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I Abstract 

To build a common controlled vocabulary is a formidable challenge in medical informatics. Due to vast scale 
and multiplicity in interpretation of medical data, it is natural to face overlapping terminologies in the process of 
practicing medical informatics [A. Rector, Clinical terminology: why is it so hard? Methods Inf. Med. 38 (1999) 
239-2521. A major concern lies in the integration of seemingly overlapping terminologies in the medical domain and 
this issue has not been well addressed. In this paper, we describe a novel approach for medical ontology integration 
that relies on the theory of Algorithmic Semantic Refinement we previously developed. Our approach simplifies the 
task of matching pairs of corresponding concepts derived from a pair of ontologies, which is vital to terminology 
mapping. A formal theory and algorithm for our approach have been devised and the application of this method to 
two medical terminologies has been developed. The result of our work is an integrated medical terminology and a 
methodology and implementation ready to use for other ontology integration tasks. 
O 2005 Elsevier Ltd. All rights reserved. 
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1. Introduction 

In medical research, there is a need t o  exchange valuable information between different researchers 
or research groups, for the purpose of independent analysis or the verification of experimental results. 
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Increasingly, we are also seeing the emergence of distributed scientific processing. The Internet provides 
an important platform for this activity of medical information exchange to take place. However, there 
are still some difficulties to resolve before seamless interoperability and interchange can occur. The main 
cause for these limitations arise from the fact that different research groups rely on heterogeneous research 
data sources. 

Over the past several years, one field that has been very active in building and using terminologies, 
ontologies and vocabularies has been medical informatics [I]. There exist a large number of terminologies 
developed for different purposes (literature indexing and retrieval, electronic patient records, statistical 
reports on mortality, billing), in different subdomains (diseases, genomes, micro-organisms, diagnoses, 
medical devices, procedures, drugs). These terminologies have been built by different institutions (World 
Health Organization, National Library of Medicine, College of American Pathologists, etc.) on different 
continents, for different purposes. Yet, attempts to represent the whole medical domain are usually limited 
in scope (GALEN) [2] or lack astrong organizational structure, as in the UnifiedMedicalLanguage System 
(UMLS). The UMLS 131 is a compendium of about 100 individual terminologies, but integrating a new 
terminology into it is a difficult task. Existing methods for integration of ontologies use structural and 
semantic methods (see Section 6), however, there is still room for improvement. 

Most ontologies [4] are organized around a concept hierarchy (a tree or a directed acyclic graph). 
Many ontologies add rules, axioms, or other additional mechanisms to this backbone. In this paper, as a 
first step, we will only deal with integration of the concepts in the concept hierarchy. When integrating 
two ontologies, it is necessary to identify pairs of concepts that have the same meaning in both of them. 
Clearly, these concepts should occur only once in an integrated ontology. The existence of synonyms and 
homonyms causes problems for this kind of integration. However, a much bigger problem is the existence 
of subtle differences between implemented concepts that have the same name and stand, vaguely, for 
the same (concrete or abstract) real world objects. These differences occur because different ontology 
designers may bring different world views to the task, conceptualizing the world at different levels of 
granularity and abstraction. Such differences are commonly considered semantic problems. 

Implementations add structural problems also. We note that for human communication the lack of exact 
matches does not normally make communication impossible. For the example of a calendar date, people 
might greatly disagree on the exact structure beyond the obvious data type and name issues. Thus, aperson 
A may use the US calendar. However, A is a professor, and his academic calendar defines the Wednesday 
before Thanksgiving to be a Friday. Thus, A distinguishes between two kinds of dates. For A, any date 
needs to be annotated as a US date or an academic date. Person B, on the other hand, might not know 
about academic calendars and will not need any additional annotations. Clearly, A and B have concepts of 
calendar dates that are sufficiently different to make an exact match impossible. Nevertheless, A and B are 
able to communicate about dates in most situations. Thus, differences between concept representations 
should not automatically exclude matches. 

In this paper, we propose to address some issues in ontology integration of medical terminologies 
by extending our semantic refinement methodology, called algorithmic semantic refinement (ALSER) 
[5,6]. To capture the essence of ALSER in two sentences, we "compute" small sets of concepts of similar 
semantics based on a superficial human specification that does not have to be free of contradictions. The 
"computation" is based on intersections of concept sets. Our methodology was previously applied to the 
problem of auditing the very large UMLS [6]. 

The ALSER methodology is based on a kind of terminology that we call a terminological knowledge 
base (TKB). However, there are many important medical ontologies or controlled medical terminologies, 
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which are not structured as TKB. Thus, we first address the question of how to transform existing medical 
terminologies into aTKB. Due to the great difficulty of this problem, we are only addressing thecase where 
a global reference ontology (i.e., UMLS) exists in the same domain as the given medical terminology. 
Our methodology, called semantic enrichment, builds a TKB by finding its concepts in a global ontology 
that has semantic types. Secondly, we describe the ALSER methodology generating precomputed sets of 
semantically similar terms in both ontologies that need to be integrated. Finally, we introduce the semantic 
integration methodology, called SEMINT, which compares and integrates terms from two ontologies, if 
they are already classified as semantically similar. 

We believe that this incremental approach composed of semantic enrichment, semantic refinement and 
semantic integration will reduce the likelihood of false positives, since we avoid matching concepts of 
different semantics, which out of principle cannot be the same. The semantic approach has an additional 
advantage. It greatly reduces the computational effort of the matching operations. Fewer terms will have 
to be matched against each other. 

In Section 2, we describe the difficulties in handling medical tenninologies and also propose our 
semantic enrichment approach. In Section 3, we introduce our methodology of ALSER. In Section 4, 
we show how this methodology can be used to create pairs of candidate sets of concepts that have to be 
matched with each other. A prototype implementation and results are described in Section 5. In Section 
6, we review related research work. Section 7 contains our conclusions. 

2. Semantic enrichment 

The semantic enrichment process of finding semantic types for concepts is difficult, even in the medical 
domain, with the UMLS readily available. In this section, we briefly survey the two medical terminologies 
to describe some obstacles that we have encountered during the integration of medical ontologies and 
to highlight the necessity of semantic enrichment as a precursor of ontology integration. The American 
College of Cardiology (ACC) has provided a list of 142 terms with definitions [7]. These concepts are 
separated into 22 "categories." The Society of Thoracic Surgery (STS) has created a classification of 248 
terms, subdivided into 21 categories [XI. 

