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Chapter 5

Inheritance Operations in Massively Parallel
Knowledge Representation

James Geller

Institute for Integrated Systems, CIS Department, New Jersey Institute of
Technology, Newark, NJ 07102

This chapter elaborates on an approach to knowledge representation that
combines the use of a imited inference strategy with massive parallelism.
Conceptually, a class hierarchy is used. The nodes in this hierarchy are
augmented by a preorder numbering scheme. The augmented hierarchy
is then transformed into a pointer-free linear free represemiation. This
tree representation is implemented on a CM-2 Connection Machine, such
that every node resides on its own processor. This chapter discusses in
detail an algorithm for inheritance in the linear tree representation. It also

_imtroduces an algorithm for upward-inductive inheritance for the linear
tree representation. Experimental data from a Connection Machine CM-2
implementation show that for a given machine size downward inheritance
can be performed in constant time. The height of the class tree has no
inflnence on the run time. Upward-inductive inheritance run times grow
very moderately with the number of nodes in the tree.!

1. Massively Parallel Knowledge Representation

The development of the Connection Machine and of Massively Parallel
Computing in general was heavily influenced by problems from Artificial
Intelligence. Hillis [1] used examples from Computer Vision and Knowl-
edge Representation to motivate its design. One of these examples was
Fahlman’s [2] famous NETL system. NETL was the first attempt in the his-
tory of Artificial Intelligence to create a Knowledge Representation model

1This work was partially supported by the National Science Foundation, Grant #IRI-
9204655 o
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Architectures Center (NPAC) at Syracuse University, which is funded by and operates
under contract to DARPA. and the Air Force Systems Command, Rome Air Development
Center (RADC), Griffiss Air Force Base, NY, under contract# F306002-88-C-0031.
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that could be translated naturally into hardware.

Knowledge Representation is the heart of many areas of Artificial In-
telligence. Unfortunately, Knowledge Representation implementations are
also notorious for being slow. Shastri [3, 4] has pointed out that “To be
deemed intelligent, a system must be capable of action within a specified
time frame...” [3] (p. 3). We concur with his opinion that “A possible
solution of the computational effectiveness problem lies in a synthesis of
the limited inference approach and massive parallelism.” [3] (p. 4).

Waltz [5] has pointed out that Al has made little use of massively parallel
processing. Given the history of the Connection Machine this is a rather
surprising fact. However, there are a small number of researchers that are
working on what we refer to as Massively Parallel Knowledge Representa-
tion (MaPKR, pronounced “mapcar”). Evett, Hendler, and Spector [6, 7]
have been working on PARKA, an implementation of a Knowledge Repre-
sentation system on the Connection Machine. Work on massively parallel
inference has been reported, e.g., by Kurfess [8].

Geller [9] and Geller and Du [10] have presented an alternative approach
to parallelizing the operations in an IS-A hierarchy, which is the backbone of
many Knowledge Representation systems. In this paper we first review the
basics of this approach and show an implemnentation of it. Then we discuss
two types of inheritance operations, standard (downward) inheritance and
upward-inductive inheritance. Tt will be shown that in this implementation,
for a given machine size, downward inheritance in a tree is a constant time
operation, even if the height of the tree is varied..

Section 2 discusses an encoding of IS-A hierarchies which permits the fast
evaluation of IS-A queries. Section 3 introduces a linear tree represeniation
of this encoding. Section 4 explains the parallel algorithm for updating
the linear tree representation efficiently. Sections 5 — 8 discuss parallel
downward inheritance and parallel inductive-upward inheritance. Section
9 reports experimental results, and Section 10 contains our conclusions.
This chapter is a considerably extended and revised version of [11] which
appeared in [12].

