Parallel Processing for Artificial Intelligence 3
J. Geller, H. Kitano and C.B. Suttner (Editors)
© 1997 Elsevier Science B.V. All rights reserved. 69

Parallel Operations on Class Hierarchies with Double Strand
Representation

Eunice {Yugyung) Lee* and James Gellert
Department of Computer and Information Sciences
New Jersey Institute of Technology

Newarlk, NJ 07102

This paper continues a series of papers dealing with the problems of (1) fast verification
of the existence of a transitive relation in an IS-A hierarchy, and (2} dynamic update of
such a hierarchy. As in our previous work, a directed acyclic graph (DAG) of I5-A
relationships is replaced by a set of nodes, annotated by number pairs, and stored on
s massively parallel computer. In this paper a new mapping of this set of nodes onto
the processors is described, called the Double Strand Representation (DSR). The DSR
improves the processor usage compared to our previously used Grid Representation (GR).
This paper shows [S-A verification and number pair propagation algorithms for the Double
Strand Representation. Test runs on a CM-5 Connection Machine® are reported.

1. INTRODUCTION

Most Knowledge Representation systems, as well as-all object-oriented languages and
databases, use an IS-A hierarchy as their backbone. An efficient hierarchy encoding
technigue would aid all these areas, especially for large hierarchies. The I3-A hierarchy
has been especially important in the KL-ONE family of Knowledge Representation (KR)
systems [1-9].

Object-oriented systemns, based on SIMULA [13] and Smalltalk [14], always incorporate
generalization hierarchies with inheritance behavior. Object-oriented methods have been
applied to the design of programming languages, ¢.g., C4-++ [15], type systems [16], object-
oriented extensions of existing languages, .., CLOS (17}, and object-oriented database
systems such as ORION [10], O, [11], and ONTOS [i2].

Given the importance of the IS-A hierarchy, one would like to achieve the fastest possible
processing for query and update operations in this hierarchy. If we assume that it is known
that a Mammal is an Animal, a Dog is a Mammal, and a Collie is a Dog, then we want:

*This research was (partially) done under a cooperative agreement between the National Institute
of Standards and Technology Advanced Technology Program {under the HIIT contract, number
70NANBGH1011) and the Healthcare Open Systems and Trials, Inc consortivim.

1This work was conducted using the computational resources of the Northeast Paralle! Architectures
Center (NPAC) at Syracuse University, which is funded by and operates under contract to DARPA and
the Air Force Systems Command, Rome Air Development Center (RADC), Griffiss Air Force Base, NY,
under contracti# F306002-88-C-0031.

3The Connection Machine is a trademark of Thinking Machines Corp.

70

Thing
Animal
Mammal _Reptil;
Dog . Cat
Coilie Collie Cocker Spaniel

'Fl‘ig.g‘re 1. iS—A Hierar-chj:

to quickly answer “yes” to the query whether a Collie is an Animal (Figure 1). We.also
want to be able to quickly update the hierarchy, e.g., when adding the facts that Cocker
Spaniels are Dogs, Cats are Mammals, and Reptiles are Animals.

In the past we have been especially interested in techniques where the response time
for an IS-A query does not, depend. on the length of the chain of IS-A links that must be
traversed to answer the query. Besides these techniques, our tool of choice for achieving
fast query and update operations is fine-grained parallelism. This raises the question of
how to map the IS-A hierarchy onto the availaple space of processors. The most obvious
intuitive choice is to assign every class of the hierarchy to a single processor. However, this
intuitive choice does not carry over to the links between classes. If the whole hierarchy were
known af the beginning of system design, one could opt for a strong form of isomorphism,
where every IS-A link is implemented as a hardware link, However, our basic assumption
is that Artificial Intelligence is not intelligence at all, if knowledge structures cannot
be updated dynamically. Therefore, the jsomorphism solution would require dynamic
hardware changes as part of any update of the IS-A hierarchy, a solution that is currently
still not practical. The idea of custom-made hardware is also not appealing to us.)