2.1. The Un$ed Medical Language System 

The UMLS [9-11,3], designed by the National Library of Medicine (NLM), consists of three knowledge 
sources of which we are interested in two, the Metathesaurns [12,13] and the Semantic Network [14-161. 
The Metathesaurus is a unified collection of many different medical terminologies. It is a compilation of 
terms, concepts, relationships, and associated information. The January 2003AA edition includes 875,255 
concepts and 2.14 million concept names in over 100 biomedical source vocabularie~.~ 

The Semantic Network of the UMLS contains 135 semantic types (e.g., Disease or Syndrome, Virus). 
One may think of semantic types as high-level concepts, i.e., broad categories. These semantic types are 
organized in a hierarchy of IS-A links. The hierarchy consists of two trees, rooted in the semantic types 
Entity and Event. In addition, there are 53 kinds of non-IS-A relationships among these semantic types, 
e.g., causes, used in: Virus causes Disease or Syndrome. Every concept in the Metathesaums is assigned 
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Table 1 
Examples of relationships between concepts and categories in ACCISTS 

Relationship Concept Category 

IS-A Gender 
Weight 

IS-A (Prefix-of) RPDiabetes 
Meds-Digitalis 

IS-A (Postfix-of) Thrombolysis-Intvl 
Ace-Inhibiton-Discharge 

Attribute-of Participant ID 
Hospital ZIP Code 

Attribute-of (Compound) Patient SSNICountry Code 
Clopidogrel/Ticlopidine 

Instance-of Left Main Dis > 50% 
Comps-Neuro-Cont Coma 2 24Hrs 

Demographics 
History and risk factors 
History and risk factors 
Pre-operative medications 
Previous interventions 
Discharge 
Administrative 
Hospitalization 
Hospitalization 
Medications 
Diagnostic cath procedure-findings 
Complications 

to at least one, but often several, semantic types in the Semantic Network. One can say that a concept 
(in the Metatbesaurns) is assigned some semantics by being assigned to a semantic type in the Semantic 
Network. 

2.2. Dificulties in handling medical terminologies 

.Both the above ontologies, ACC and STS, have concepts and categories for describing cardiovascular 
domain knowledge. Two major issues we faced were: (1) a great degree of inconsistency exists among the 
(perceived) relationships between concepts and categories; (2) inconsistent patterns appeared in either 
the concept names or the category names. The inconsistent naming created major obstacles in matching 
and automated categorization. Above, we wrote "perceived relationships," because the ontology itself 
does not name the relationship that is supposed to hold between one concept and its category. Thus, the 
user is left with the task of guessing each relationship. 

Intuitively, categories should have been introduced for the purpose of categorizing concepts (similar to 
semantic types in the UMLS). This is what the name "categories" seems to imply. However, as mentioned 
before, there exist different kinds of relationship between concepts and categories of the ACC and STS. 
This forces us to evaluate each relationship and to incorporate its treatment in the semantic enrichment 
algorithm. If there exists an IS-A relationship between a concept and a category, then a semantic type 
of the category can be propagated to the concept. Otherwise, we use the category information provided, 
according to our understanding of the relationship that is presumably holding between the concept and 
the category. 

In Table 1, each IS-A relationship describes a super/subclass relationship between a concept and a 
category (e.g., Gender is a Demographics [Item]). In the ACC and STS terminologies, the category 
occasionally appears as prefix or postfix in the concept name. Those prefixes or postfixes provide additional 
context, which is useful for determining the semantic type of a concept (e.g., Thrombolysis-Intvl contains 
Intervention as a postfix and RF-Diabetes contains Risk Factor as a prefix). Thus, we define IS-A (Prefi- 
of) and IS-A (Post@-of) relationships as IS-A relationships. Occasionally, like above, a prefix or postfix 
occurs as an abbreviation. However, this does not have to be the case. In order to handle acronyms, a 
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Table 2 
Complications that appeared in ACCISTS concept names 

Pattern Name Description 

Instance-of Valve disease-Mitral Mitral is an instance of Valve Disease. 
Acronym-of VS-Aortic Proc-Procedure VS is a Valve Surgery. 

VD-Insuff-Mitral VD is Vessel Disease. 
Synonym-of Patient DOB DOB is Date of Birth. 
Multi-words Conversion to Std Incision Conversion determines the semantic type. 

Skin Incision Start Time Time determines the semantic type. 
Primary Cause of Death Cause determines the semantic type. 

Redundant word Cross Clamp Time (min) (min) is redundant. 
Redundant word Unique Patient ID Unique is redundant. 
Symbol CAB During This Admission-Date "-"is a symbol. 
Abbreviation Comps-Op-ReOp Other Card Comps is an abbreviation of Complications 
Compound words Comps-Op-ReOp BleedITamponade Bleed and Tamponade are compound words. 
Inconsistency 2 and "Greater than Equal" Different notations for the same concept 

list of domain-specific acronyms can be stored in a database and converted into full names such as Risk 
Factor for RF, Medications for Meds, Valve Surgery for VS and Vessel Disease for VD (see Section 2.2). 

The Attribute-of relationship describes that a concept is a database field of a category (e.g., Participant 
ID is a field of the Administrative table). The Instance-of relationship defines a concept as a specific 
instance of a category (e.g., Comps-Neuro-Cont Coma 224Hrs is an instance of Complications). There 
are some ambiguous categorizations that exhibit alack of evidence for determining aconcept as belonging 
to a category (e.g., Hypertension is a category of History and Risk Factors, Diabetes is a category of 
History and Risk Factors). 

Table 2 shows some patterns that appeared in ACC or STS concepts. The Instance-of relationship 
describes a relationship between words in the concept (e.g., Mitral is an instance of Valve Disease). In the 
multi-word case of the form Skin Incision Start Time the last word Time determines the semantic type, 
while in the case of Primary Cause of Death, the word Cause before of determines the semantic type. In 
a noun-noun phrase, the determining word is typically the second noun, which is referred to by linguists 
as head noun. However, there are famous exceptions to this rule, such as toy gun, which is a toy, not a 
gun. In this case, the first noun would be used to determine the semantic type of the noun-noun phrase. 

The string "(min)" is marked as redundant, as it is not really a part of the concept term, but provides 
additional information about this concept. In this specific case, it provides the unit of measurement of the 
quantity that is measured by the concept. 

2.3. Details of data enrichment 

By first classifying the concepts of a new terminology using the Semantic Network of the UMLS, this 
task becomes more manageable. A new concept does not have to be compared with every concept in the 
UMLS, but only with those UMLS concepts that have the same assignments to semantic types as the new 
concept. This considerably reduces the difficulty of integration, as long as all assignments to semantic 
types have been made correctly and consistently. 
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In order to perfom semantic enrichment we need to identify pairs of concepts from different ontologies 
(or concept-category pairs) that have the same meaning. This step, called concept matching, requires that 
we overcome many issues of inconsistent naming which are usually obvious to humans but difficult to 
handle for algorithms. 

For instance, many terminologies freely mix the use of terms with the acronyms or abbreviations of 
those terms. Thus, these abbreviations need to he expanded for easier concept matching. We call this 
expansion step data enrichment. Data enrichment also performs other preprocessing and clean-up steps, 
such as dealing with non-alphabetic characters occumng in many medical terms. 

For example, the acronym RF needs to be replaced by its expansion, Risk Factor. The abbreviation 
"Meds." is replaced by Medications. Other common medical acronyms in our terminologies are Date of 
Birth (DOB), Myocardial Infarction (MI), and many more. Whenever terms contain special characters 
such as "P' or "-" they are replaced by blanks. When there exist prefix or postfix cases (e.g., RF-Smoker), 
they are converted into a special form (e.g., Risk Factor:Smoker). In this way, those terms can be matched 
with other terms of the same meaning which are lacking the special characters. In some cases, precise 
mathematical symbols are expressed by imprecise English words. For example, the mathematical notation 
"greater than equal to" is transformed from its English representation into its well-defined symbolic 
representation 3 .  This symbolic representation is unique, while the English representation may equally 
appear as "greater equal" or "greater than or equal to," etc. 