2. Schubert’s Tree Encoding of IS-A Hierarchies

Most Knowledge Representation systems, as well as all object-oriented lan-
guages, databases, and systems, use a so called IS-A hierarchy or class hi-
erarchy as their backbone. In the simplest possible case this hierarchy is
a tree. It consists of nodes, which stand for classes, and connecting arcs,
which stand for the IS-A relation. In fig. 1 an example of such an IS-A
hierarchy is shown. One of the nodes in this tree has the label Bird, which
means that it stands for the class of all Birds. Below the Bird node there
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Thing (1, 8)

Animal (3, 7)

Mineral (3, 8) Plant (2, 2)

‘Bird (5, 7) Dog (4, 4)

Eagle (7, 7) Crane (6, 6)
Fig. 1. A Class Hierarchy with Schubert’s Numbering

are two nodes, the Eagle node and the Crane node. These two nodes are
connected to the Bird node by two arcs. Therefore, every member of the
class Eagle is a member of the class Bird, and every member of the class
Crane is also a member of the class Bird.

The IS-A relation is transitive. The node Bird is itself connected by one
arc to the node Animal, which means that every bird is an animal. Due to
the transitivity of the IS-A relation, every eagle is also an animal, etc. One
method of reasoning which is commonly associated with IS-A hierarchies
is inheritance. It is assumed that each node in the hierarchy has certain
attributes associated with it. If an attribute is associated with a node A
and the user wants to know whether a node B has this attribute, then it
is possible to answer this question in the positive, if A is above B in the
hierarchy and if there exists a path of IS-A arcs between A and B.

While it is possible to follow a chain of pointers to verify the existence
of a subclass relation, this becomes inefficient for large class hierarchies.
To overcome this efficiency problem, Schubert [13, 14] introduced a special
purpose class reasoner. Whenever necessary, this class reasoner is invoked
by a general purpose resolution theorem prover. The two together function
as a hybrid reasoning system [15-17]. In order to achieve the necessary
speed of the special purpose class reasoner, Schubert used a coding scheme
that can be applied to the nodes of any IS-A hierarchy of mutually exclusive
classes.

In fig. 1 every node is followed by a pair of numbers. The first number
is the result of a preorder right-to-left tree traversal of the class hierarchy.
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In other words, the nodes are numbered according to a depth first, right-
to-left search. Such a search would visit the nodes in fig. 1 in the order
Thing, Plant, Animal, Dog, Bird, Crane, Eagle, Mineral. Hereafter, we
will call this first number the preorder number of a node.

The second number of every node is the largest preorder number that
occurs under this node in the hierarchy. For example, under the node
Animal the numbers (4, 5, 6, 7) occur as preorder numbers of the nodes
(Dog, Bird, Eagle, Crane) respectively. Because the largest of these is 7,
the second number of Animal is 7, too.

Leaf nodes have no nodes under them. However, if we define every node
to be under itself, then we can maintain the above rule for selecting the
second number of a pair. A leaf node is assigned the largest first number
of any node under it. Because it has only itself under it, its second number
is identical to its first number. In the balance of this paper we will call the
second number the mezimum number of a node.

The decision whether a node B is under a node A can then be made
very easily by comparing the number pair assigned to B with the number
pair assigned to A. If and only if B is a subclass of A, then the number
pair assigned to B is a subinterval of the number pair assigned to A. In
our example, Bird is a subclass of Animal because (5, 7) is a subinterval
of (3, 7). On the other hand, Bird is not a Plant because (5, 7) is not
a subinterval of (2, 2). By representing the nodes and their associated
nurnber pairs in a hash table, it can be rapidly decided whether a subclass
relation exists.

Schubert’s technique can be extended from trees to directed acyeclic
graphs, but this requires the assignment of more than one number pair
to some of the nodes. Agrawal, Borgida and Jagadish {18] have presented
methods to minimize the number of additional pairs needed. In the Al
literature interest in such transitive closure techniques has been limited to
the IS-A relationship. This is not the case in the database literature where
similar techniques have been used for recursive query evaluation [18, 19].
Efficient compile-time techniques for an IS-A hierarchy encoding have also
been introduced in the theory of object-oriented languages [20]. We feel
that all these areas can benefit from the techniques developed in this chap-
ter.

3. How to Achieve the Same Effect Without Trees

Schubert’s method for the representation of class hierarchies has proven
to be efficient for subclass verification. However, any attempt to update
the tree requires the recomputation of the number pairs of many of the
nodes. This difficulty can be overcome if one makes use of the following
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two observations.