The solution that we have been using in a series of papers [23,25-30] has been to
eliminate the need for the IS-A links as much as possible, while still maintaining all the
knowledge that is contained in the I5-A hierarchy. In this way, we do not have to worry
about the mapping of the IS-A links onto the actual hardware. :

Like other researchers, we are representing the classes of an IS-A hierarchy by nodes
in a graph. The IS-A links are represented by the directed edges of this graph. In our
first paper on the subject [26] it was shown that for the special case of a tree-shaped IS-A
hierarchy of nodes, the hierarchy could be replaced by a Hnear order of the same nodes,
together with one number pair assigned to each node. The assignment of number pairs
was based on an encoding due to Schubert [31]. 7 -

Later on we extended the representation of I1S-A hierarchies “without explicit IS-A

71

_Grid Representation

A {nlpi]
B [n2u2]
Real World ¢ [n% wil
Class Hierarchy

Direct Acyclic Graph

Gzaph Pairs

oy

Donble Strand Representation

TFigure 2. Three Step Mapping

links” to directed acyclic graphs (DAG). In this representation, several number pairs
became necessary at some nodes. The assignment of these number pairs was based on
an extension of {31] by Agrawal et al. [18]. While doing this, we were able to prove
that the linear order used in [26] is not necessary at all. Rather, a set of nodes with
an associated number pair(s) at.each node could perfectly represent a DAG-shaped IS-A
hierarchy without explicitly maintaining the IS-A links [23].

Unfortunately, the original fast algorithms [26] were possible due to the fact that one
number pair was assigned t0 one processor, and not due to the fact that one node was
assigned to one processor. 5q, in order to maintain the speed of processing, at least for
queries, it became necessary to change the mapping of nodes onto processors. In [23,28)
we mapped each node onto one column in s two-dimensional grid of processors. Every
number pair of each node was assigned to a different. processor {row) in its column.

A pleasant side effect of eliminating explicit links is that the time necessary to traverse
them is also eliminated, giving, within certain limitations, constant time responses for
transitive closure queries [26]. In other words, by using the Schubert/Agrawal represen-
tation, it takes as much time to verify that & Collie is an Animal as it takes to verify that
a Collie is a Dog. By adding parallelism, updates can be performed in “almost” constant
time. Experimental verification of this ciaim was provided in [26] for the case of trees.

" All necessary details of Agrawal et ol’s encoding, our node set representation, and the
GR will be described later on in this paper. However, we summarize now that the main
feature of our previous work is a three step mapping (Figure 2). In the first step, an IS-A

72

Thing

Mineral () Animal)
Domestic-Animal () ()Mammal () Wild-Animal
() Feline
O ®
Siamese Cheetah

Figure 3. A Class Hierarchy

hierarchy of classes of the real world is mapped onto an isomorphic DAG of nodes, with
one class per node. In the second step, the hierarchy of nodes is mapped into a set of
those nodes, so that every node is annotated with one or more number pairs. In the third
step, this node set and the associated number pairs are mapped onto the processor space
of & fine-grained parallel computer. In brief, class hierarchy — directed acyclic graph —
node set + number pairs — processor space.

In our previous papers, the third step was performed by organizing processors as a two-
dimensional grid, with one node per column, and one number pair pet row. Unfortunately,
the GR causes a number of difficulties. We will describe the major problem now, while
mentioning some other problems later in the paper. Because some nodes have only one
number pair, while others have many number pairs, some columns might be virtually
empty, while other columns might run out of processors, disrupting the functioning of our
algorithms, Therefore, in this paper, we are showing a different representational approach,

The general idea of a three step mapping class hierarchy — DAG — node set + number
peirs — processor space is stifl maintained. Indeed, the first two steps of the mapping are
not changed at all. However, the assignment of number pairs to processors is changed in a
way that eliminates the main problem of the GR described above. The new representation
is called Double Strand Representation (DSR) and forms the main subject of this paper.

In addition, we will show parallel algorithms for fast I8-A gueries in the DSR. We will
also show parallel algorithms for an important operation of Agrawal et al’s encoding [18],
called propegation, in the DSR. Propagation is a necessary part of every update operation
on a DAG with number pair annotation.

Work related to ours in the symbolic paradigm has been published, e.g., [32,33,39]. The
PARKA system, a symbolic approach to combining KR with massive parallelism, has
been described there. It is & frame system for handling large amounts of knowledge. 1t is
implemented on the Connection Machine, and its temporal behavior has been extensively

73

Class Name Number Pair Thing[i 10}

Thing [1 101

Animal 3 9

Plant 2 2 Mineral

Mineral [10 101 [10 10]

Mammal [5 8] .

