P’QOCEEDNGS OF

2B WORLD
CONGRESS ™
EXPERT
SYSTEMS™

Oriando, Florida
December 16- 19, 1991

Jay Luebowri‘z
Editor

Volume 1

PERGAMON PRESS

New York = Oxford = Seoul * Tokyo

THe WORLD CONGRESS Gt EXPERT SYSTEMS PROCEEDINGS 1391

Multiple-Expert Systems

Umesh Mittal and James Geller
Department of Computer and Information Science
New Jersey Institute of Technology
Newark, N.J. 07102, USA
geller@mars.njit.edu

ABSTRACT

One charz- . stic of many current expert systems is the expectation of consistency of
their knowlevge bases. The lack of this consistency could cause unpredictable results, but
consistency is undesirable because it leads to inflexible reasoning. Research in the area of
human decision making suggests that a human decision is not always made based on the
advice of a single expert. Therefore, it makes sense to design a system where the knowledge
of all the experts is available at the decision making stage, even if it is inconsistent. In this
research, we present the issues involved in the development of a Multiple-Expert System shell.
Such a shell and a testbed application have been developed and will be described here.

1741

1742
INTRODUCTION

During the process of building an expert
system a knowledge engineer often acquires
knowledge from multiple sources. Unfortunately,
there are often issues on which experts hold
different opinions resulting in conflicting ex-
pertise. The knowledge emgineer ensures the
elimination of conflict and unwanted interactions
or inconsistencies in the resulting knowledge base
which is then encoded in the system {2]. Since
decisions are seldom based on the advice of 2
single expert, a system in which the knowledge
of more than one expert is available on-line at all
times would provide a more exact model of real
life reasoning. In this paper we present one such
system called Multiple-Expert System along with
a prototype application that shows its usefulr-ss
and robustness.

RELFVANT WORK

The problem of coding expert systems
based on the knowledge of more than one
expert has beer Cealt with in many publications.
Wolf [10] emphasizes the need to use more
than one expert’s knowledge 1o construct a
meaningful system. Shaw et al. [8] in their
paper on va dation mention that in many areas,
each exper’ has a unique perspective on the
topic and thinks that there is only one way
that the topic should be considered. During
knowledge acquisition for IPM {10} fundamental
differences were discovered among experts. The
knowledge acquisition process should utilize
many knowledgeable sources of expertise as
opposed to dealing with a single “world-class”
expert [2]. Ome of the integration issue im
knowledge acquisition systems is integrating
represented knowledge of various experts into
2 model which shows the conflicting views of
the domain and integrating diverse knowledge
sources in their respective representations [4].

Conflicts and inconsistencies become
importanl when we have multiple sources of
knowledge- Shaw et al. [8] discuss
the disa;i-ement among multiple sources of

THE WORLD CONGRESS ON EXPERT SYSTEMS PROCEEDINGS 19g4

knowledge. These sources often have different
perspectives regarding golutions to & specific
problem. The existence of conflict, however, ig
not an undesirable situation (2, 8]. The decision
maker has to deal with this conflict in advice
and make a decision. The process by which this
decision is made is ill-defined and subjective {1, 6],

There are organized group decision
making situations in which individuals argue
different sides of an issue. On the other hand,
there are ad hoc situations where a decision
maker encourages group discussion to comsider
various viewpoints and/or alternatives [2]. The
two categories of technigues most often applied to
group decision making situations are group pro-
cesses and mathematical aggregation. Examples
of group processes include the Delphi Method
{3] which is an iteration of questionnaires and
Normative Group Technique and Social Judge-
ment Theory which is an estimate-talk-combine-
rank process. Siatistical averaging/weighting
and Bayes’ Rule are examples of mathematical
aggregation techniques [2]. Ome of the inherent
strengths of group decision making processes is
their ability to adapt to slight differences among
the decision making situations and select the
solution which suits the problem best.