(i) The number pairs actually make the tree redundant. Instead of a
tree one can use a list of nodes with number pairs associated.

(ii) It is possible to update all the number pairs in parallel, making the
Connection Machine 2 viable tool for this problem.

We will now explain the intuitions behind (i) and the simpler of two
algorithms for (ii). Detailed proofs of the viability of this approach can be
found in [10]. _

The list representation is obtained from the tree representation by a left-
to-right preorder traversal. For our example in fig. 1 this would result in
the list (Thing (1, 8) Mineral (8, 8) Animal (3, 7) Bixd (5, 7) Eagle (7, T)
Crane (6, 6) Dog (4, 4) Plant (2, 2)).

The verification of the subclass relation between any two nodes is not
affected by the use of the linear tree representation. As before, two hash-
ing operations and a comparison of two intervals are needed. The “only”
additional requirement is an update operation for adding a new node to
this list. This update operation should have the same effect as if we would
have inserted that new node into the tree and would have recreated the
linear representation by a left-to-right preorder traversal.

It is possible to find such an update operation if one assumes, without
loss of generality, that nodes in the tree are always inserted at the leftmost
possible position. Remember that the order of siblings at any one level in
the class tree did not contain any information. Therefore, our restriction
is feasible. With this assumption we can insert this new node into the list
immediately after its parent, and we get the required effect.

In other words, inserting a node at the leftmost position under a parent
node in a tree and transforming the tree into a list (as described above)
results in the same list as inserting the node immediately after its parent in
the list. For example, assume that the node Robin is to be inserted under
Bird in fig. 1. Without loss of generality we may add Robin to the left of
Fagle. A new left-to-right preorder traversal would then result in the list
(Thing (1, 8) Mineral (8, 8) Animal (3, 7) Bird (5, 7) Robin () Eagle (7,
7) Crane (6, 6) Dog (4, 4) Plant (2, 2)). This result is idenfical to just
inserting Robin into the list immediately after the Bird node.

The next step is to update the number pairs of all the nodes and to
assign a number pair to the node Robin itself. Figure 2 shows that when
one 1nserts a node into a tree as a new leaf, this operation divides the tree
into three parts. The most important part is a path of IS-A arcs that leads
from the root node to the newly inserted node. This path cuts the tree into
a left part and a right part. There are three simple (but different) rules for
updating the number pairs of the nodes residing in these three parts.
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LEFT PART OF TREE START PATH RIGHT PART OF TREE

Thing (1, 9)

Mineral (8, 9) Animat (3, 8)

Plant {2, 2)

Bird (5, 8) Dog (4, 4)

Robin (8, 8) Eagle (7, 7) Crane (6, 6)

END PATH
Fig. 2. Updating the three Parts of a Class Tree

All the nodes in the right part have unchanged number pairs. The reason
for this is that they will all be visited by the numbering operation (a right-
to-left traversal) before the new node is encountered.

All the nodes in the path will have their preorder number unchanged,
because they will be visited before the new node is encountered. They will,
however, have their maximum number incremented (by 1) because they
have the new node under themselves.

All the nodes in the left part will have both numbers incremented. The
preorder numnber is incremented because the right-to-left traversal will now
be delayed by one position. The maximum number will be incremented
because the ncde providing this maximum number is guaranteed to have
its preorder number incremented by 1. (Recall that we define a node as
being under itself. A proof for these update rules is given in [10].)

One final question remains in order to decide whether the suggested list
representation can actually be used, namely whether the update rules can
be translated into similar simple rules that are valid for the list represen-
tation of such a class hierarchy. The answer is yes. It is easy to see that
the nodes in the right subtree will be exactly the nodes that occur in the
list after the newly inserted node. Therefore, a serial algorithm can simply
stop processing the list after it has inserted the new node and updated all
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the number pairs up to the new node.