Domestic- ild-Animal

Domestic-Animal | [9 91(8 &) Eg g%

Wild-Animal | [4 47 7 i

Feline [6 8]

Siamese [8 8] O

Cheetah 7 71 [8]Siamese Cheetah [7 7]

Figure 4. Node Set Representation for Class Hierarchy

tested. The newer version runs on an IBM SP2 [34].

Neural network approaches close in spirit to ours are, e.g., [40,42-46]. Shastri’s work
[40,41] combines massive parallelism implemented on a neural network simulator with a
well defined, limited inference approach. According to Shastri [42], the distinction between
the processes of a special-purpose reasoner and a general-purpose reasoner is akin to two
human modes of reasoning, namely, reflexive reasoning and reflective reasoning. Sun [44],
on the other hand, presents an intensional neural network approach of reasoning based on
the semantic closeness of concepts. His work implements inheritance employing massive
parallelism.

In Section 2 we discuss the numeric encoding of class hierarchies and the node set
representation. In Section; 3 the Double Strand Representation is presented. In Section
4 constant time subclass verification in the Double Strand Representation is discussed.
Section 5 presents massively parallel propagation algorithms with the Double Strand Rep-
resentation. We compare the performances of both representations, giving experimental
results on the Connection Machine in Section 6. Finally, we conclude this paper in Sec-
tion 7.

2. NODE SET REPRESENTATION AND AGRAWAL /SCHUBERT ENCOD-
ING

Our work has been based on Agrawal et al.'s [18] extension of Schubert’s class hierarchy
reasoner [31] towards directed acyclic graphs. Agrawal el al’s approach [18] makes it
possible to verify that 4 is a subelass of B by comparing a number pair at A to ene or
more number pairs stored at B. This approach makes no use of the path from A upwards
to B at all.

74

Figure 5. The Four Areas of Spanning Tree

The basic approach of [18] is: (1) Construct an optimal spanning tree of a given DAG
such that at every node with multiple parents, we select the link to the parent with the
maximum number of predecessors. Predecessors are nodes that are reachable from a node
by an “up search.” {2) Assign a pair of preorder and maximum number to every node.
Preorder numbers are generated by a tight-to-left preorder traversal of the spanning tree.
The maximum number for every node is the maximum preorder number in the subtree
rooted at that node. Tree pairs result from this step. (3) All the arcs that are not part
of the optimal gpanning tree are used to propagate number pairs upwatd. This is done
so that every transitive 1S-A relation in the DAG can be verified, but no redundant pairs
are generated. Graph pairs result from this step. '

In Figure 4 we use the notation [7 p] for tree pairs and the notation (x p) for graph
pairs. In this representation a node A is a subclass of a node B iff the ‘tree pair of A
Is included in or equal to any one of the pairs of B." For instance, a'Cheetah is a Feline
because {7 7] is a subinterval of [6 8]. A Cheetah s also a Wild Animal, because the
tree pair of Cheetah [7 7] is propagated to Wild Animal a5 a graph pair (7 7). However,
a Cheetah is not a Mineral because [6 8] and [10- 10] are disjoint. '

In {23] our incremental massively parallel encoding of DAGs, called “node set repre-
sentation,” was introduced. We proved that the node set representation together with
the number pairs is sufficient to represent a class hierarchy, We can operate with a set
of nodes because all important update and retrieval operations require only three jtems
at every node: (1) the key item, e.g., Mammal, (2) the number pairs, and {3} the area of
the spanning tree where the node is located [23]. It is easy to see that the tree pair at
each node N can be used to determine four areas of the graph {Figure 5). Every node N,
except for the root, defines a path of spanning tree arcs that connect N to the root. This
path divides the spanning tree into four (possibly empty) areas: (1) the path itself: (2)
the left part of the path: {3) the right part of the path; {4) the subtree which is rooted at

15

Grows right ﬁﬁmlgﬂ__]
144 [V

Thing || Plant |jAnimal Siamese|| D-Ani || Mineral D-Ani || Siamese W-Ani | Cheetah
glie a2je 9] is 81|19 91 |](w ol | [0 918 B @ a0 D
4\)’\ 1019 1020 1021 1022
4] 1 2 7 8 9 Maxld-3 Maxld-2 Maxld-1 Maxld
Tree Pairs Strand P Dy Graph Pairs Strand

Figure 6. Double Strand Representation for Figure 4

N. For instance, for Mammal in Figure 5, we can easily define area 1: {Thing, Animal,
Mammal}, area 2: {Mineral, Domestic- Animai}, area 3: {Plant, Wild-Animal}, and area
4: {Feline, Siamese, Cheetah}. Many important steps of the update operations ireat each
of these four areas uniformly, with the same operations being applied to all the nodes in
one area. Therefore, if we have arca information, we do not need the class hierarchy any
more. Details can be found in [23].

