass arises from the fact that classes themselves are considered objects in VML
(cf. Smalltalk [66]). Each class is an instance of what is referred to as a metaclass. Like an ordinary
class, a metaclass has an instance type that defines the behavior of 1ts instances, which in this case are
classes. In addition, a metaclass can have a second associated object type, called an instance—instance
type [44,47], that affects the instances of the classes which are the immediate metaclass instances. If we
stack up the concepts of metaclass, class and (non-class) object into three distinct levels (Figure 6), then
we can say that an instance type has an effect one level below where it is utilized, whereas an instance-
instance type has an impact two levels below. Under this arrangement, the behavior of an object is
defined in two separate places: at the instance type of its class and at the instance—instance type of its
class’s metaclass. This is illustrated in Figure 6.

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper 2003; 15:1337-1362

1354 M. HALPER ET AL : %

/ Instance Type Ty /
We%/ /
T

Metaclass M
/ Instance-Instance Type I /
Y
; has-instance-instance-type Jé] /
Class C has-instance-type / Instance Type Tz /
T /17 (/

Object O

pup

Figure 6. Three levels: metaclass, class and object.

One advantage of this approach is the fact that certain desired features can be given to all instances
of a group of classes, without forcing those classes to be ancestors or descendants of each other in the
subclass hierarchy. If the features are those required for participation in a semantic relationship, then
the metaclass effectively introduces that relationship into the schema. Using that same metaclass in
other schemas then adds the semantic relationship to the object model of the system. This is the basic
idea underlying our second framework. More details are provided in the next section.

5.2. ‘Semantic relationship metaclass

Suppose that we wish to incorporate the semantic relationship R into the OODB system, where R has
the multidimensional structure described above. A new metaclass is introduced into the system with a

Copyright € 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:1337-1362

@ INCORPORATING SEMANTIC RELATIONSHIPS INTO O0ODB SYSTEMS 1355

name of the form RObjectR Object. As with all metaclasses, there will be an associated instance type
and instance—instance type.

The main purpose of the instance type of the semantic relationship metaclass is to endow classes with
the ability to directly store information about the semantic relationships R in which they patticipate.
In other words, a class participating in a semantic relationship will hold the values of the characteristic
dimensions of that relationship. That information is made available at run-time via a query to the class
itself.

This aspect of the instance type serves the same purpose as the class R-Relationship from the first
framework., Where R-Relationship augmented the data dictionary in order to store the information
about the entire R-schema, the metaclass’s instance type alters the structure of the application classes
themselves. In the first framework, the R-schema is in the data dictionary; in the second, it is stored in
a distributed fashion among the application classes that participate in it. This arrangement effectively
eliminates the need for a LoadRSchema program, because all the details of the R relationships can be
specified directly in the class definitions. However, the dimensional data still must be ‘loaded’ into the
classes (as they are objects) after their creation. This is done with additional methods defined at the
metaclass’s instance type and invoked by the system at the class-creation time.

The instance type of the metaclass also accomplishes a task allocated to the R-preprocessor in
the first framework; namely, that of installing the object-generation method make in the classes.
This method functions in exactly the same way as in the first framework: it creates objects and ensures
that the R relationship’s creation semantics are adhered to.

The role of the instance-instance type is analogous to the root class RR' Object. It supplies the objects
(i.e. instances of classes) with the capability of actually participating in R relationships. Behavior is
defined for connecting, disconnecting and reconnecting the objects via the R relationships, with the
integrity of the semantics of the prescribed relationship dimensions inherently guaranteed. Retrieval of
related objects is also supported. The major difference here is that a class does not need to be defined
explicitly as derived from some root. It must simply be denoted as an ‘instance’ of the particular
metaclass. No multiple inheritance configuration is required in the application schema.

The instance—instance type also serves to carry out another function of the R-preprocessor (from the
first framework) and thus eliminates its need from this second framework entirely—handling the
inheritance that might take place along the R relationship. In our first framework, the R-preprocessor
augmented class definitions to include methods for accessing inherited properties. The preprocessing
was necessary to avoid any compile-time errors. In VML, however, missing method definitions are
never considered compile-time offenses. Instead, they are trapped at run-time.