However, the nodes of the left part and the path are intermixed in the
list before the newly inserted node. Is there a simple way to decide whether
a node in this list segment belongs to the path or the left part of the tree?
The answer is yes, again. All nodes in the path will have a precrder number
which is smaller than the preorder number of the parent node of the newly
inserted node. All nodes in the left part will have a preorder number which
is larger than the preorder number of the parent node. '

In summary, the linear representation has three corresponding update
rules which maintain the numbering of the tree correctly. Returning to
our example, we see that the nodes Plant, Dog, Crane, and Eagle do not
require any changes to their number pairs. The nodes Thing, Animal,
and Bird belong to the path and therefore have their maximum numbers
incremented. The node Mineral is the only node of the left part and has
both its numbers incremented. The resulting list representation is therefore
(Thing (1, 9) Mineral (9, 9) Animal (3, 8) Bird (5, 8) Robin () Eagle (7,
7} Crane (6, 6) Dog (4, 4) Plant (2, 2)).

The new node Robin is a leaf, and as such has a pair of identical num-
bers. It comes last in the right-to-left traversal of the subtree of its parent,
therefore its preorder number has to be the largest precrder number un-
der its parent. Because of that, the preorder number of Robin has to be
identical to the maximum number of Bird which has already been updated.
This concludes the update operation, giving (Thing (1, 9) Mineral (9, 9)
Animal (3, 8) Bird (5, 8) Robin (8, 8) Eagle (7, 7) Crane (6, 6) Dog (4, 4)
Plant (2, 2)). The reader is invited to compute the new list representation
directly from the updated tree, and should end up with the same result.

Formally speaking, the insert operation is a mapping from a triple info a
sequence of three dimensional vectors. The elements of the triple are an old
sequence of three dimensional vectors, a parent index into that sequence,
and a class name for a new child node. The indexed symbol ¢; stands for the
ith class name. Specifically, ¢, 1s the child class to be inserted into the class
tree. The symbol 7; is used for the #th preorder number, and the symbol
#; is used for the #h maximum number. The length of the sequence before
inserting the new child node is n. The upper index m describes values
before the insert operation, and the upper index m+1 describes the same
values after the insert operation.

Cg Cj
INSERT: | =% Xpxec.— | 7y
B My
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I1<k<n1<j<ntl,and 1 <p < n.

gty n+tlzj>pt1

G =9  j=p+l

c}" otherwise

Ty n+l>ji>p+1
L ﬂ’}"+1 T > Tp
! ppr+1 j=p+1

v otherwise

7

ittt = g1 j=p+1
#7* + 1 otherwise

Note that in the above, the terin “-1” always appears in the index ex-
pression, while the term “+1” appears after the indexed expression. Note
also that the update of w;f“_l_*f requires the use of uj'. Therefore, in this
formalization, the update of u; has to happen strictly after the update of
Ty

i

4. Parallelizing the Update Algorithm

A basic familiarity with the principles of massively parallel computation is
assumed. However, a few comments about programming the Connection
Machine are necessary. The Connection Machine [21, 22] is programmed
in *LISP, a dialect of Common LISP, by manipulating parallel variables
(pvar)...A pvar is a variable with one name that exists on every single
processor and that is created with one single declaration.

In semantic network implementations on massively parallel hardware,
every node in a concept network is assigned to one processor (e.g., [1]).
Attributes are usually represented as pvars and attribute values as values
of these pvars. As opposed to work in connectionism on distributed rep-
resentations, this is a localized representation of attributes which we share
with Evett et al. [6].

"The most important feature of the previously described update algorithm
1s that the computation of all the new number pairs does not contain any
mutunal dependencies. In other words, all these computations may be per-
formed in parallel. For this purpose, we assign every node to one processor
on the Connection Machine. The pvar SELF-ADDRESS!! contains on
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every processor the linear position number of that processor. The puvar
PRENUM! contains the preorder number of every number pair, while the
prar MAXNUM! contains the maximum number of every number pair.
(The suffix !! is a mnemonic indicating that the variables in question are
puars.)

Adding a node requires that all the nodes to the right of the parent node
should be moved one more position to the right. This can conveniently
be done in parallel. However, the heart of the updating algorithm is the
following piece of code which takes care of updating the number pairs. The
notation used should be self-explanatory.