Various methods have been describea
in the literature to resolve the conflicts between
experts. The approach used in {10] is to discuss
the differing points of view and finally arrive at
a single “best” solution. In case of failure of this
method the coordinator’s word is final. Many
expert systems use various quantitative measures
of evidential support to select one opinion over
another. Gaglio et al. [1] assign 2 fuzzy value to
each expert opinion whereas Reboh requires the
assignment of weights to experts [6]. But then the
aser has no understanding of how these numbers
are arrived at [7].

The research in the field of conflict
resolution has been broadly divided into co-
operative and competitive groups {2. The
classical approach to the problem of conflicting
expertise is representative of cooperative group
decision making processes where consensus is
often achieved as a result of compromise

conformance of individual expertise. An
mdi‘iidual opinion is likely to be a good solution
if it withstands the scrutiny of a group. It
may, however, not be an appropriate solution for

gmilar but slightly different problerns [2)-

MULTIPLE-EXPERT
SYSTEM

By seeking consensus before building a
knowledge base the contemporary expert system
becomes less finely “tunable” to the problem.
Replacing the individual experiential reasoning
with the legislated collective reasoning results in
the inability of the system to reliably reproduce
the result of cooperative group decision making
processes [2]. Also a judgement is required
on the part of the knowledge engineer in the
contemporary expert system to sorce consensus
even though he may have uttle expertise in the
gpecific domain. LeClair [2] emphasizes the
importance of storing knowledge from all the
experts in the system without any effort to resolve
any occurring conflict.

In the Muitiple-Expert System pre-
cented in this paper, there is no need for
a knowledge engineer to pass any kind of
gualitative judgement on the expert’s knowledge.
This system is cspable of storing knowledge of
all the experts »ithout any modification. The
knowledge contents is not looked upon until run-
time. A Multiple-Expert System shell has been
developed at the CIS Department of NJIT using
C-Prolog on a SUN workstation. This section is
a discussion on the various problems which are
unique to the Multiple-Expert System and were
discovered and solved during this work.

Knowledge Representation

Our knowledge representation is based
on first-order logic which is supported by
Prolog. We have devised a process of belief
encapsulation to overcome the problem caused
by the inability of all logic based knowledge
representation techniques to store conflicting
pieces of knowledge. This process needs to be
performed on each item of knowledge before it is

v WORLD CONGRESS ON EXPERT SYSTEMS PROCEEDINGS 1931

made part of the knowledge base. It successfully
hides all possible contradictions among the
knowledge bases of different experts from the
underlying logic system without making any
modification in any knowledge base. We assume
that there is no conflict within the knowledge
base of any one expert.

The process of encoding the knowledge
in Prolog consists of locating keywords in a
patural language sentence and forming valid
Prolog clauses from them. A keyword can be
roughly equated to a content word, as opposed
to a function word. One of these keywords is
identified as predicate and the others become
arguments. Thus a patural language sentence is
converted into a Prolog atom. We do not provide
any Natural Language features in our system.

Each of these Prolog atoms is now belief
encapsilated before storing it in the knowledge
base of the Multiple-Expert System shell. In
belief encapsulation, each piece of knowledge is
made part of a new atom which is made up
of two arguments [5]. This atom has the word
belief as the predicate and the two arguments
are the name of the expert and the Prolog item
of knowledge gemerated by the expert. The
name of the expert is also needed to display
the answers and possibly for conflict resolution
between experts.

Example

The following examples show the belief
encapsulation of clauses and rules. An expert
clause expert.clause would be encapsulated as:

believes (expert.name, expert_clause)

However, if the knowledge item is a rule then
all its components need to be individually
encapsulated. The rule:

consequent (Argument.i, Argument.2) :-
antecedent_1 (Argument.1),
antecedent 2{Argument.2).

would be encapsulated as:

believes(expert_name,
consequent (Argument_1, Argument.2)}) :-

1743

1744

beliaves(expert.name, antecedent. i(
Argument.i)),

believes{ expert name, antecedent_2(
Argument.?)).