To see what we mean by this, assume that we have an object O that is an instance of the
class C'. Assume further that the method get prop is not defined for C. Now, consider the following
statement:

O->get_prop(];

Ordinarily, we would expect this statement to cause a compile-time error. In VML, a run-time exception
is raised. This exception is caught in such a way as to generically carry out all the different inheritance
behaviors that may be associated with relationship R. Any invalid invocations of methods against an
object participating in an R relationship are trapped. It is determined whether the requested property
(being accessed via a reader method) is inherited. If so, the prescribed inheritance is manifested via a
computation and the return of a legitimate value. Otherwise, the run-time exception is passed up.

Copyright € 2003 John Wiley & Sons, Ltd, Concurrency Computat.: Pract. Exper. 2003; 15:1337-1362

1356 M. HALPER ET AL. %

6. VML PART RELATIONSHIP

In this section, we present the two components, amely, the PartWhole instance type and the PartWhole
instance—instance type, that define the VML PartWhole metaclass and integrate the part relatlonsmp
into the VM. object model.

6.1. PartWhole instance type

The PartWhole instance type defines the additional behavior for the classes that participate in part
relationships. Again, let us recall that, in our second framework, classes are assumed to be objects
themselves. So, the behavior pertains to the classes and not their instances. The behavior {methods) is
divided into three groups, as denoted by the comments in the following specification of the PartWhole
instance type’s public interface’™: -

OBJECTTYPE PartWhole InstType SUBTYPEOF Metaclass IngtType;
INTERFACE
METHODS
/
// Group 1
r . .
make {someParts: {0QID}): OID;
deleteObject (anObject : QID);
/f
// Group 2
r
defPartRelshps (scmeRelshps: {PartRelationshipTypel)
defWholeClasses {someClasses: {0OID});
!
// Group 3
/i
exclusiveness (aClass: 0ID): ExclusivenessType;
minMultiplicity{aClass: OID}: INT;
maxMultiplicity(aClass: OID}: INT;
dependency(aClass: 0ID): DependencyType;
propertyUpwardInherited (propertyName: STRING, aClass: OID}: BOOL;
propertyDownwardInherited (propertyName: STRING, aClass: OID): BOCL;
phi (propertyName: STRING, aClass: OID): STRING;
END;

The two methods in Group 1, make and deleteObject, are the constructor and destructor
methods provided to a class participating in a part relationship. They operate in the exact same
manner as their namesake methods from the first framework, encoding the creation and deletion
semantics, respectively, of the part relationship. Here, they are defined directly in the instance type
of the metaclass. This arrangement is neater than in the first framework where the definitions appear
separately: make is installed by the part preprocessor, while deleteObject is defined in the root. .

1 For the sake of brevity, we have omitted some extraneous details from tha public interface. Also, we forgo any dJscusswn of
the VML syntax which is relatively straightforward [48}.

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003, 15:1337-1362

% INCORPORATING SEMANTIC RELATIONSHIPS INTO CODB SYSTEMS 1357

The methods denoted by Group 2 are invoked at the class-creation time. They serve to inform the
new class of the part relationships that it is involved in. One will note the asymmetry of the names
of the methods and their parameters. The first method is named defPartRelshps and takes a set
of ‘part relationship structures’ as an argument, while the second is called defWholeClasses and
takes a set of classes as an argument. The first method informs the class of any part relationships in
which it plays the role of the whole class. The related ‘part’ classes and the respective dimensional
data of the part relationships are delivered as a set of simaple vectors (i.e. PartRelationshipType
structures). Thus, all dimensional data of a given part relationship are stored with the whole class
rather than with the part class. This choice is consistent with our view that a part hierarchy is
fundamentally a bottom-up construction. The method defWholeClasses, in confrast, informs the
class of all the part relationships in which it plays the role of the part class. The ‘whole’ classes are
provided as arguments and no dimensional data is needed because those data values are provided to
the respective whole classes (using defPartRelshps). To summarize, defPartRelshps and
defWholeClassesg are used to establish a class’s part relationships and store the dimensional data
associated with each. In this way, they function equivalently to the LoadPartSchema program of the
ONTOS part relationship.

The Group 3 methods are used to query a class in order to obtain values of the characteristic
dirmensions of part relationships that the class participates in. The parameter *aClass’ of each represents
the object identifier (OID) of the part class in the relationship of interest. Overall, these methods operate
equivalently to the public interface of the class PartRelationship from the first framework*. There, the
dimensional data were stored as separate part relationship objects, whereas here that same data are
stored directly with the whole class of the part relationship.