Third, the existence of synonyms and homonyms causes problems for concept matching. The use of 
synonyms is absolutely necessary, because medical terminologies are full of variant terminologies (e.g., 
H e m  and Coeur, Heart Block and Lev's disease). 

While acronyms can he dealt with by expansion into a canonical form, this is harder for synonyms. 
Rather, we have decided to include the use of synonyms during the concept matching step itself. If no 
match is found for a concept, then it is attempted to use its synonyms for matching. The synonyms of 
terms were derived both from STS and ACC documentation and from the UMLS (currently still manually, 
in a preprocessing step). 

2.4. Details of semantic enrichment 

We now explain the semantic enrichment process in more detail (Fig. 1). Semantic types are drawn as 
little squares and named with capital letters, while concepts are drawn as circles and named with small 
letters. ACC and STS categories are drawn as filled in circles. The medical terminologies (ACC, STS) do 
not have semantic types. Thus, a global ontology (the UMLS) is used to add semantic-type assignments 
for the concepts in the ACC and the STS. 

There are two possible cases how semantic enrichment can be done. In Case 1, a concept of the local 
terminologies is found in the global ontology. This concept has one or several assigned (global) semantic 
types which are returned. In Fig. 2, the concept a matches the globaI concept z. This might happen if a is 
a synonym of z in the global ontology. Because z has assigned semantic types U and S, a acquires U and 
S as its semantic types. 

In Case 2, a local concept without a match in the global terminology belongs to a category such that an 
IS-A relationship holds between the concept and the category. In this case it is reasonable to look in the 
UMLS for the semantic type of the category and assign this semantic type to the concept for the following 
reason. In some cases, concepts are ambiguous. However, the category eliminates this ambiguity. Thus, 
the semantic type of the category should help to better define the meaning of the concept. 
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a b c d  

U 

Local Ontology Global Ontology 

Fig. 1. Local and global ontologies. 

Fig. 2. Mapping between local and global ontologies 

In Fig. 1, the concept b is connected to the category m by an IS-A link. The category m matches the 
concept y, which has a semantic type W assigned to it. Thus, we assign the semantic type Wto the concept 
b. But a is also connected to the category m by an IS-A link. Thus, a now gets the additional semantic 
type W assigned to it, resulting in a having S, U ,  and Was semantic types (see Fig. 3). 

We note that whenever a concept is assigned several semantic types, we make sure that there are no 
redundant assignments. The assignment of a concept to a semantic type Rp  is redundant if that concept 
is also assigned to another semantic type R,, and Rp is a parent or ancestor of R, in the semantic network 
[6,17]. For example, in Fig. 2, assigning the semantic types Wand Zto the concept w would be redundant, 
because w is already assigned to T, and W is a parent of T and an Z is an ancestor of T. 

Fig. 3 shows the results of semantic enrichment. The concepts c and dare crossed out, because there 
were no semantic types corresponding to them in the global ontology. We do not allow concepts without 
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Local Ontology Global Ontology 

Fig. 3. Enrichment of local terminology after the mapping 

semantic types. In our experiments, these cases were rare. Only 4 out of 248 concepts were dropped for 
this reason. 

3. Semantic refinement 

3.1. Methodology for semantic rejinemenl 

ALSER was invented [6,5] in the context of the UMLS. We formally present the ALSER methodology 
that we have published in [5].  

Definition 1 (Terminological knowledge base). We call any structure that consists of (1)  a semantic 
network of semantic types; (2) a thesaurus of concepts; and (3) assignments of every concept to at least 
one semantic type a TKB. Thus, a TKB is a triple: 

TKB = (G,?, p) (1)  

in which @is  a set of concepts, 9 is a set of semantic types, and p is a set of assignments of concepts to 
semantic types. We will use capital letters for semantic types and small letters for concepts.3 Finally, p 
consists of pairs (c,  S )  such that the concept c is assigned to the semantic type S: 

~ = ( w , X , Y  ,... }, % = { a , b , c , d , e  ,... 1, 
p C {(c ,  S)lc E G&s E 9 ) .  

In 151, 9 and % form DAG shuctures. In this paper, they are sets. Furthermore, it holds: 

Vc E % [ 3 p  E p[p = (c ,  S)&S E 911. (4) 

In words, every concept must be assigned to at least one semantic type. The opposite condition does 
not hold. 4LSER takes as input one TKB and returns as result a second TKB with better semantics. What 

Both roman and italic fonts. 
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a b c d e f 9 h 

(a) TKB before applying ALSER (Input) 

(b) TKB after applying ALSER (output) 

Fig. 4. Algorithmic semantic refinement example in graph notation. 

"better semantics" exactly means will become clear by the end of this section. The refinement can be 
written as a function 

TKB' = ALSER(TKB), TKB = (&, 9, Q). ( 5 )  

Next, we need a notion when two concepts are semantically similar. We will consider two concepts c, 
d as similar, c 2: d,  when they are assigned to exactly the same set of semantic types of a TKB: 

c 2: d : VS E @[(c, S) E Q e (d, S) E Q]. (6)  

Intuitively, if two concepts c, dare assigned to exactly the same semantic type X, then we can say that 
these two concepts have similar semantics. If two concepts c, dare  assigned to X and are also assigned 
to Y, then these two concepts also have similar semantics. On the other hand, if a concept a is assigned to 
X and a concept b is assigned to both X and Y, then a and b will have semantics that are not similar in the 
formal sense defined above. (They are still similar, to a lower degree, in the real world.) 

We will use a mnning example to explain our rather abstract definitions. Fig. 4(a) shows a TKB before 
applying the ALSER algorithm. Fig. 4(b) shows the corresponding TKB' that is the output of ALSER. 
Capital letters represent semantic types, small letters represent concepts. A line connecting a semantic 
type to a concept means that this concept is assigned to this semantic type. The following is an informal 
explanation of Fig. 4, which will be formalized shortly. As the figure shows, the result of ALSER is that 
semantic types are refined, and every concept in the output is assigned to exactly one refined semantic 
type. Thus, refined semantic types never share concepts with one another. All concepts assigned to any 
one refined semantic type in the output are similar (2:). 

Definition 2 (Original semantic type). A semantic type of a given TKB (i.e., one that is intended as input 
to ALSER) is called an original semantic type. Example: X, Y, Z and W are original semantic types in 
Fig. 4(a). 
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Definition 3 (Simple concept). A simple concept is assigned to one single semantic type. Example: a, c, 
f and h are simple concepts in the input. 

Definition 4 (Compound concept). A compound concept is assigned to two or more semantic types. 
Example: b, d, e, and g are compound concepts in the input in Fig. 4(a). 

Delinition 5 (Refined semantic type). Every semantic type which is part of the output of ALSER is called 
a refined semantic type. Example: X', Y', Z', W', X n Y, X n Z, W n X n Y n Z are refined semantic 
types in Fig. 4(b). 

Definition 6 (Simple semantic type). A simple semantic type P' is a refined semantic type defined to be 
assigned all and only the simple concepts assigned to the original semantic type P. Example: The refined 
semantic types X', Y', Z' and W' are simple semantic types. 

Definition 7 (Intersection type). An intersection type I is a refined semantic type defined to be assigned 
all and only the compound concepts assigned to exactly one specific set of original semantic types. An 
intersection type is denoted by the sequence of those original semantic types, where the intersection 
symbol appears between any two consecutive original semantic types in the sequence. Example: X n 
Y, X n Z and W n X n Y n Z are intersection types. 