Implementation

Knowledge encapsulation is the first
task performed by the shell. The only
requirement on the knowledge from an expert
is that it should be a syntactically correct
Prolog program with some additional restrictions
on the syntax used. However, since the
whole knowledge content is =ncapsulated, the
Prolog primitives require additional processing
on the part of the shell for proper execution.
Therefore, not all the Prolog primitives are
supported in the current version. Of the side-
effecting primitives only wr® -, read, and nl
are currently supported. The program can
be easily modified to ac” smmodate many other
primitives.

Minimizing Search Space

The knowledge base of a Multiple-
Expert System is expected to be very large
because we are keeping the knowledge of several
experts available at all times. If there is a piece of
knowledge that all experts agree upon, it would
still be stored independently for each expert.
Since it is not “kely that, in a big domain, every
expert would nave an opinion on everything,
there will be some items of knowledge which only
one expert maintains. In a situation like this,
restricting the search space to relevant experts is
very necessary. Any time spent in searching the
knowledge base of an expert who does not have
an opinion on the query is a waste.

Evaluation of a minimum number of
erpertsis the technique used to minimize the time
required to obtain an answer. It avoids search in
the knowledge bases of the experts who do not
have an opinion on a given question., During
the construction of the knowledge base all the
keywords used by an expert are identified and
his name is attached to them. When a query is
presented to the Multiple-Expert System shell it
identifies the keywords in it and finds the names
of all the - perts who have used all the keywords

THE WORLD CONGRESS ON EXPERT SYSTEMS PROCEEDINGS 1994

in the qﬁery. These are the only experts who are
likely to have an opinion on the guery and we
search the knowledge-base only for these experts.

Implementation

A keyword file is created while reading
the knowledge bases of the experts. Every
instance of a keyword is stored in this file along
with the name of the expert using it. The
Multiple-Expert System shell then reads this file
and prepares a kst of experts for each unique
keyword who are using the keyword. The format
of this list is: '

keyword ([expertl, expert2, ..., expertn])

This list is then asserted into the
system. The list of experts nsing a keyword can
now be found by a Prolog query. An intersection
of the lists for all the keywords gives the list of
experts who have ased all the keywords in the
query at least once. A query to the interpreter
can now be qualified by the names from this List
to reduce the search space in the knowledge-base.

Keyword Storage and Retrieval

A keyword search is performed every
time a query is passed to the interpreter.
Therefore it is very important to make this
operation 1ast. Ihe best results we could achieve
using C-Prolog was by asserting clauses in the
interpreter and letting it do the search. It was
found by experiment that using linear lists is a
less efficient method. Trees require comparison
operators for storage and retrieval of information.
C-Prolog provides compatison operators only for
numbers and not for keywords which are made up
of letters. This makes use of tree implementations
Jess efficient. Hashing technigques require constant
time data structures which are not supported
by C-Prolog. Thus the method of storage and
retrieval used by us is the best choice for C-
Prolog.

Use of Thesaurus

Tn natural language different words can
be used to refer to the same concept. Also
a word often has different meanings depending
upon the context. Since the only limitation on

THE wonrtD CONGRESS ON ZXPERT SYSTEMS PROCEEDINGS 1891

the contributing expert’s knowledge is syntactic
correctness in a well-defined subset of Prolog, it
ig possible to find different words being used by
experts t0 refer to the sam~ concepts. Without
the use of any special ternique a user would
get the opinion of only the experts with whom
pe shares the vocabulary of tha. query because
a matching algorithm would fail to match two
words that are not identical.

We want a complete answer which
maintains the fine distinction in the original
words. The problem of matching two different
atoms, if they have the samc meaning in the
given context, is unsolvable a. the current state
of the art. We have devised a partial solution
using a thesaurus. The system compares a word
in the query with all its possible synonyms in
the knowledge base. The th-~aurus, a Prolo~
program with each clause defining the similarity
relation between the two words using thesaurus
as the predicate, is stored in a file. The word
ased as predicate, however, cannot be tested for
synonyms in this scheme of operations.