The VML code of the instance type definitions and class definitions for the schema of Figure 1 is
OBJECTTYPE VehicieType;

PROPERTIES

manufacturer: STRING;

vehiclelID: INT;
END;

CLASS Vehicle
INSTTYPE VehicleType
END;

OBJECTTYPE CarType SUBTYPECQF VehicleType;
END;

CLASS Car METACLASS PartWhcle
INSTTYPE CarType
INIT Car->defPartRelshps{{{thePartClass: FEngine,
exclusiveness: GLOBAL_EXCLUSIVE,
multiplicity: [min: 0, max: 137,
dependency: NIL,

H There is a slight difference here regarding the way the intheritance information is retrieved. A pair of predicates and a ‘mapping’
function are defined [2] to aid the operation of the so-called NOMETHOD clause. Note, however, that the obtainable dimensional
information is identical.

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:1337-1362

1358 M. HALPER ET AL : ﬁ

upSet : {*horsepower’},
downSet : A}, :
phi: { [horgepower’,’identity’]}]

3]

END;

OBJECTTYPE BoatType SUBTYPEQF VehicleType;
END;

CLASS Boat
INSTTYPE BoatType
INIT Boat->defPartRelghpg{{thePartClass: Engine,
exclusiveness: GLOBAL EXCLUSIVE,

multiplicity: [min: 0, max: 21,
dependency: NIL,

upSet: {"horsepower’},

‘downSet : {}.

phi: { [* horsepower’, 'add’]}]

BND;

OBJECTTYPE EngineType;

PROPERTIES
horsepower: INT;
END; :

CLASS Engine

INSTTYPE EngineType

INIT Engine->defWholeClaases ({Car, Boat}}
END;

Above each class definition, we see a corresponding object type specification, which is the instance
type of the respective class. The properties of the classes are defined there. In the definitions of the
classes Car and Boat, we find invocations of the method def PartRelshps (in their ‘INIT clauses).
These invocations, as noted above, occur at the class-creation time. For example, defPartRelshps
informs the class Car, at its creation time, about its participation as the whole class in a part relationship
whose part class is Engine. Additionally, the relationship’s dimensions are as foHows. It is globally
exclusive, has a minimum multiplicity of zero and a maximum of one and does not exhibit any
dependency. Since the upSet contains horsepower, that property is inherited by Car from Engine.
The inheritance is invariant [2] as indicated by the mapping of korsepower to the identity operator in
phi. Thus, the value of horsepower will be passed up unchanged. There is no downward inheritance
because the downSet i§ empty.

The part relationship between Boat and Engine differs slightly from that between Car and Engine.
As we see in the call to defPartRel shps in Boat’s definition, the maximum multiplicity is two and
the inheritance of horsepower is additive transformational, due to the mapping of horsepower 1o ‘add’
in phi. Therefore, the upward-inherited horsepower value of the whole (boat) will be derived from a
summation of the values at the related parts (engines).

The invocation of defWholeClasses in the class Engine, establishing the fact that Engine is the
part class in two part relationships, completes the definition of the part schema. Since Engine is a leaf

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:1337-1362

% INCORPORATING SEMANTIC RELATIONSHIPS INTO OODB SYSTEMS 1359

in the part hierarchy in our simple schema, there is no need to invoke def PartRelshps with respect
to if; it is not serving in the role of the whole class in any relationship. Likewise, there is no need to
invoke defwholeClasses for Car and Boat since each is at the top of the part hierarchy.

6.2. PartWhole instance-instance type

Qur VML specification of the schema above was still lacking the instance—instance type definition.
The PartWhole instance—-instance type implicitly supplements the definitions-of the classes of the part
hierarchy by giving their instances additional methods pertaining to the part relationship. Specifically,
those methods allow the instances to connect, disconnect and reconnect themselves with respect to part
relationships. The instances can also be queried regarding their related parts and wholes. In this manner,
the PartWhole instance—instance type holds the same place in the second framework as the root class
PartWholeObject does in the first. Moreover, the instance—instance type implements the part—whole
inheritance.
The public interface of the PartWhole instance—instance type is as follows:

OBJECTTYPE PartWhole InstInstType SUBTYPEOF Metaclass_InstInstType;
INTERFACE
METHCDS

addPart {aPart: 0ID}: BOOL;

removePart (aPart: 0ID): BOOL;

replacePart (oldPart: OID, newPart: OID): BOCL;

getParts(): {0ID};

getWholes () : {OID};

All the methods here function identically to the corresponding methods of PartWholeObject (see
Section 4.2 for details).