The intersection type W n X n Y f- Z is the same as the intersection type Y n X n W f" Z, etc. For 
clarity, an intersection type may have a shorter direct name which may be chosen to reflect the semantics 
of the concepts. Many times there are obvious names for intersection types. For example, the intersection 
type of the semantic type body part with the semantic-type manufactured object is commonly known as 
prosthesis. 

Definition 8 (Semantically uniform TKB). A TKB is called semantically uniform if and only if each 
concept is assigned to exactly one semantic type. 

In summary, the input to ALSER consists of concepts which may be assigned to several semantic types, 
which is unde~irable.~ In the output of ALSER, every concept is assigned to a single refined semantic 
type. Therefore, all concepts assigned to any one refined semantic type are now similar, according to the 
previous definition of similarity =. The output of ALSER may contain empty semantic types. 

As even our small example shows, the output will (normally) contain more (refined) semantic types 
than the input had (original) semantic types. Each simple semantic type has, on average, fewer concepts 
assigned than the corresponding original semantic type. We will show this effect with real data in Section 
5. We can now advance to a procedural definition of ALSER. The easiest part of the ALSER algorithm 
deals with the set of concepts. ALSER does not change the number or names of concepts in a TKB. It 
only reassigns the concepts to refined semantic types 

Why it is undesirable was explained in great detail in [6,5]. From the integration point of view, it is impossihle to tell 
whether two compound concepts are similar without looking at all semantic types they are assigned to. 
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In order to find the set & I ,  we first need to identify the simple semantic types. As noted above, every 
original semantic type with at least one simple concept is mapped into a simple semantic type. All the 
simple concepts assigned to an original semantic type are reassigned in the output to the corresponding 
simple semantic type. In the second step, we need to identify all intersection types. Every compound 
concept identifies a set of original semantic types. Every such set needs to be mapped into one intersection 
type. The compound concept will then be reassigned to this intersection type in the output. Formally, for 
every combination of k original semantic types Si,, Si,, S i j ,  . . . , S;, from TKB such that there is at least 
one single concept c that is assigned to all Sij ,  for 1 < j < k, we create an intersection type Si, nS;,n. . .nSi, 
in TKB'. 

The derivationof @' alsoconsists of twoparts. pi contains the assignments of concepts to simple semantic 
types. @t contains the assignments of concepts to intersection types. For a specific simple semantic type 
XI, can be found as follows: 

pi = {(c, X')lsimple(c)&(c. X )  E p}. (8) 

4. Semantic integration 

In the real world, there is a spectrum of requirements one could impose to accept two concepts as 
matching. On one extreme, one might insist that there be only perfect matches between two concepts. In 
the example of calendar dates, one might require that both are called "date" and have exactly three fields, 
two numbers and one character string (for the month). Furthermore, there also must be a match between 
the attribute names. For example, one might insist that both of them have an attribute called "month." 
Such requirements would lead to a few matched concepts and large numbers of unmatched concepts. 

The other extreme is to insist that all (or almost all) concepts of the smaller ontology are matched 
against concepts in the larger ontology, as long as there is at least some structural sidarity.  This extreme 
could be based on the assumption that both ontology designers did a reasonable job to cover the domain, 
and thus a fundamental concept such as "date" simply has to appear in both ontologies, no matter what 
it is called, and no matter how exactly it is structured. Our solution is closer to the second extreme. 

4.1. Which pairs need to be matched? 

We now assume that we have to integrate two TKB and TKB2. Before we can integrate, we need 
to identify for which concepts to attempt integration. This requires three steps: (1) We transform TKB 
into TKB' by applying ALSER. (2) We transform TKB2 into TKB; by applying ALSER. Step (2) is the 
transition that happens from the right top part of Fig. 5 to the right middle part of the figure. Note that 
concepts ofTKEi are assigned by semantic types of UMLS during semantic enrichment. Thus, Cardiogenic 
Shock and Arrhythmia Type are assigned to Functional Conce~~t  and Therapeutic or Preventive, Diabetes 
is assigned to Disease or Symptom, etc. The set of refined semantic types of TKB; is not necessarily 
the same as the set of semantic types of TKB'. In our figure, TKB; has an additional intersection type 
Therapeutic or Preventive n Disease orSymptom which does not occur in TKB'. It is assigned the concept 
Congestive Heart Failure. (3) We identify pairs of sets in TKB' and TKB; that are potential matches 
(Fig. 5). At the bottom of Fig. 5,  no match will be attempted for the concept Congestive Heart Failure. An 
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TKB, 
TKB, Funcfional Therapeutic o Dlsease or 

Concept Preventive Syndrome 

1 Apply SEMINT 

Functional 
concept 4 

Functional 
Concept n 
Therapeutic o 
Preventive 

3r~;s1  r-] 
Failure 

Syndrome 

Diabetes I 
Fig. 5. Overall process of semantic integration 

attempt is made to match the concepts in the set {Cardiogenic Shock, Arrhythmia Type} against the concept 
Cardiogenic Shock. Similarly, the match of Previous CAB and Previous CAB is attempted. Formally: 

1. Assume a refined semantic type S exists in TKB' that has assigned concepts x, y, z ,  . . . . Further, 
assume that S does not exist in TKB; or, there are no concepts assigned to S in TKB;. Then, by the 
similarity assumptions made above, no concepts corresponding to x, y, z ,  . . . exist anywhere inTKB;. 
Thus, these concepts do not need to be matched at all. Alternatively, the concepts x ,  y, z ,  . . . might 
have been misclassified along the way [5 ]  by human experts. In that case, the integration effort would 
make those problematic concepts easier to detect [5] .  

2. The ahove observation applies in reverse also. If an intersection typeshas been generatedfor TKB; that 
does not exist inTKB', then the conceptsx, y,  z ,  . . . assigned to S will not have corresponding concepts 
anywhere in TKB'. Thus, these concepts do not need to be matched at all. The same observation as 
ahove applies to possible misclassifications. 

3. All pairs of concepts (q, r )  with q E CONCEPTS(S, TKB') and r E CONCEPTS(S, TKB;) are 
similar (E) and need to be matched. The matching algorithm follows in Section 4.2. 

A brute force approach would be to compare every concept from TKB' with every concept from TKB;. 
In our approach, we only compare pairs of concepts for which we already know that they are similar. 
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4.2. Scoring concept similarities 

Now, we describe details of how scores for concept similarities are computed. We use three aspects to 
determine whether a match exists between (1) concepts, (2) attributes of concepts, (3) relationships that 
point from one concept to another concept. 

4.2.1. Ranking concepts by terms 
If two concepts have similar names then they are possibly matches. We used the bigram approach that 

is known to be a very effective, simply programmed means of determining a similarity measure between 
strings. The bigram approach consists of three steps. (1) Sequences of two consecutive letters withim a 
string are extracted (e.g., the word "heart" contains 'he', 'ea', 'ar' and 'rt'); (2) Two sequences of bigrams 
are compared, and a raw similarity score is computed; (3) A matched score is computed from the raw 
score, i.e., the number of the common bigrams is divided by the average number of bigrams in the two 
strings. 

The use of synonyms is absolutely necessary, because medical terminologies are full of variant ter- 
minologies (e.g., Heart and Coeur, Heart Block and Lev's disease). We include the use of synonyms 
during the concept matching step itself. If no match is found for a concept, then it is attempted to use its 
synonyms for matching. 