UPPATE (p: PROCESSOR-NUMBER)
ACTIVATE-PROCESSORS-WITH
(SELF-ADDRESS!! >1t Q!}) AND!!
(SELF-ADDRESS!! <=t! (1! p))

DO BEGIN
© MAXNUM!! :=1!% 11% 411 MAXNUM!!
IF!! PRENUM!! >1t (1! PRENUM(Np)) THEN!!
PRENUM!! :=!! 111 +t! PRENUM!!
END

In this algorithm Np stands for the parent node, and p for the position
number of the processor containing the parent node. PRENUM(Np) is a
(serial) function that returns the PRENUM of a node.

In practice, the implementation is considerably more complicated. Tt is
possible that a whole subtree has to be inserted, not just a single node.
It is also possible that the system has to maintain a number of different
unconnected trees (a forest) two of which may be connected at any time by
a new IS-A assertion. When the latter occurs, the parent node may be in
the left or in the right tree, and there may be any number of intermediate
trees that are not involved in this update operation.

Tests of this extended algorithm were performed on a CM-2, using half
of its 16k processors [10]. Experiments with sets of several thousand nodes
show that verification of a subclass relation can be done in practically
constant time in under 0.5 seconds. Update times grow very slowly from
0.4 seconds for a problem with 12 IS-A assertions to about 0.9 seconds for
a problem with over 4000 IS-A assertions.

5. Inheritance Terminology

Definition 1: An eniry point in an inheritance problem is a class or an
individual for which we want to derive the value of an attribute. This value
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may or may not be stored directly at the entry point.
Definition 2: A source point in an inheritance problem is a class or an
individual at which an attribute value is available which can solve the
inheritance problem for an entry point, or contribute to its solution.
Definition 3: The required value in an inheritance situation is the attribute
value whose retrieval is attempted at the entry point.
Definition 4: The direction of scarch in an inheritance problem is defined
by the position of the entry point relative to the source point(s) in rela-
tion to their common hierarchy. If a search from the entry point to the
source point(s) leads upwards in the common hierarchy, then the direc-
tion of search is upwards. If the search from the entry point to the source
points(s) leads downwards, the direction of search is downwards.
Definition 5: Downward inheritance (standard inheritance) is defined as
an algorithm that is invoked when a required value is not available at the
entry point. The algorithm derives a solution by an upward search.

There is, of course, nothing original about Definition 5, but we present
it to show that it is parallel to the following definition.
Definition 6: Upward-inductive inhertiance is defined as an algorithm
that is invoked when a required value is not available at the eniry point.
The algorithm derives a solution by a downward search.

6. Upward-Inductive Inheritance

Downward inheritance is a well established and accepted technique. The
contribution of this paper to the research in downward inheritance consists
gsolely of experimental verification that it can be done in a massively parallel
environment in constant time, This assumes a massively parallel computer
of constant size that is sufficiently large to represent every concept by one
processor. This issue will be discussed in more detail in Section. 7.and
Section 9.

On the other hand, upward-inductive inheritance is a new technique
which needs some justification. A reasoner might be in a situation where he
would like to obtain, through inheritance, an attribute value for an instance
of a class. However, the class itself and all its superclasses might not have
an appropriate default value for the attribute. On the other hand, the

‘reasoner might have previously stored attribute values for a large number
of instances of that class. It would be a considerable waste of knowledge if
the reasoner did not avail himself of these values. E.g., if a reasoner has seen
50 horses, and 49 had four legs, it would be unintelligent if he would refuse
an answer to the question “How many legs does a horse have”? Instead,

he should apply upward-inductive inheritance and reply that horses have " -

four legs. In this evidential approach to reasoning we are again influenced
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by Shastri [3].

Formally, we introduce upward-inductive inheritance as the solution to
the following problem:

Preliminary Notation: The letter X, possibly with integer subscripts,
represents nodes which may be individuals or classes. Capital Greek letters
represent variables ranging over nodes. The letters 5 and 7' represent sets
of nodes. The capital letter A represents an attribute, and the lower case
letter @ represents its corresponding value. When we say that an attribute
A is not defined at a node X, that means that there is no valid value a
associated with A.