Example
If two experts enjoy the game of baseball

and say:

Expert 1: It is fun watching the
came of baseball.

Expert 2: enjoy watching the game
c.. baseball.

This can be encoded in Prolog as:

Expert 1: baseball(fun).
Expert 1: baseball(enjoy}.

The user may use another word for the same
concept. Consider the example:

User Query: How many experts like the
game of baseball? '
Prolog Code: baseball(like).

Expected Reply: The expertl agrees with the
statement baseball(fun)
The expert2 agrees with the
statement baseball{enjoy)

This is because fun, enjoy and like convey
similar thoughts. Asserting the two opinions

or Prolog facts and presenting the third as a
question would result in a wrong answer implying
that nobody likes the game of baseball. This can
be avoided by using the thesaurus.

Implementation

After a keyword is selected to be checked
for synonyms, a new query is formulated with
the keyword being replaced by 2 variable. The
keyword and its position need to be memorized
for future processing. This new query is passed to
Prolog which generates all possible answers. The
resulting list of answers is searched to obtain the
expert opinion using a synonym by testing each
instantiation of the variable for the thesaurus
relation.

Predicate Transparency

This problem arises at the stage of
converting natural language sentences to Prolog
terms before they are encapsulated. There is no
natural way to select a keyword as predicate and
it is possible that different experts would select
different keywords as predicates even if the set
of keywords identified in the natural language
sentence is identical. As a result only a part of the
knowledge stored in the system may be accessible
to the user,

Predicate transparency is implemented
to solve the problem of selection of a predicate
from a set of keywords. The user skould not be
forced to guess the keyword that an expert has
selected as the predicate. It is the responsibility
of the shell to try other keywords as predicates
and display all the valid expert opinions so
obtained. All the keywords in the user query need
to be tried as predicates to extract all possible
answers from the knowledge base.

Example

For example, if three experts agree on
the fact that baseball is a sport and that it is fun
playing it then this can be expressed in natural
language as:

1745

1746

Expertl: Baseball iz a sport and it is
fun playing this game.

It is fun playing baseball
vhich is » sport.

Sports is . .1, especially vhen
we are playing baseball.

These three sentences could be coded as:

Expert2:

Expertd:

Expertl: baseball(sport,fun).
Expert2: fun(baseball,sport).
Expert3: sport(fun,baseball).

A user query can now be represented as:

User Query: sport(fun,X}.
Without predicate transparency an incomplete
conclusion will be displayed . dicating that only
the third expert agrees.

Implementation

Our Multiple-Expert System shell v >
interactive gnidance by the - at query tim2
to reduce the number of permutations involved
in a complete algoritbmic implementation of
predicate transparency. The user is presented
with the old predicate and then the system
prompts the user with the remaining keywords in .
the original query to select one which should be
tried as new predicate. A new query is created by
exchanging the original keyword and the selected
keyword,

To d- .his, the original query is broken
into a list oi teywords, the list is modified to
create a new list with the original predicate and
the selected keyword interchanged. The new list
can now be converted back into a2 new query.
This new query is then passed to the Prolog
interpreter for generating all possible answers to
this query. Each answer to this query is assumed
to be an answer to the original query as well and
is therefore displayed to the user.

Generating Response: A Summary

The Multiple-Expert System shell when
executed on top of the Prolog interpreter first
reads in the three system files wviz. the
encapsulated knowledge base, the thesaurus and
the keyword database. The keyword database is
then converted into one list which is asserted in
the internal Prolog database. The user is now
prompted to enter a query.

THe WORLD CONGRESS ON EXPERT SYSTEMS PROCEEDINGS 1994

Then the shell finds the names of 3
the experts who are using all the keywords ip
the query and puts them into a list. For each
name in this list, the shell forms a goal for the
interpreter by belief encapsulating the user query
with this name. This goal is now passed to the
Proiog interpreter and all possible instantiations
of any variable contained in it are found. The
information obtained is used in the last step to
display the answers in a proper format.