4.2.2. Ranking candidates by attributes 
Assume that we are given apair of concepts from two different ontologies. These concepts have different 

terms, therefore, a priori there is no reason for a computer to assume that they are in fact describing the 
same concepts. In order to establish whether they are indeed the same concept, we need to compare 
attributes. 

We assign to every pair of concepts a score as follows. 

1. Two concepts that have the same number of attributes, and for every attribute in one concept there is an 
attribute in the other concept of the same name and same data type, are considered perfectly matched, 
with a score of 1. 

2. If two attributes (of two concepts from two ontologies) have the same name but are of different data 
types, we assign them a score of k(k i 1, k $0). 

3. Then we compute the ratio of matched attribute scores divided by the number of attributes of the 
concept that has more attributes. 

4. The final decision about similarity is made, based on a minimum threshold for the computed combined 

4.2.3. Ranking candidates by relationships using propagation 
In the previous steps, we have established matches between concepts from two different ontologies, 

based on pairs of terms and attributes. However, two concepts that point to exactly the same concepts with 
the same relationships are presumably very similar to each other. We view the relationship targets as data 
types, and two concepts that point to all the same data types are likely to be quite similar. However, we 
would have a chickenand eggproblem here, if we start with considering relationships from the beginning. 
That is, the case because the relationships targets cannot be used for matching if they themselves have 
not been matched up. 
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This is why we start by matching up a few concepts using terms and attributes alone. By this step, we 
create an initialization for matching up additional concepts by using relationships. Thus, two concepts 
with different names that point to several target concepts that all have been matched up between two 
ontologies are presumably themselves a match. We can use a similar ratio criterion as for attributes, 
however, now the targets carry more semantics than the undifferentiated data types of attributes. Thus, we 
are willing to assign a pair of relationships a high score if the targets are the same OR if the relationship 
names are the same. Let us assume now that a set of concept pairs has been established such that 
the concepts in each pair match and are from two different ontologies. Then any pair of concepts that 
point to these matched concepts would also be considered highly ranked for being matches. Thus, after 
establishing initial matches, we continue ranking concepts by similarity using a process similar to a Waltz 
filtering [18]. 

Thus, the process of finding matches needs to be recomputed until a score change of one concept pair 
does not result in a score change of any concepts pointing to that pair anymore. Note that this state of 
equilibrium can be easily achieved, as we are using a threshold. If there are only changes that do not cross 
the threshold, the update process would terminate. 

4.2.4. Combining matching scores 
Two concepts are considered matched if their terms, their attributes and their relationships are (on 

average) similar. A weight is assigned to each similarity aspect of a concept (term similarity, average 
attribute similarity, average relationship similarity). Considering these three criteria, we now compute 
the degree of the similarity of concepts from two distinct ontologies. For this purpose, we use a multiple 
attribute decision making (MADM) approach, a simple additive weight-based solution [19]. This approach 
determines a combined score of concept matches between ontologies. Let Ci = {Cil ,  Ciz, . . . , Ci,) and 
C j  = { C j l ,  C j z ,  . . . , C j n )  be sets of concepts for given ontologies, and let F = { F l ,  Fz, . . . , F,] be a set 
of p fiattres (in this paper p = 3) that chzracterize the degree ~f siz?i!~~ty. weight Vector W reflects 
the importance of each attribute W = { W I ,  W2, . . . , W,], where C Wi = 1. We compute the scores for 
each of thep features for each of 1 matching cases (I %n or m) in a decision matrix D = di,. 

The method is comprised of three steps: first, scale the scores into a range [O, 11, with the best score 
represented by 1, using 

Second, apply weights and third, sum up the values for each of the alternatives, using 

After a combined score has been computed, we compare the weighted sum with a given threshold or. 
Some matches may be lacking attributes or relationships. In this case, a weight of zero will be assigned 
to these aspects of a concept. All combined similarity values greater than or are stored in a matrix GT.  
Subsequently, concept pairs with similarity values above the threshold are conshucted, starting with the 
maximal similarity value. If there are several equal maximal similarity values, they are processed in 
random order. Whenever the next largest similarity value has been identified between two concepts c and 
d, then the complete row of c and the complete column of d in the similarity matrix GT are set to 0. This 
is because c and dare not available for matching anymore. 
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4.2.5. The SEMINT algorithm 
Thus, the algorithm for matching concepts from TKB' with concepts from TKB;, assigned to the 

same semantic types, follows below. The three output lists L1, L2, and L3 correspond to pairs of 
matched concepts (L1) and unmatched concepts of TKB' and TKB; (L2 and L3, respectively). The 
algorithm makes use of the matrix GT that is dynamically resized at every iteration of the main loop. 

Algorithm. SEMINT 
(Input: TKB', TKB;; Output: L1, L2, L3) 
L] = L2 = L3 = (1; 
FOR ALL semantic types S E ?;{ 

//Note that 9' (SemanticTypeSet(TKB')) = 9; (SemanticTypeSet(TKB;)) 
G T [ ,  1; /I Two dimensional array of floats for similarity values; 

//Cardinality of CONCEPT(S, TKB1)defines number of rows. 
/I Cardinality of CONCEPT(S, TKB;) defines number of columns. 

FOR ALL pairs of concepts (c, d), 
c E CONCEPT(S, TKB'), 
d E CONCEPT(S, TKB; { 
B = Bigram similarity of the name of c and the name of d; 
A = Attribute similarity of c and of d; 
R =Relationship similarity of c  and of d; 
I/ Combine these three similarities using weighted average for given weights W,, W,, Wk. 
G=MADM(F, W)whereF=B,A,RandW=W,,  W,, Wk 
IF (G > &){//a is a threshold value 

GT[c,  d l  = G; 
] ELSE { 

GT[c ,  dl = 0; 

I 
// Loop as long as there is a value greater than 0 ANYWHERE in the 2-0 array G T .  
I/ The WHILE loop hides a 2-D search. 
WHILE there are values greater than 0 in GT [,I { 

I/ The line below also involves a 2-D search. 
Find the maximum value in GT [, 1; 
Say, this maximum value is at (c, d) 
Store (c, d) as a match in the list L1; 
Set all G T [ c ,  ] = 0 I/ Remove c from consideration 
Set all G T [ ,  dl = 0 I/ Remove d from consideration 

Append all remaining elements of CONCEPT(S, TKB') to the list L2; 
Append all remaining elements of CONCEPT(S, TKB;) to the list L3; 

I 
The above algorithm performs amatching operation on pairs of concepts. The structure of the algorithm 

is such that two concepts are considered matched if theirnames, their attribute names and their relationship 
names are (on average) similar. Inside of the algorithm, attribute similarity and relationship similarity are 
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Table 3 
Combining matching scores 

GT d e 

Stage 1 
a 0.8 0.9 
b 0.7 0.75 
c 0.95 0.85 

Stage 2 
a 
b 
C 

Stage 3 
a 0 0 
b 0 0 
C 0 0 

computed by subalgorithms (not shown) that perform matching operations on pairs of attribute names 
and relationship names, respectively. The attribute similarity is the average of all the bigrarn similarities 
of all the matched attribute names. Attributes that do not match are ignored. We can use exactly the same 
way to compute the relationship name similarity for given pairs of concepts. Thus, the two subalgorithms 
are structurally similar to the algorithm SEMINT itself. A weight is assigned to each similarity aspect 
of a concept (name, attribute, and relationship similarity). Then we compare the weighted sum G with a 
given threshold cr. For ontologies that lack attributes or relationships, a weight of zero is assigned to those 
aspects nf simi!ari.ty. 