Situation: Assume a set of n nodes § = {X1, X3, ..., X} which are
all subclasses of a class X, or individuals belonging to a class X. Assume
further a set T of m nodes, such that T C S, ie., m < n. Assume an
attribute A, that is defined for every ® € 7. However, a; of ®; and qj
$; are not necessarily the same, unless i = j. Finally, assume that A
is undefined for X and cannot be derived by standard inheritance. In
addition, A is undefined for all ¥ € (5§ - T).

Problem: Find an algorithm that assigns a correct value a to the at-
tribute A of X. It is interesting also to consider the subproblem where
every X; € S is an individual node.

This is an induction problem, and induction is generally considered to be
an unsolved problem. In this paper we do not claim any research on solving
the induction problem in general. However, we claim that a reasoner may
find itself in a situation where no answer would be more disastrous than
an incorrect answer. If there is any probability for a given answer to be
correct, then such an answer is certainly preferred to no answer at all.?

7. Downward Inheritance Algorithm

The downward inheritance algorithm is extremely elegant and simple and
relies on the fact that in our linear tree representation all the ancestors of
a node are to its left. In addition, the number pairs of all ancestors are
super-intervals of the number pair of a given node. Therefore, using the
Connection Machine technique of first activating all processors, followed by
stepwise deactivation of processors that are irrelevant, the algorithm is as
follows:

DOWNWARD~INHERIT(N: ENTRY-POINT;
ATTRIBUTE!!: ATTRIBUTE)
ACTIVATE-PROCESSORS-WITH
PRENUM! ! <=11 (!t PRENUM(K)) AND!!

2This situation occurs for instance at written midterm examinations.
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MAXNUM! ! >=t1 (1! MAXNUM(N)) AND!!
ATTRIBUTE!! <>!t (11 -1)
DO BEGIN

(RETRIEVE -PVAR ATTRIBUTE!!
(*MAX SELF-ADDR!1))
END

We first activate all the processors that have a number pair including
the given number pair. These are the possible ancestors. Of these we
want only the nodes that have a value for the given attribute. We are
marking an undefined attribute in a class by the value —1. Of these, we
want the rightmost node, which will be lowest in the hierarchy. This is
achieved by finding the node with the highest address. PRENUM(N) and
MAXNUM(N) contain the number pair for the entry point. ATTRIBUTE!
has to be replaced by the pvar that maintains the required attribute. *MAX
finds, in parallel, the largest value of a puvar.

Note the elegance of this algorithm. There is no iterated search from
the parent to its parent and its ancestors. All ancestors are activated in
parallel..The lowest ancestor is found by one single operation, (*MAX itself
1s of logarithmic complexity. However, this does not change the complexity
of retrieval for a constant machine size.)

There is one complication which we have completely solved, but the
description of which was omitted in this algorithm. As can be seen in
the earlier parts of this paper, an update of the class hierarchy leads to
the necessity of moving around whole subtrees. The time required for this
operation depends on the number of pvars that are needed to describe the
state of one node. If the number of pvars grows, then the response times
would increase dramatically. Unfortunately, we need a large number of
puars, one for every atiribute.

The solution of this problem consists of maintaining attribute informa-
tion and class information in separate processors, with one pointer pvar
leading from “hierarchy space” to “attribute space”. While the hierar-
chical part of the presentation of a class is potentially moved around at
every insertion of a new class, the attribute information is never moved,
Every processor therefore does double duty. It maintains the hierarchy
information of one class, and the attribute information of another class.
In exceptional cases, one processor might maintain hierarchy information
and attribute information for the same class; however, this is a c01nc1dence
which may be destroyed by the next class insertion.
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8. Upward-Inductive Inheritance Algorithm

The algorithm for upward-inductive inheritance is somewhat more involved,
but the basic idea is similar. We want to retrieve attribute values from all
nodes that are under a given node. All the nodes that are under the entry.
point are activated. Of these nodes we need to select all the nodes that are
defined for the given attribute.