3. DOUBLE STRAND REPRESENTATION(DSR)

Now we will show how the node set is practically mapped onto the processor space of
the CM-5. We are interested in a mapping that will represent tree pairs and graph pairs
efficiently, so that it is possible to achieve a high degree of parallelism, memory efficiency,
and optimal use of available processors.]

We call the result of our new mapping the “Double Strand Representation” (DSR).
In this Tepresentation the given processors are divided into two areas: the tree pairs
strand and the graph puirs strand (See Figure 6). In the tree pairs strand, every node is
represented in a separate processor. The tree pair of a node may be assigned to the tree
pairs strand in any order.

In the graph pairs sirand, pairs of processors are used to store a sequence of pairs,
each consisting of a tree pair and a graph pair. Every processot is assigned an address,
called its ID. Let source of propagation be a node which propagates its tree pair and let
target of propagation be a node to which a number pair is propagated from the source of
propagation. The tree pair U stored in a processor with an odd ID z is used to represent
the target of propagation. The graph pair V in the processor with ID z+1 is used to
represent the source of propagation. Let Z be a processor pair (U, V) in the graph pairs
strand. Let ¥ be the set of all Z. Every time a pair V' is propagated to a node with tree
pair U, we will represent (/, V) in the graph pairs strand.

f 1K processors are available, the maximum ID (MaxId) will be 1022 in the DSR, and
the first processor pair (U, V) will be stored in the two processors 1021 and 1022. In
Figure 6 (representing the hierarchy of Figure 4) the tree pair of Wild-Animal [4 4] occurs
as U in the graph pairs strand in processor MaxId — 1 (1021) and a propagated pair (7
7) which is the tree pair of Cheetah occurs in the even processor MaxId (1022) as a graph
pair of Wild-Animal. Therefore, we can verify that Cheetoh is a subclass of Wild- Animal.
(Details will be shown later.)

76

Thing Plant Animal W-Ani Mammal Feline Cheetah Siamese D-Ani Mineral

o [T [27] [531) [£4] (58] (8] (7] (53] (579 [for
P e e s e | | e s L e

Figure 7. Grid Representation of Figure 4

We will now compare the Double Strand Representation to our Grid Representation
used in previous research [27). The Grid Representation is a distributed representation
of a node set (Figure 7). Every node is represented as a column. The first row contains
the tree pair of the node, while up to & graph pairs are maintained in the other rows,
Nodes may be assigned to columns in the order that the system is informed about their
existence. As the Double Strand Representation, this order is irrelevant.

We have been using a grid of 128 columns and 8 raws, On our Connection Machine
128 % 8 = 1024 is the minimum number processors that may be used. The choice of
128 columns and & rows corresponds to &z compromise between having a large node set
and permitting a reasonably large number of pairs at each node. Note that these 1024
processors are “virtual,” meaning that they are simulated on 32 real processors. While
we could use larger sets of virtual processors, this would only slow down real-time results,
Therefore, we needed to choose the minimum configuration.

While using the grid structure, we encountered some problems. First of all, we have to
allocate & processors for graph pairs for every tree pair. This causes a significant number
of processors to be left empty. This can lead us to run out of processors when the number
of graph paizs in one column exceeds & while in other columns processors are empty.

Secondly, during update of the class hierarchy, we may have an unused processor be-
tween two used processors, called a “hale,” because of our implementation of Agrawal
et ol’s subsumption algorithm. Unfortunately, with the current algorithm for the grid
structure, we have not found an efficient technique to reclaim sueh a hole.

Agrawal et al’s subsumption technique, as we have mentioned earlier, is an algorithm
which eliminates subsumed pairs during propagation. For example, if a number pair
(m; ps) is subsumed by another pair [7; 1] at the same node (column) due to propagation,
fe, m; < mand g < 45, then discard {m; p,). It is due to this that some processors are
left without pairs and become holes.