7. CONCLUSION

We have presented two frameworks for incorporating semantic relationships into an existing CODB
system that was not originally built to support them. The first framework is valid for most target QODB
systems; it assumes only that the system supports manifest type. The second framework relies on the
existence of a metaclass mechanism. Each framework does require an existing formal dimensional
characterization of the semantic relationship of interest.

The primary benefit of either framework is the fact that they allow application developers to easily
exploit the expressiveness of various semantic relationships. The developers are freed from the tedious
task of hand-coding the proper behavior associated with the relationship each time they build a
system. Instead, they simply produce a declarative specification of the desired relationships and let
the OODB system enforce the proper semantics automatically. Their applications can then readily
connect, disconnect, reconnect and query various objects with respect to the semantic relationship of
interest, while knowing that the integrity of the relationship is being maintained.

In order to demonstrate the viability of our frameworks, we presented the details of integrating
a part—whole semantic relationship into the ONTOS OQODB system. We have also presented the

Copyright (© 2003 John Wiley & Sons, Ld. Concurrency Computat.: Pract. Exper. 2003; 15:1337-1362

1360 M. HALPER ET AL %

integration of the part relationship into VML. The PartWhole metactass has been distributed as a
portion of the VML metaclass library.

As for future work, several other semantic relationships need to be implemented, including the
ownership relationship. An issue that would benefit from further investigation is schema evolution.
Currently, all semantic relationship meta-data is assumed to be immutable. Any tampering with that
data by an application program could lead to a breakdown in the maintenance of the proper semantics
for the entire database. Allowing the semantic relationships to evolve, whether in terms of the addition
of new relationships or the modification of the dimensional values of existing ones, may be desirable.

REFERENCES

1. Artale A, Franconi B, Guarino N, Pazzi L. Part-whole relations in cobject-centered systems: An overview. Data &
Knowledge Engineering 1996; 20{3):347-383.

2. Halper M, Geller I, Perl Y. An QODB part-whole model: Semantics, notation, and implementation. Data & Knowledge
Engineering 1998; 27(1):59-95.

3. Kim W, Bertino E, Garza JF. Composite objects revisited. Proceedings of the 1989 ACM SIGMOD International
Conference on the Management of Data, Portland, OR, June [989; 337--347.

4. Noy NF, Hafner CD. The state of the art in ontology design: A survey and comparative review. Al Magazine 1997,
18(3):33-74,

5. Winston ME, Chaffin R, Herrmann DJ. A taxonemy of part-whole relations. Cognitive Science 1987; 11(4).417-444.

6. Halper M, Perl Y, Yang O, Geller J. Modeling business applications with the QOODB ownership relationship.
Freedman RS (ed.). Proceedings of the 3rd International Conference on Artificial Intelligence Applications on Wall Street,
New York, June 1995; 2-10.

7. MeCarty LT. Ownership: A case study in the representation of legat concepts (preliminary deaft). Conference in Celebration
of the 25th Anniversary of the Instituto Documentazione Giuridica, Florence, Italy, 1993; 1-23.

8, McCarty LT. An implementation of Eisner v. Macomber, Proceedings of the 5th International Conference on Artificial
Intelligence and Law, College Park, MD, May 1995; 276-286.

8. Yang O, Halper M, Geller I, Perl Y. The OODB ownership relationship. Proceedings of the International Conference on
Obhject-Oriented Information Systems (QO15°94), London, December 1994; 389—403.

10. Kolp M. A metaobject protoco] for reifying semantic relationships into reflective systems. Proceedings of the 4th Doctoral
Consortium of the Sth International Conference on Advanced Information Systems Engineering (CAiSE’97), Barcelona,
Spain, June 1997; 89-100.

il. Pirotte A, Ziményi E, Massert D, Yakusheva T. Materialization: A powerful and ubiquitous abstraction pattern, Proceedings
of VLDB'94, Santiago, Chile, 1994; 630-641.

12, Geller J, Perl Y, Neuhold E. Structure and semantics in OODB class specifications. SIGMOD Record 1991; 20(4):40—43.

13. Neuhold EJ, Schrefl M. Dynamic derivation of personalized views. Proceedings of the I4th Conference on Very Large
Databases, Long Beach, CA, 1988.

14. Schrefi M, Neuhold EJ. A knowledge-based approach to overcome structural differences in object-oriented database
integration. Proceedings of the IFIP Working Conference on the Role of Al in Database and Information Systems,
Guangzhou, China. North-Holland: Amsterdam, 1988.