However, the similarity ends here. There might be many different at-
tribute values, and it is necessary to loop over them. At this point, the
algorithm selects the leftmost active node. It retrieves its attribute value
and then deactivates temporarily all the nodes that do net have the same
value. It counts the number of nodes that have the same attribute value
and then permanently deactivates all those nodes. It now repeats the same
step, if necessary several times. It finds the leftmost active node again,
which will have a different attribute value than before, etc. In the end, it
reports every found attribute value together with the number of its occur-
rences. It is left to the user or the general purpose reasoner calling the class
reasoner to decide whether he wants to use the most commonly occurring
value, or not.

Clearly, this algorithm has a serial component, and the worst case re-
trieval time depends on the number of different existing attribute values.
This might result in very long response times for some attributes, but for
many practically useful attributes, such as color, there is a limited number
of possible attribute values.

Our implementation is recursive and sorts the results according to the
number of occurrences of each attribute value, but we present an iterative
algorithm, analogous to the previous description.

UPWARD-INHERIT(N: ENTRY-POINT;
ATTRIBUTE!!: ATTRIRUTE)
ACTIVATE-PROCESSORS-WITH

PRENUM! ! >=1t (¢! PRENUM(N)} ARD!!
MAXNUM! ! <=11 (1) MAXNUM{E)) AND!!
ATTRIRUTE!! <>t!1 {11 -1)

DO BEGIN

WHILE some processors are active DO BEGIN
ATT := (RETRIEVE-PVAR ATTRIBUTE!!
(*MIN SELF-ADDR!:)})
CNT := (*COUNT processors with
ATTRIBUTE!! =11 (1! ATT))
DEACTIVATE processors with
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Table 1.
Influence of Tree Size on Run Times for Downward Inheritance

# of Sons | Times for Downward Inheritance
1054 0.44
1534 0.46 0.47
2046 0.44 0.46
2558 0.46 0.47 0.48
3008 0.46 0.45 0.47
3582 0.47 0.47 0.46
4030 0.52 0.48 0.47
4350 0.47 0.45 0.45
5070 0.45 0.45 0.47
5630 0.46 0.46 0.48
ATTRIBUTE!! =!! (1! ATT)
(PRINT ATT CNT)
END
END

We emphasize that no claim is made that this algorithm correctly solves
the induction problem. It computes a reasonable set of values that might be
preferred by a reasoner to a complete absence of information. This comes
across in the fact that the algorithm reports all found attribute values and
leaves the decision how to use them to a general purpose reasoner.

9. Experimental Results

We will now describe a set of six experiments that analyze the temporal
behavior of downward inheritance and upward-inductive inheritance. In
the first experiment 10 test sets are created. Every one of them consists
of a single class tree of the same height (11 levels); however the number of
nodes increases from set to set. In every test the root node is assigned an
attribute value which is queried at one of the leaf nodes.

The purpose of this experiment is to show that the presented inheritance
algorithm is independent of the number of sons (= nodes — 1) in the tree.
The first column shows the number of nodes in the tree. The second column
shows the run time for the inheritance operation. For most of the experi-
ments several runs were performed, and then all the times are shown in the
second column. Times for experiments imterrupted by dynamic garbage
collections are omitted. All times are in seconds.

Clearly the speed of inheritance is independent of the number of nodes
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Table 2.
Influence of Tree Size on Run Times for Upward-Inductive Inheritance

# of Sons | Times for Upward Inheritance
1054 0.43

1534 .46 0.47 0.46
2046 0.54 0.55 0.51
2558 0.54 0.57
3006 0.59 0.60 0.59
3582 0.68 0,64
4030 0.69 0.69"
4350 0.74 0,72 0.72
5070 0.76 0.75
5630 0.83 0.81 0.79

Table 3.

Influence of Tree Height on Run Times for Downward Inheritance

Levels | # of Sons | Times for Downward Inheritance
3 1032 0.47 0.47 0.46
5 1016 0.44 0.45

7 1047 0.47 0.46 0.45
9 1606 0.46 (.45 0.46
11 1026 0.46 0.46 0.46
13 1052 0.47 0.46 0.45
15 1068 0.47 0.48 0.47
17 1102 0.49 0.47 0.48
19 1089 0.46 0.47

21 1131 0.46 0.47 0.46

in the tree. The next experiment uses the same trees, but the operation is
inverted. One of the leaf nodes receives an attribute value, and that value
is queried at the root node.