To demonstrate the functioning of the above algorithm, assume that CONCEPT(S, TKB') = (a, b, c} 
and CONCEPT(S, TKB;) = (d, e] (Table 3). In Stage 1 GI- contains all values that are above a. First, 
we append (c, d )  to L1, giving L I  = ((c, d)]. Then, we set the row of c and the column of d to 0 (Stage 
2). Next, we create the pair (a, e) and append it to L1, giving L1 = ((c, d), (a, e)]. Now, the row of a and 
the column of e have to be set to zero (Stage 3). At this point, all values in GT are zero. The concept c 
was not matched with any other concept and is appended to L2. L2 = (c]. L3 = (1 stays empty for this 
semantic type. The algorithm would now advance to the next semantic type. 

At this point, we have reached the limit of what can be done algorithmically. A human expert will need 
to review all matches in L1, or only those with a relatively small G value (greater than cr). Similarly, he 
will need to review L2 and L3 to look for any missed matches or misclassifications. By our matching 
philosophy, we are trying to keep Lz and L3 small, limiting the manual effort that goes into this step. 

5. Implementation and experimental results 

5.1. Implementation architecture 

We have implemented an ALSERKEMINT prototype system [20] following the paradigm of compo- 
nent-oriented development [21]. The component-based development approach allows a complex system 
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Fig. 6. The architecture. 

to be considered as a composition of an arbitrary number of smaller components with well-defined 
interfaces. Our system architecture is shown in Fig. 6. The UI manager handles a user's requests by 
invoking an appropriate subsequent component. The two main components of the system are the ALSER 
component and the SEMINT component which have been extensively described above. 

ALSER and SEMINT expect as input TKBs coded in XML. We are using XML, because it allows 
us to quickly extract data and exchange information between components. Unfortunately, most existing 
terminologies are not in that format. The SEMENCH component, composed of three subcomponents 
(XML Reader, XML Converter, and Ontology Mapper), performs the required translation of the input. 
If the input format is not already XML, then the ontological input data has to be transformed into XML, 
using the XML Converter. Then the XML Reader component is invoked. The XML Reader component 
extracts concepts and their corresponding semantic types from the XML input. The XML Reader is 
implemented using JAVA SAX [22]. 

Secondly, the given terminology or ontology bas to be transformed into a TKB. The only preexisting 
knowledge base that strictly follows the TKB format is the UMLS. We performed experiments the ACC 
terminology and the STS terminology. Both those medical terminologies are not structured like TKBs. 
Thus, they first had to be transformed into TKBs. Before discussing the Ontology Mapper we briefly 
describe those two ontologies. 

The Ontology Mapper transforms terminologies into TKBs using wrappers. In our case, three wrappers 
are needed, the ACC Wrapper, the STS Wrapper, and the UMLS Wrapper. As we will explain in the next 
subsection, the ontology Mapper performs the "semantic enrichment" of the two local terminologies 
(ACC and STS) through a global ontology, the UMLS. The ACC Wrapper and the STS Wrapper directly 
access their respective teniiinologies. The UMLS Wrapper component communicates~witbtlie Unified 
Medical Language System Knowledge Source (UMLSKS) server [3]. It takes concepts as input and 
returns corresponding UMLS semantic types. We have found that implementing the UMLS Wrapper is 
difficult, as it requires Natural Language Processing. Thus, the results of the UMLS Wrapper needed to be 
hand-checked by a human. If the UMLS Wrapper did not find any semantic type, then the human expert 
found one by looking up the concept on the UMLSKS server. Secondly, if the human expert judged that 
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Fig. 7. The data flow of the ALSERISEMINT framework. 

Table 4 
Some examples of actual mapping beforelafter data enrichment 

Case STS concept ACC concept After data enrichment 

Synonym Date of Birth Patient DOB Date of Birth 
Readmission Reason Readmit Reason Readmission Reason 

Acronym RF-Diabetes Diabetes Risk Factor:Diahetes 
Redundant word MI Previous MI Myocardial Infarction 

Patient ID U~tique Patient ID Patient ID 
Payor Insurance Payor Payor 

Compound word Comps-Op-ReOp Bleed~Tamponade Tamponade Tamponade 

the semantic type was incorrect, she looked it up on the UMLSKS server. If the semantic type appeared 
correct, it was left alone. Thus, in this paper, the task of the UMLS Wrapper is augmented by a human. -w-e 
have collected observations how the human performs this task and intend to improve the UMLS Wrapper 
in future research. 

The UMLSKS server offers several options. We are using "advanced search" with approximate match- 
ing. Terms are derived from all source vocabularies in the UMLS 2003AA. Using semantic enrichment, 
two TKBs are generated, encapsulating the ACC and STS terminologies, respectively. The TKBs gener- 
ated by SEMENCH, refined by ALSER and/or integrated by SEMINT are stored in the TKB Repository 
for future use. The ALSER component needs to be invoked for both TKBs. SEMINT is then applied to 
the two refined TKBs, resulting from the application of ALSER (Fig. 7). 

5.2. Experimental results 

In order to test our algorithms, we have performed extensive experimental work. As mentioned above, 
we used the UMLS for enriching the terminologies of the ACC [7] and the STS [S]. While the goals 
and sources of the STS and ACC are different, there is some degree of overlap. Table 4 demonstrates the 
necessity of dataenrichment. It shows matches of concepts in the ACC and the STS which became evident 
only after applying data enrichment to the terms in the table. Table 5 shows part of the STS terminology 
before enrichment and the enriched STS terminologies. The symbol n in Table 6 indicates that a concept 
belongs to all the semantic types connected by n, i.e., the intersection type. Table 7 shows how concepts 
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Table 5 
Partial STS terminologies heforelafter semantic enrichment 

Category name Concept name 

Post operative Initial ICU hours 
Hospitalization Additional ICU hours 

Total hours ICU 
History and Weight, height 
risk factors Risk Factor:Smoker, 

Risk Fac1or:Smoker current 
Operative Urgent reason 

Emergent reason 
Diagnostic cath Valve Disease:Insufficient Aortic, 
procedure-findings Valve Disease:Insufficient Mitral 
Operative Valve Surgery:Aortic Procedure, 

Valve Surgery:hZitral Procedure 

Semantic type Concept name 

Temporal concept 

Organism Attribute n 
Quantitative Concept 
Population Group n 
Finding n 
Quantitative Concept 
Idea or Concept 

Sign or Symptom 

Therapeutic 
or preventive procedure 

Initial ICU hours 
Additional ICU hours 
Total hours ICU 
Weight, height 

Smoker 
Smoker current 

Urgent reason 
Emergent reason 
Insufficient Aortic 
Insufficient Mitral 
Aortic procedure 
Mitral procedure 

have been enrlched through semantlc enrichment by showing their categories and semantic types of STS 
and ACC. The STS terminologies contains 248 concepts and 32 categories. In the enriched terminology 
there are only 244 concepts, as we did not find semantic types for 4 concepts. The ACC terminology 
contains 142 concepts and 44 categories. The enriched ACC contains all 142 terms. The ACC and STS 
have neither attnbutes nor relationships. Thus, our integration 1s based on the names of concepts only. 