15. Schrefi M, Neuhold EJ. Object class definition by generalization using upward inheritance. Proeeedmgs of the 4th
International Conference on Data Engineering, Los Angeles, CA, February 1988; 4-13,

16. Storey VC. Understanding semantic refationships. VLDB Journal 1993; 2(4):455-488.

17. Woods WA. What's in a link: Foundations for semantic networks. Readings in Knowledge Representation, Brachman RJ,
Levesque HJ {eds.). Morgan Kaufmann: San Mateo, CA, 1985; 218-241.

18. Hammer M, McLeod I3. Database description with SDM: A semantic database model. ACM Transactions on Database
Systems 1981; 6(3):351-386.

19. Elmasti R, Navathe S$B. Fundamentals of Database Systems. Benjamin/Cummings: New York, 1989.

20. Elmasri R, Weeldreyer I, Hevner A. The category concept: An extetision to the entlty -relationship model. Inremanonal
Journal of Data and Knowledge Engineering 1985; 1(1):75-116. '

21. Mylopoulos J, Borgida A, Jarke M, Koubarakis M. Telos: Representing knowledge about mformatmn systems. TOLS 1990;
8(4):325-362.

22. Mays E, Apte C, Griesmer J, Kastner J. Experience with K-Rep: An object-centered knowledge repiesentation language.

Proceedings of the IEEE Al Application Conference, San Diego, CA, March 1988,

Copyright (© 2003 John Wiley & Sons, Etd. Concurrency Computal.: Pract. Exper. 2003; 15:1337-1362

% INCORPORATING SEMANTIC RELATIONSHIPS INTO OODB SYSTEMS 1361

3l
. Cattell RGG {ed.). The Object Database Standard: ODMG-93. Morgan Kaufmann: San Francisco, CA, 1994,
33,
34,
35.
36.
37.

38.
39.

40.

45.
46.

47,

48.
49.
50.
51.
52.
53.
54,
55.

56.

. Rumbaugh J, Blaha M, Premerlani W, Eddy F, Lorensen W. Object-Oriented Modeling and Design. Prentice-Hall:

Englewood Cliffs, NJ, 1991.

. Booch G. Object-Oriented Design. Benjamin/Cummings: Redwood City, CA, 1991.
. Booch G. Object-Oriented Analysis and Design with Applications (2nd edn). Benjamin/Cummings: Redwood City, CA,

1994,

. Booch G, Rumbaugh I, Jacobson 1. The Unified Modeling Language User Guide. Addison-Wesley: Reading, MA, 1999.
. Fowler M, Scott K. UML Distilled (2nd edn). Addison-Wesley: Reading, MA, 2000.
. Rumbaugh J, Yacobson I, Booch G. The Unified Medeling Language Reference Manual. Addison-Wesley: Reading, MA,

1999,

. Coad P, Yourden E. Object-Oriented Analysis (2nd edn) (Yourdon Press Computing Series). Prentice-Hall: Englewood

Cliffs, NJ, 1991.

. Bancilhon F, Delobel C, Kanellakis P (eds.}. Building an Object-Oriented Database System: The Story of Oy. Morgan

Kaufmann: San Mateo, CA, 1992,
Bertino E, Martino L. Object-Oriented Database Systems: Concepts and Architectures. Addison-Wesley: New York, 1993.

Cattell RGG, Barry DK (eds.). The Object Database Standard: ODMG 2.0. Morgan Kaufmann: San Francisco, CA,
1997.

Gray PMD, Kulkami KG, Paton NW. Object-Oriented Databases: A Semantic Data Model Approach. Prentice-Hall:
New York, 1992,

Kim W, Lochovsky FH (eds.). Object-Oriented Concepis, Databases, and Applications. ACM Press: New York, 1989.
Loomis MES. Object Databases: The Essentials. Addison-Wesley: Reading, MA, 1995,

Zdonik SB, Maier D (eds.). Fundamentals of object-oriented databases. Readings in Object-Oriented Database Systems.
Morgan Kaufmann: San Mateo, CA, 1990; 1-32.

ONTOS, Inc., Lowell, MA. ONTOS DB/Explorer 4.0 Reference Manual, 1996.

Soloviev V. An overview of three commercial object-oriented database management systems: ONTOS, ObjectSiore, and
Q3. SIGMOD Record 1992, 21(1):93-104.

Lamb C, Landis G, Orensiein J, Weinreb D. The ObjectStore database system. Communications of the ACM 1991;
34(10):50-63.

. eXcelon Corporation. ObjectStore. http://www.exln.com [2002].