All these problems have lead us to abandon the Grid Representation and turn to the
Double Strand Representation. One question which arises now is: How do we efficiently
OIganize Processors into two strands? Suppose that we organize processors (by SW) in two
rows; the first row is used to represent tree pairs and the second row for graph pairs. Since
these two strands are growing at different rates of speed, we may encounter a case where
all the processors in the tree pairs strand are used up while a lot of unused processors
remain in the graph pairs strand. This is clearly not a good representation. It ig necessary

77

Tree Pairs Strand Free Space Graph Pairs Strand

_DHHDHV'f;

JRES MI-3 MI-2 MI-1 MI

Figure 8. Dynamic Storage Management of Double Strand Representation

to design a processor-efficient technique to avoid this problem.

The main idea of our storage management is borrowed from the dynamic paradigm
of languages such as Pascal that maintain a stack and a heap. In our representation,
processors of the tree pairs strand are allocated starting at processor 0 and grow towards
higher processor IDs. Processors of the graph pairs sirand are allocated starting at the
processor with the largest 1D and grow towards lower processor IDs. There are two
pointers, ®, and &, to shaw the borders of both areas. We define F to be the size of
“free space.”

F=8,-,)

F should be bigger than a certain threshold, say 10% of processor space. If this is not
the case, we can take some corrective measures, to be described in [24].

4. SUBCLASS VERIFICATION

Now we will describe how to verify subclass relationships. Suppose that we want to
verify whether B IS-A A. There are two cases: {1) A is a tree predecessor of B. (2) A
is a graph predecessor of B. The first case can be easily verified by a subsumption test:
the tree pair of A subsumes the tree pair of B. For the second case, we have to check
whether A has a graph pair propagated from B or from a tree predecessor of B.

We now introduce some CM-5 terminology. A paraliel variable {pvar) is an array
(perhaps multi-dimensional) where every component is maintained by its own processor
and all values are usually changed in the same way and in paraliel [47].

In the algorithm, variables marked with Il are parallel variables, and operations marked
with ! or involving parallel variables are parallel operations. The parallel variable pre!!
contains for every node a preorder number, and the expression max!! stands for a parallel
variable that contains for every node a maximum number. The functions prenum(A4},
maxnum(A), and tree-pair(A) retrieve the preorder number, maximum number, and the
tree pair, respectively, for the given node A.

Additionally, the variable g-fb {(Graph Strand Lower Bound) represents @, and t-ub
(Tree Strand Upper Bound) represents &,. The parallel function self-address!! returns
IDs of all active processors and oddp!! contains TRUE on a processor if the processor’s

78

ID is an odd number. The algarithm ACTIVATE-PROCESSORS-WITH consists of two
parts. The first part describes a set of processors to be activated. The second part, starting
with DO, describes what operations should be performed on all active processors.

We now show a function IS-A-VERIFY that performs subclass verification. As we
mentioned above, if 4 is a tree predecessor of B (by IS-A-VERIFY-1) or A4 is a graph
predecessor of B (by IS-A-VERIFY-2), then B 18-A A, :)

; Bis-a A iff IS-A-VERIFY returns T.
IS-A-VERIFY (B, A: Node): BOOLEAN
return(IS-A-VERIFY-1(B, A) OR I5-A-VERIFY-2(5, A))

IS-A-VERIFY-1 (B, A: Node): BOOLEAN
; If A is a tree predecessor of B, then the tree pair of A subsumes. the tree
; pair of B. _ : :
ACTIVATE-PROCESSORS-WITH
prenum(B) =!I prenum{A) ANDI!
maxnum(B}<! maxmim(A) ANDI
self-address!l{) <! t-ub
DO BEGIN
IF any processor is still active THEN return T
END :

Now we will show how to verify that B IS-A A when A is a graph predecessor of B.
Remember that a'pair of processors (U, V) in the graph pairs strand is used to represent
a graph pair. The tree pair in the odd processor (U) is used to represent s node S and
the graph pair in the even processor (V) is used to represent a node which propagates its
tree pair to S. Therefore, we are looking for a pair of processors (U, V) such that the tree
pair of 4 is contained in processor U/ and the graph pair of B or its tree predecessor is
contained in processor V. In the following functions the expression mark!l[z] := y means
that the pvar mark!! on the processor with the ID 1 ig assigned the value y.

IS-A-VERIFY-2 (B, A: Node): BOOLEAN . :
; Activate every occurrence of the tree pair of A in the graph pairs strand.
; Set the parallel flog mark!! on the right neighbor processors of the active
; Processors.