In Table 8, we characterize the assignment of concepts to semantic types before and after running the 
ALSER algorithm. The left part of the table shows the expected increase in the number of semantic types 
due to ALSER, from 35 to 54 (for ACC) and from 38 to 68 for STS. Of these 54, 20 are intersection 
types, 26 simple semantic types and eight empty semantic types. The right part shows the distribution 
of concepts over semantic types before and after running ALSER. As expected, the number of concepts 
assigned to each semantic type is reduced for minimum, maxlmum, and average. 

Table 9 (left part) shows results for running SEMINT with similarity threshold, cc (90%). In an integrated 
ontology, every matched concept will occur only once. This is shown in the last two rows of the table. The 
right part of Table 9 shows more properties of the integrated TKB. The number of simple semantic types 
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Table 6 
Semantic assignment in partial STS terminologies beforelafter semantic enrichment 

Concept name Category (before SE) Semantic type (after SE) 

Initial ICU hours 
Additional ICU hours 
Readmission to ICU 
Date of Birth 
Weight 
Smoker 
Patient ID 
Urgent reason 
Patient last name 
Insufficient aoItic 

Aortic procedure 

Post operative 
Hospitalization 
Hospitalization 
Demographics 
Histoly and risk factors 
History and risk factors 
Administrative 
Operative 
Demographics 
Diagnostic cath 
procedure-findings 
Operative 

Temporal concept 
Temporal concept 
Health care activity 
Finding 
Organism Attribute n Quantitative Concept 
Population Group n Finding n Quantitative Concept 
Idea or concept 
Idea or concept 
Intellectual product 
Sign or symptom 

Therapeutic or preventive procedure 

Table 7 
STS and ACC concepts and categories (before semantic enrichment) and their semantic types (after semantic enrichment) 

STS concept STS category ACC concept ACC category Semantic type 

Cardiogenic shock Pre-operative Cardiogenic shock Diagnostic Cath Disease or Syndrome 
Arrhythmia cardiac status Arrhythmia Procedure-Indications n Finding 
MI . . Pre-operative Previous MI History Disease or Syndrome 

cardiac status and risk factors 
Meds-Asprin Pre-operative Asprin Cath Lab Visit- Organic Chemical 

medicalions Medications n Pinarmacologic Suhsianca 
VD-Stenosis-Aortic Pre & Cath Valve disease-Aortic Diagnostic Cath Disease or Syndrome n 
VD-Stenosis-Mitral operative Valve disease-Mitral Procedure-Findings Finding 

hemodynamics 
RF-Renal Fail Pre-operative Renal failure Adverse outcomes Disease or Syndrome 

risk factors n Finding 

is 27. Looking back at the numbers of simple semantic types in Table 8, they are both 26. This indicates 
a high degree of overlap between the semantic types ofACC and of STS. There are 25 common semantic 
types, with only one semantic type that is unique to ACC (and to STS, respectively). 

5.3. Recall and precision 

We have performed a series of experiments to test the effectiveness of ALSER with SEMINT. We first 
computed a desired matching result between ACC and STS by hand. Then we used recall and precision to 
compare the results of ALSER with SEMINT with our manual result. We also compared with a brute force 
approach that matches every concept from ACC with every concept from STS. For evaluation purposes, 
we use the following common terms: 
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Tahle 8 
Statistics of the effect of ALSER on ACC and STS 

Feature ACC STS 

Concepts# 
Simple concepts 
Compound concepts 
Original semantic types 
Refined semantic types 
Intersection types 
Simple semantic types 
Empty semantic types 

ACC STS 

Assigned to 
a semantic type 

Bef. Aft. Bef. Aft. 

Min# of concepts 1 0 1 0 
Max# of concepts 53 15 58 33 
Avg.# of concepts 3 2 5 3 
Total# of assignments 192 142 325 244 

Tahle 9 
(a) Matching results with threshold > 90; (h) Integrated terminology 

Feature Tnreshold a > 90 

(a) 
Matched concepts 
ACC unmatched concepts # 
STS unmatched concepts # 
Simple concepts # 
Total # of ass. to semantic types 

(b) 
Features 
Simple semantic types # 
Intersection types # 
Empty semantic types # 
Total semantic types 
Minimum # of concepts assigned to a semantic type 
Maximum # of concepts assigned to a semantic type 
Average # of concepts assigned to a semantic type 

Number 
27 

True Positives (TP): The matching algorithm reports a match of two terms, and those two terms are 
considered a match according to a human expert. 

True Negatives (TN): The matching algorithm does not report a match of  two terms, and it should not 
report it, according to a human expert. 
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Table 10 
Comparison of ALSERISEMINT with bmte force matching 

Method Threshold (%) Precision Recall F measure Time (in ms) 

ALSER with SEMINT > 70 0.925 0.8604 0.8915 551 
ALSER with SEMINT > 80 0.9736 0.8604 0.9135 551 
ALSER with SEMINT > 90 1 0.8604 0.925 551 
Brute force > 70 0.7916 0.8837 0.8351 16 543 
Brute force > 80 0.9268 0.8837 0.9047 16 543 
Brute force > 90 1 0.8604 0.925 16 543 

False Positives (FP): The matching algorithm reports a match of two terms, but a human expert would 
not consider those two terms a match. 

False Negatives (FN): The matching algorithm does not report two terms as matched, but they should 
be matched, according to a human expert. 

We can now use Eq. (11) to compute the precision ( P )  and Eq. (12) to compute the recall ( R )  of our 
experiment. Low recall means that our algorithm is missing many pairs that it should report, according 
to our human expert. Low precision means that our algorithm is repoaing many pairs that it should not 
report. An additional measure that is commonly used in Information Retrieval is Van Rijsbergen's F 
measure: 

Table 10 shows the threshold a, P, R ,  F and runtime for ALSER with SEMINT and for bmte force, 
given three different threshold values. Using ALSERISEMINT, increasing the threshold to 90% leads to 
better precision, without deterioration of recall. Brute force is also better for cr = 90%, as shown by the F 
value, although recall is slightly better for lower or. Thus, we concentrate on comparing the 90% entries 
in the table, which have the same P and R, but the run time is about 30 times faster for ALSER with 
SEMINT. 

In future work, we are expecting better precision and F results for the ALSER with SEMINT method, 
hopefully without degradation of recall, because the current implementation does not make use of at- 
tributes and relationships, as these are not available for the ACC and the STS. Thus, matching relies 
on a very weak method. We will therefore investigate the use of better testbed ontologies. With larger 
ontologies, the runtime differences become more important. 

6. Related work 

Many lines of research have addressed ontology matching in the context of ontology construction 
and integration [23-261. The major goal of these approaches is to develop effective methodologies for 
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automated mappings [27]. A linchpin of the ALSER methodology is that it defines a notion of similarity. 
There is an extensive literature on similarity measures in ontologies, which can be effectively used in 
ontology integration. 