As can be seen, the times required for upward-inductive inheritance grow
very modestly with the size of the free.

In the next set of experiments 10 trees of approximately constant number
of nodes are created, with each of & different height. The first column
contains the number of levels in the tree, the second the number of sons
(nodes - 1), and the third the observed runtimes.

it can be clearly seen that the height of the tree has no influence on
the runtime of downward inheritance reasoning. The following experiment
displays the use of the same set of class trees with the previously described
operation of retrieving an attribute value at the root that was set at a leaf.
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Table 4.
Influence of Tree Height on Run Times for Upward Inheritance

Levels | # of Sons | Times for Upward Inheritance
3 1032 0.43 0.42 0.42

5 1016 0.41 0.42 0.41

7 1047 0.42 0.42

9 1006 0.42 0.43

11 1026 0.42 0.42 0.42

13 1052 0.44 0.43 0.44

15 1068 0.45 0.42 0.44

17 1102 0.44 0.45 0.45

19 1089 0.45 0.43 0.46

21 1131 | 0.450.44 0.44

Table 5.

Influence of Branching Factor on Run Times for Downward Inheritance

Branching Factor | # of Sons | Times for Downward Inheritance
1 3 0.65 0.60 0.61
2 14 0.62 0.60 0.63
3 39 0.63 0.64 0.53
4 84 0.64 0.63 0.58
5 1556 0.60 0.52 0.52
[} 258 0.60 0.53 0.52
7 399 0.65 0.51 0.54
8 584 .54 0.45 0.46
9 819 0.63 0.60 0.61
10 1110 0.6} 0.59 0,55

Again, tree height has no influence on the time for this operation. The
following set of experiments creates 10 trees with 4 levels each. Every
tree has a different branching factor used throughout. The first column
shows branching factors, the second the number of sons in the tree, and
the third run times. (Important note: these experiments were performed
at the Pittsburgh Super Computing Center. Therefore, the times are not
identical to the times of the prev1ous experiments which were run at the
NPAC Center in Syracuse.)

The times are clearly independent of the branching factor. As before,
the same set of trees is now used for upward-inductive inheritance.

Times are growing slightly, as we would expect from our previous results
with growing numbers of nodes.

In summary, we have presented three expenments for downward mher—
itance and-three corresponding experirmenis for upward-inductive inheri-
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Table 6.

Influence of Branching Factor on Run Times for Upward Inheritance

Branching Factor | # of Sons | Times for Upward Inheritance
1 3 0.40 0.40 0.41
2 14 0.48 0.52 0.48
3 39 0.49 0.50 0.49
4 84 0.48 0.43 0.45
5 155 0.46 0.46 0.45
6 258 0.45 0.49 0.44
7 399 0.47 0.54 0.56
8 584 0.56 0.49

9 819 0.59 0.59

10 1118 . 0.52 0.59 0.57

tance. The experiments show clearly that downward inheritance is inde-
pendent of the number of nodes in the tree, of the height of the tree, and
of the branching factor of the tree.

Upward-inductive inheritance shows a very moderate growth of process-
ing time with the number of nodes in the tree; however, it is independent
of the height and the branching factor of the tree.

10. Conclusions

We have shown algorithms for standard (downward) inheritance, and for
a newly introduced operation that we call upward-inductive inheritance.
Both these algorithms are based on a parallel class tree representation
that uses a list in combination with a preorder numbering scheme. An
implementation of the two algorithms on the CM-2 Connection Machine
was described. Every element of the class list is maintained on its own
processor; this arrangement permits efficient updates and constant time
downward inheritance. A constant machine size is assumed in this context.
The constant time results can be observed, even for varying height of the
class tree. For upward-inductive inheritance, response times are growing
very moderately with the size of the class tree. Our current research deals
with extending the described approach to Massively Parallel Knowledge
Representation from strict hierarchies (trees) to directed acyclic graphs
that permit multiple inheritance [23, 24].

Acknowledgement: Mike Halper has considerably improved the English
of this manuscript.
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