After the answers to the original query
are displayed the user has 2 choice to try
the thesaurus operations or to use the same
query with a different predicate. In either case
he is presented with all the keywords of the
original query to select one and the appropriate
operations are performed as explained in the
previous sections.

PASCAL DEBUGGER

An application of the Multiple-Expert
System shell has been developed to demonstrate
its usefulness and robustness. In this application
we have created the knowledge base for three
experienced programmers whose expertise lies in
debugging the errors occurring while developing
a Pascal program using a commercially available
Turbo Pascal compiler. It simulates the capabili-
ties of all the three experts and provides the user
with good directions for solving programming
errors. With this system the user would ente.
the error number and the type of error and he
would be provided with the opinions of all the
three experts.

One of the advantages of having the
debugging knowledge of more than one expert for
a beginner’s program is that even if there is only
one solution for a problem, it can be presented to
the user in many different ways. A multitude
of approaches towards solving a programming
problem is expected to “better” help a learner
than one legislated advice. The user can select
any opinion depending upon his own criterion.
He could select the one which is being espoused
by the majority of experts or the one suggested
by an expert whom he found most helpful in his
previous interactions with the system.

TvE WORLD CONGRESS Ok PERT SYSTEMS PROCEEDINGS 1691 1747

qurbo Pascal Error Messages

—~ There are two types of errors generated
py Turbo Pascal [9], Compiler Errors and Run-
time errors. The count of errors for each of these
twotypes is 145 and 38 resp+ tively. For example:

Error 15: File not
found (WINDOW.TPU).
Run-time error nnn at

XXX YYYY.

where nnn is the run-time error number, and
zzrz:yyyy is the physical memory address where
the error occurred in the format segment:offset.

Compiler errors can be sub-divided into
categories. These are syntax errors, errors due
1o compiler limitations, errors caused by the
underlying system {DOS), environment related
errors and language limitations. Different types
of run-time errors are DOS errors, [/O errors,
critical errors and fatal errors. It is not always
possible for a beginner to infer the meaning a
short error message.

Compiler Error:

Run-time Error:

Use of Multiple-Expert System Shell
T This section explains the appropriate-
ness of the domain as an application of the
Multiple-Expert System shell. We show that all
the problems identified viz. existence of differing
expert opinions, need for thesaurus and predicate
transparency, do exist in this domain and can be
solved by the solutions explained in the previous
section.

Differences in Experts’ Opinions

Turbo Pascal defines a large number
of errors. Some of the errors have very simple
solutions according to all three experts. On
the other extreme there are some errors for
which every expert has his own point of view.
In between these two extremes there are error
conditions for which only two experts agree
on one approach. The following four tables
demonstrates all these possibilities using the
expert opinions from the knowledge base used in
the application.

Table- 1
Completely Independent Opinions

Out of memory |

If Compiler/Destination or Op-
tion/linkerflink options are set
to memory, set it to disk in
the integrated environment and
compile again.

Use TPC.EXE program which
takes less memory or break pro-
gram into smaller units.

Remove all the memory resident
programs that you might be using
and try again.

[Compiler Error 1 |
Expert 1

Expert 2

Expert 3

Table - 2
Completely Agreeing Opinions

[Run-time Error 159 | Printer out of paper |

Expert 1 The system is trying to print.
Put paper in the printer

Expert 2 The system is trying to print.
Put paper in the printer

Expert 3 The system is trying to print.
Put paper in the printer

Table - 3
Partially Agreeing Opinions

{ Compiler Error 61 | invalid typecast |

The sizes of variable reference
and destination type is different
in a variable typecast, which is
not allowed.

You are not allowed to typecast
an expression where only a vari-
able reference is allowed.