. Versant. http:/fwww.versant.com [2002].

. Abelson H, Sussman GJ. Structure and Interpretation of Computer Programs. MIT Press: Cambridge, MA, 1985,

. Klas W. A metaclass system for open object-oriented data models, PRD Thesis, Technical University of Vienna, January

1990, :

Klas W. Tailoring an object-criented database system to integrate external multimedia devices. Workshop on Heterogeneous
Databases and Semantic Interoperability, Boulder, CO, 1992.

Huhns MN, Stephens LM. Plausible inferencing using extended composition. Proceedings of ITCAI-89, Detroit, M1, 198%;
1420~1425.

Klas W, Aberer K, Neuhold EJ. Object-oriented modeling for hypermedia systems using the VODAK Model Language
(VML). Object-Oriented Daiabase Management Systems (NATO ASI Series), Ozsu MT, Biliris A (eds.). Springer: Berlin,
1994.

Klas W et al. VODAK design specification document, VML 3.1. Technical Report, GMD, Sankt Augustin, Germany, July
1993.

Motschnig-Pitrik R, Storey VC. Modelling set membership: The notion and the issues. Date and Knowledge Engineering
1995; 16:145-183,

Rumbaugh J. Relations as semantic constructs in an object-oriented language. Proceedings of OOPSLA-87, October 1987,
466-481.

Albano A, Ghelli G, Orsini R. A relationship mechanism for a strongly typed object-oriented database programming
language. Proceedings of VLDB *91, 1991; 565-575.

Diaz O, Gray PMD. Semantic-rich user-defined relationships as a main constructor in object-oriented databases.
Proceedings of the IFIP TC2 Conference on Database Semantics. North-Holland: Amstesrdam, 1990.

Albano A, Ghelli G, Orsini R. Fibonacci: A programming language for object databases. VLDR Journal 1995; 4(3):
403-444.

Paton NW. ADAM: An object-oriented database system implemented in Prolog. Proceedings of the 7th British National
Conference on Data bases, 1989.

MacKellar B, Peckham }. Representing design objects in SORAC: A data mode] with semantic objects, relationships and
constraints. Af in Design *92, Pittsburgh, PA, 1992,

Liu L, Halper M. Incorporating semantic relationships inte an object-oriented database system. Proceedings 32nd Hawail
International Conference on System Sciences (HICSS-32), Mani, HI, January 1999. IEEE, 1999 (CD-ROM).

Copyright € 2003 John Wiley & Sons, Ltd. Concurrency Compuiat.: Pract. Exper. 2003; 15:1337-1362

1362 M. HALPER ET AL. %

57.

58.

59.

60.

61.

Halper M, Geller J, Perl Y, Klas W. Integrating a part relationship into an open QODB sysiem using metaclasses.
Proceedings of the 3rd International Conference on Information and Knowledge Management (CIKM-94), Adam N,
Bhargava B, Yesha Y {eds.), Gaithersburg, MD, 1994; 10-17.

Halper M, Geller J, Perl Y. An OODB ‘part’ relationship model. Proceedings of the ISMM st International Conference
on Information and Knowledge Management, Yesha Y (ed.), Baltimore, MD, November 1992; 602-611.

Halper M. A comprehensive part model and graphical schema representation for object-oriented databases. PhD Thesis,
New Jersey Institute of Technology, October 1993,

Halper M, Geller J, Perl Y. Value propagation in OODB part hierarchies. Proceedings of the 2nd International Conference
on Information and Knowledge Management (CIKM-93), Bhargava B, Finin T, Yesha Y (eds.), Washington, DC, November
1993; 606-614.

Blaha M, Premerlani W. Object-Oriented Modeling and Design jor Database Applications. Prentice-Hall: Upper Saddle
River, NJ, 1998,

. Khoshafian 8, Dasananda S, Minassian N. The Jasmine Object Database: Multimedia Applications for the Web. Morgan

Kaufmann; San Francisco, CA, 1999,

. Bven 8. Graph Algorithms. Computer Science Press: Potomac, MD, 1979,

. Harary F. Graph Theory. Addison-Wesley: Reading, MA, 1969.

. Mark V Systems, Ltd., Encino, CA. ObjectMaker Documentation, 1993.

. Goldberg A, Robson D. Smalltalk-80: The Language and its Implementation. Addison-Wesley: Reading, MA, 1983,

Copyright © 2003 John Wiley & Sons, Lid. Concurrency Computat.: Pract. Exper. 2003; 15:1337-1362