ACTIVATE-PROCESSORS-WITH
prel!l <1 prenum(tree-pair(A4)) AND!
max!! >II maxnum{tree-pair(4)) ANDU
self-address!’{} =!I g-1b ANDI-
oddp!! (self-address!!())

DO BEGIN
mark!!{self-address!!(} +1! 1):= 1

END :

79

; Test whether any marked processor has the tree poir from B or
; from a tree predecessor of B, as o graph pair. If this is the case, return T.
ACTIVATE-PROCESSORS-WITH

pre!l <! prenum(tree-pair(B)) AND!!

- max!! > maxnum/(tree-pair(B)) AND!

mark!![self-address!!()] =!! 1
DO BEGIN

IF any processor is still active THEN return T
END -

In our example (Figure 6), Feline is a subclass of Animal because [6 8] is a subinterval
of {3 9] (by IS-A-VERIFY-1). IS-A-VERIFY-2 will verify that Siamese is a subclass of
Domestic-Animal because the tree pair [§ 8] of Siamese will occur as {8 8) together with
the tree pair [9 9] in the graph pairs strand. Feline is not a Plant because [6 8] is neither
a subinterval of [2 2] nor is there a pracessor pair ([2 2], (6 8)) in the graph pairs strand.
n summary, with the Double Strand Representation, it can be rapidly decided whether
a subclass relation exists between two classes.

5. INCREMENTAL UPDATE OF CLASS HIERARCHY WITH DSR

In a directed acyclic relationship graph, there are two “obvious” incremental update
operations: (a) inserting a graph component into another graph component, when both
of them are initially disconnected components; {b) adding a new link between two nodes
of the same graph component. We call (a) graph insertion and {b) link insertion; while
insertion and update may refer to either one of them. We previously presented algorithms
for graph insertion in [28] and link insertion in [23].

We need to show how the insertions can be performed with the DSR. The steps that
have to be taken for an insertion consist of (1) the global number pair update [23] and
{2) the propagation of number pairs.

As shown before, in the Double Strand Representation, a class is represented by stormg
its tree pair in the tree pairs strand. Graph pairs are stored in pairs of procesgors in the
graph pairs strand. Note that this makes the graph pairs strand a list of pairs of number
pairs. In Section 2 we pointed out that all important update and retrieval operations
require only three items of information at every node. The first two, the key item of the
node and the number pairs at the node, need to be stored explicitly. The third item, the
tree area, can be determined easily, as will be argued now.

The global update operations (1) treat every number pair {(whether it is a tree pair or
a graph pair) in the two strands uniformly, with the same operations being applied to all
the processors. The reason for that is as follows. The change of a graph pair has to mMirror:
the change of the tree pair from which it was created by propagation. But how does the
aigorithm know which transformation to apply to a tree pair? It makes this decision based
completely on the tree pair itself! Therefore, the same criteria can be applied to the graph
pairs that are identical to a specific tree pair. It should be noted that we are not dealing
with every possible transformation resulting from a global number: pa.lr update as thls is
the subject of a separate paper [23]. :

80

Now, we will discuss a parallel number pair propagation algorithm for (2) in detail. The
propagation of number pairs is performed as follows. Suppose that a graph link is inserted
from a node C to a node N. We have to propagate the tree pair of C to every predecessor
N; of N (including N itself}. For every processor ; to which a pair V is propagated we
need to generate a new entry for the graph pairs strand. This new entry consists of the
tree pair of N; and V' (Tree-Pair(NVy), V), (Tree-Pair(N,), V), ..., {Tree-Pair(Ny), V),
where % is the number of predecessors. These newly generated pairs have to be assigned
to 2 * k currently unused contiguous processors to the left of @, (Figure %(e, d)). If
several pairs V; need to be propagated, this process needs to be done serially.

As an example (Figure 9(a, b)), due to inserting the arc from H to E, the tree pair
V =[5 5} of H should be propagated to every predecessor of E, and E itself {namely,
£, C, B, A). As A has the pair {1 8], we do not need to propagate [5 5] to A becauvse
[1 8] subsumes [5 5]. In our terminology, only E, C, and B are targets of propagation.
For propagating [5 5], we need to find the appropriate IDs of processors to assign [5 3]
to (in parallel).