The sizes of variable reference
and destination type is different
in a variable typecast, which is
not allowed.

Expert 1

Expert 2

Expert 3

Table - 4
Sirnilar but Different Opinions

Type identifier expected |
The identifier does not denote a
type.
The system does not recognize
this identifier as a valid type.
For type declaration use either
a system defined or user defined

type.

Compiler Error 12 |
Expert 1

Expert 2

Expert 3

1748

When the Multiple-Expert System sees
the type of error and the error number it knows
what type of error this is. For each category
of errors, the system displays a general message
and the opinion specific . that error is then
displayed. It is possible that different experts use
different words for the same category of errors.
An expert may categorize an error using the word
syntax while the other might call it an error in
grammar. Both these words need to be stored in
the thesaurus. The system can can display the
opinions of all the experts when the user enters
an appropriate query. The tl.saurus statement
and a typical user query are shown below:

thesaurus{ syntax,
grammar).
err~~7ayntax).

Thesaurus statement:

User Query:

The implementation of predicate transparency
is also demonstrated using the error categories.
An expert might use error as predicate to
encode an error being caused by the limitations
of Turbo Pascal. Another expert can select
the word limitation to encode the similar
information. A user should be able to find
these two expert opinions without worrying about
predicate selection. Our shell, because of the
implementation of predicate tramsparency, €an
display opinions of all the experts. The expert
opinions and the user query are shown below.

Expertl: error{ limitation, turbe).
Expert2: limitation{ error, turbo).
User Query: error{ limitaticn, turbo).

CONCLUSION

We have implemented a prototype
Multiple-Expert System shell using Prolog. It
stores the knowledge of several disagreeing
experts simultaneously and provides solutions
for many of the above mentioned preblems. A
minimum number of sub-knowledge bases are
evaluated for any query. The system implements
a thesaurus and, therefore, finds answers even
if the words used by the user and the experts
are different but similar. It finds all the correct
answers even if different predicates are used to
represent the same piece of knowledge.

THE WORLD CONGRESS ON EXPERT SYSTEMS PROCEEDINGS 199,

References

(1] Gaglio, S., Minciardi R., & Puliafito P. P.
Multiperson Decision Aspects in the Cen-
struction of Ezpert Systems, IEEE Trans.
actions on Systems, Man and Cybernetics,
SMC-15, 4, 536-539, 1985.

[2] LeClair, Steven R. Interactive Learning: A
Multiezpert Paradigm for Acquiring New
Knowledge, SIGART Newsletter, 34-44,
1989,

[3] Linstone, Harold & Turoff, Murray The Del-
phi Method: Techniques and Applications,
Addison Wesley, Reading, MA, 1975.

[4) Morik, Katharina Integration Issues in
Knowledge Acquisition Systems, SIGART
Newsletter, 124-131, 1989.

(5] Most J. Multiple Expert Systems, Unpub-
lished report, Department of Computer and
Information Science, New Jersey Institute of
Technology, Newark, NJ, 1989,

[6] Reboh, R. Extracting Useful Advice from
Conflicting Ewpertise, Proceedings of the
Eighth International Joint Conferrnce on
Artificial Intelligence, William Kaufmann
Inc., Los Altos, CA, 145-150, 1983.

[7] Sage, A. P., & Botta, R. F. On Human Ir-
formation Processing and Iis Enhancement
Using Knowledge-based systems, Large Scale
Systems, 5, 35-50, 1983.

[8] Shaw, Mildred L. G., & Woodward, J.
Brian Validation in a Knowledge Support
System: Construing and Consistency with
Multiple Ezperts, International Journal of
Man-Machine Studies, 29, 3, 329-350, 1988.

[9] Turbo Pascal, Reference Guide, Version 5.0,
Borland International Inc., Scotts Valley,
CA, 1989,

[10] Wolf, Walter A. Knowledge Acquisition
From Multiple Ezperts, SIGART Newsletter,
138-140, 1989. ‘