As a major line of similarity measurement research, anumber of linguistics researchers have attempted 
to make use of conceptual distance in information retrieval. These approaches mainly focus on a measure 
of semantic relatedness using WordNet and medical terminologies such as MeSH, UMLS, etc. Although 
these terminologies are quite thorough in their coverage of concepts, the number of semantic relation 
types connecting these concepts is considerably limited for advanced feature-based similarity models. 
Also relations in terminologies tend to be lexical relations between words, which do not always reflect 
ontological relations between classes of entities of the world. Tversky's feature-based similarity measure 
1281 is one of the most powerful similarity models, but it requires a rich knowledge base. A number 
of directions based on Tversky's work have been explored. Most approaches [29-311 have limited their 
attention to IS-A links and broader term and narrower term links. 

A similarity measure using edge-counting [29] relies on decomposing concepts by explicit features 
and inherited features and ranks concepts by counting feature differences. Lee et al. [31] extended this 
method by including the links between synsets or paths made up of meronym type links. 

When using the edge distance between two concepts, the relative depth is important, because research 
[32] has shown that the distance between concepts shrinks as one descends down the ontology. Two 
siblings near the top of the ontology are conceptually far apart, compared to two siblings deep down in 

~ - 

the ontology. Relative depth was taken into consideration by [33]. Another important similarity issue is 
related to ontology density. Concept distances in denser regions should be smaller than distances in less 
dense regions. Hirst and St-Onge [34] also consider the direction and stability of links between concepts. 
In the HCG weighted conceptual distance methodology [35] the strength of connotation between parent 
and child nodes was considered together with ontology density and depth. Some research has combined 
thesauri with a corpus statistics for semantic similarity measurement [36-381. 

Conceptual similarity is considered in terms of class similarity by Resnik [39]. In this approach, the 
extent of shared information between concepts was considered to determine their similarity. Lin [37] 
proposed an information-theoretic notion of similarity based on the joint distribution of properties. They 
accounted not only for commonalities but also for differences between the items being compared. In [40], 
a subclass must be of the same type as its parent, but must have some difference that distinguishes it 
from its parent. The subclasses of a concept are incompatible with each other. Jiang and Conrath's [38] 
similarity measurement is based on the conditional probability of encountering a child synonym set given 
a parent synonym set. 

More recently, a number of new similarity approaches has been introduced. One approach is the use 
of matching rules [25,26,41]. Another method compares the set of all possible correspondences [42-45]. 
The names of the concepts or nesting relationships between concepts and the inter-relationships between 
concepts (slots of frames in [25]) are also criteria for comparison. The types of the concepts, or the 
labeled graph structure of the models [42,43] may be used to estimate the l i e l i o o d  of data instance 

~~~~~ co~espond~ennce[41;44~~46;471; Kbdiig Eez~iid Ege~~bfer[~48 lprop6 seddCCoomPu tirrgsm mtic-siiniil-ety 

for different ontologies from three perspectives (1) synonym set matching, (2) semantic neighborhood, 
measured by the shortest path between connected concepts, and (3) distinguishing features. L i e  in our 
approach, these three aspects are combined, using a weighted sum function. However, our approach is 
substantially different because of our use of semantic refinement prior to any matching. Furthermore, we 
do not use synonyms and distances; our term matching approach is based on bigrams. 



916 I! Lee et al. /Computers in Biology andMedicine 36 (2006) 893-919 

Some similarity approaches [24,25] allow for efficient user interaction or expressive rnle languages 
[23] for specifying mappings. Several recent publications have attempted to further automate the ontology 
matching process. A general heuristic was used in [49] to show that paths between matching elements 
tend to contain other matching elements. In 1441, similarity between two nodes was computed based on 
their signature vectors, which were computed from data instances. The above approaches argue for a 
single best universal similarity measure, whereas GLUE [45] allows for application-dependent similarity 
measures. 

A methodology for learning to construct ontologies from other ontologies is described in [27]. The 
similarity measure in [50] is based on statistics, and can be thought of as being defined over the joint 
probability distribution of the concepts involved. The role of machine learning in the semantic Web effort 
was described in [5 11. Doan et al. [45] is another example of ontology integration using machine learning. 

We now return to the problem of combining multiple ontologies into a single coherent ontology [25,41]. 
There are a few different methodologies but there is no consensus on the methodology to follow to 
integrate ontologies either in the same or in different domains. It is not even clear whether there could 
be a domain-independent methodology. When the semantics of an ontology integration system (whose 
sources are described by different ontologies) are defined, a global mediated ontology 1421 might be 
required, whereas in some frameworks [52] a mediated ontology will exist only if it makes sense for the 
task at hand. 

Pinto and Martins 1531 addressed important issues of ontology engineering and ontology composition. 
Gangemi et al. [54] developed a domain ontology by the integration of existing repositories of knowledge, 
analyzing, and selecting the relevant sets of terms from various terminological sources. While [54] starts 
with all ontologies at the beginning of the merge process, Skuce [55] starts with a selected initial group 
of ontologies that is incrementally enlarged. The work of [42] describes a specialization of a framework 
for ontology integration. 

7. Conclusion and future work 

Matching concepts from two different medical ontologies is a difficult task, which will become more 
and more important with the expected advancement of medical informatics. Our approach to concept 
matching is based on an ontology representation with aTKB which makes it possible to identify concepts 
with similar semantics before attempting the difficult matching task. The semantic enrichment method 
builds TKBs and the algorithmic semantic refinement (ALSER) algorithm generates semantically uniform 
TKBs, for which it is possible to define a formal sense of semantic similarity between concepts. 

Our approach is characterized by a philosophical assumption about future ontologies which will need 
to be integrated. Any ontology that will be important enough to be used at all will need to be "reasonably" 
complete in at least one subarea of a domain. Thus, if two ontologies cover a domain, one may expect that 
all the "important" concepts of the domain occur in both ontologies. Thus, a matching algorithm should 
attempt to maximize the number of matching concepts, even if there are structural differences between 
them. The semantic integration (SEMINT) algorithm performs this kind of matching on semantically 
uniform TKBs. 

We presented an implementation of ALSER with SEMEVT, applying it to the ACC and STS termi- 
nologies. Results of the implementation application were expressed in terms of precision, recall and F 
measure. ALSER with SEMINT greatly improves the run time of matching. It has a positive effect on 
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precision for low thresholds and anegative effect on recall. Overall, as the Fvalue shows, the improvement 
of precision outweighs the effect on recall. 

This paper presents the beginning of a journey, not the end. At this point, we discuss some limitations 
of our approach. For research on integration, two TKBs in the same domain are necessary, which have 
to be built by independent teams, to avoid any biases that would make integration unfairly easier. With 
increasing growth of ontologies, we hope that more and more medical ontologies are available, which 
can be used in our research. For the case, when a global TKB ontology (i.e., UMLS) is available, we 
have presented a method for semantic enrichment to create such two-level structures for two medical 
terminologies of STS and ACC. In general, there could exist some newly generated or empty semantic 
types as the result of ALSER. Our current testbed ontologies have no attributes and no relationships. We 
expect better results by adding these features. Also, our method relies on a threshold value and several 
weights. Tuning these values and analyzing their effect on precision and recall of SEMlNT is a topic 
of future research. Lastly, too little is known about TKBs themselves. We will investigate structural 
parameters of TKBs, foremost the ratio of the size of the semantic Network relative to the size of the 
thesaurus, to see what influence they have on running the ALSER and SEMINT algorithms. 
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