For this, we develop a parallel function to find proper processor IDs for each propagated
pair (Figure 9(c)). First, we activate processors in the tree and graph pairs strands that
correspond to predecessors N; to which we want to propagate a specific graph pair V.,
Second, there is a parallel operation, enumeratell, on the CM-5 that will assign numbers
0,1, 2 ... to active processors. Third, we define a parallel function T to compute the
processor ID where the processor with the number z (assigned by the enumerate function)
should deposit its number pair.

T(z)=%,—2(z+1) (2)

where © > Oandz < &.. T computes the odd position, and we generate the pair
(7T (z), T(w)+1) for (Tree-Pair(N;), V). With these three steps, mapping each predecessor
to its corresponding processor ID in the graph pairs strand can be completed.

For instance, in Figure 9{a, b), when inserting the are from H to E, we first activate
every tree predecessor of E (C and E itself), but not A. Similarly we activate every
graph predecessor of (just B). Then, we call enumerate!l and assign numbets, 0, 1,
and 2, respectively. The tree pairs of ¢ and H are assigned to 1019 and 1020 which are
T(0) =@, —2+1 and T(0} +1 = &, — 2% 1+ 1. Similarly the tree pairs of E and H are
stored at 1017 and 1018, and the tree pairs of B and H, at 1015 and 10186.

We will now pregent our parallel propagation algorithm. During the propagation, we
may have to consider twe problem cases caused by redundant pairs. Let a pair (m;)
be the newly propagated pair and let another pair {m; p;) be a pair at a target node of
propagation. In the first problem case, a pair (m; u;)} at the target is enclosed by the
propagated pair (m; p), i.e., m; < m; and p; < g, then the pair {r; w;) must be replaced
by (7 ;). In the second problem case, the pair (m; p;) encloses the newly propagated
pair (w; py), e, m; < w; and gy < py, and we do not need to propagate the pair (m u;)
to this target.

In the propagation, we replace the redundant pairs just described. The results of this
algorithm correspond to the results of Agrawal et al’s algorithm. The boolean function
evenp!! returns TRUE on a processor if the processor’s ID is an even number. In the

81

D2 5]

F[3 5]

(a) Original Graph (0) Graph After (H, E) is inserted.

(c) Before Propagation
o t+ 2 3 4 5 6 7

1021 1022
MI-1 M
A|lD|C|B|l|F|E|G}H B|E
[1 81|52 51|t6 71](8 81 [3 5§ [7 71j[4 51{[5 3] [8 BI1K7 7)
I
enumerate!! 1 2
by
<U V> <([6 7] (3 %) ([77¢G 0>
(d) After Propagation
. e
Alp|c]BlF|E|GiH Elda{B jH|C|H}{B{E
nafezsiferfe s rrjus|ssn) 7 785)| s afs)6 | s8] 7 7
0 1 2 3 4 5 6 7]“

015 1016 10171018 1019 1020 10211022
. Ml

Tree Pairs Strand P Free Space Py Graph Pairs Strand

Figure 9. Propagation in Double Strand Representation

82

algorithm, the expression redundent!! stands for a boolean parallel variable that repre-
sents any redundant pairs in the predecessors. As before, in the following functions the
expression mark!l[z] = y means that the pvar mark!! on the processor with ID zx is
assigned the value y.

Finding tree predecessors will be different from finding graph predecessors because the
tree pairs and the graph pairs are stored in 2 different form in the tree pairs strand and
in the graph pairs strand, respectively. The function target-address!! returns addresses of
the target processors of the propagated pairs for tree predecessors and graph predecessors
uniformly.

Mark-Predecessor(N-Pair, M-Pair : Pair)
; Activate every graph predecessor of e node N which is not predecessor
_; of the node M, where N is a new parent node of C and M is the tree
; parent of the child node C. The nodes N end M hove the tree pairs N-Pair
; and M-Pair, respectively. Then set the flag mark!! on the graph predecessors.
ACTIVATE-PROCESSORS-WITH
prell <!l prenum{N-Pair) AND!
max!! >II maxnum(N-Pair) AND!
NOT!!(pre!! <! prenum{M-Pair) AND!
max!! >!I maxnum{M-Pair))
DO BEGIN
mark![target-address!! ()= 1 ; set predecessors
END

Note that, due to propagation, redundant pairs could appear in the marked predeces-
sors. As mentioned before, there are two problem cases cavsed by redundant pairs. In the
first case, the problem could occur only in graph pairs because in this step we are dealing
with replacing enclosed pairs with enclosing pairs while in the second case it could oocur
either in tree pairs or in graph pairs.

In the following algorithm, we will present the solution for these problems. For the
first case, in the TF!! clause, we examine whether any graph pair in the predecessors is
subsumed by the newly propagated pairs but enly check the even processors in the graph
pairs strand using evenp!! because every graph pair is stored at the even processors in the
graph pairs strand. In contrast, for the second case, we examine whether any graph pair
and any tree pair in the predecessors is subsuming the newly propagated pair because if
that is true, we do not have to propagate the new pair any further. In both cases, the
boolean pvar redundont!/! is set and additionally, in the first case, the enclosed pair is
replaced with the number pair to be propagated.

Redundant-Pair-Elimination(PM-Pair-V : Pair)
; Replace the pair ot the target processor with the newly propagated
5 pair PM-pair-V in the first cose, sel the flog redundant!! on
; the target processor in both cases.
ACTIVATE-PROCESSORS-WITH
mark!!target-address!!()] =!! I

83

DO BEGIN ‘
; check whether it is the first cose of redundant pairs
IF! (pre!! >! prenum{P A{-Pair-"} AND!!
max!! <l maxnum{PM-Pair-V) AND!
evenp!!(self-address!!{)) AND!
self-address!!() >!! g-1b) THEN
prell[self-address!!()]:= prenum(PM-Pair-V) ; replace the prenum
max!l[self-address!l{}]|:= maxnum({PM-Pair-V) ; replace the maznum
redundant!![target-address!!()]:= 1 ; set the flag
; check whether it iz the second cose of redundant pairs
ELSE IF!! (prel! <!! prenum (P M-Pair-V) AND!!
max!! 2!l maxnum(PM-Pair-V)) THEN
redundant!![target-address!!()]:= 1 ; set the flag
END IF!
END

At this stage, the boolean pvar mark!! is set for every predecessor of the given node
and the boolean pvar redundant!! is set for the processors at which redundant pairs could
appear due to the number pair propagation. The next step is to enumerate processors
which are predecessors without redundant pairs.

Order-Strand()

; Fnumerate the morked predecessors. No porameter is needed,

; because the global variable mark!! is already set on the predecessors.

ACTIVATE-PROCESSORS-WITH
mark!!jself-address!!()] =!! 1 AND!
NOT!(redundant!![self-address!!{)] =!! 1} AND!
self-address!t() <!! t-ub

DO BEGIN
Posl![self-address!{)]:= enumerate!!{self-address!!())

~END

Now every preliminary step for mapping each predecessor to its corresponding processor
ID in the graph pairs strand is finished. Finally, using the functions 7{z) and T (z+1), the
propagation is performed in the following two steps. First, the copies of the tree pairs of
the target nodes are copied to their destinations on odd processors. Then the unique pair
to be propagated, V, is propagated to the corresponding even processors. Posl! stands
for a.parallel variable that contains the numbers 0, 1, 2 ... assigned by enwmeratell in
Order-Strand.

" Propagate-Pair{ PM-Pair-V : Pair)
; Propagate U; pairs to the targets of propagation. The processor IDs
; for the targets are calculated by T(z).
; Propagate the same pair PM-Pair-V {o the fargets of propegation.

84

; The processor IDs for the targets are calculated by T(z) + 1.
ACTIVATE-PROCESSORS-WITH ' '
posl! >t 0
DO BEGIN
pre!lg-tb — {pos!t + 1) * 2]:= pre!! T
max!![g-1b - (pos!! + 1) * 2]:= max!
prellfg-1b — (pos!! + 1) * 2 + 1]:= prenum{PM-Pair-V) ; T(z +1)
max!!fg-1b - (pos!! + 1) * 2 + 1]:= maxnum (P M-Pair-V)
END :

Now comes the top level propagation algorithm which combines the above algorithms.
It propagates every number pair of & node C to the targets of propagation which were
defined by the predecessors of N. The node M is the tree parent of the child node C.

Propagation(V, M, C : Node)
; N-Pair and M-Pair are the tree pairs of o node N and a node M, respectively.
; PM-Poir-V is a pair at C to be propagated.
Initialize-Pvars()
Mark-Predecessor (N-Pair, M-Pair) ; mark tree predecessors of N
FOR Each number pair PM-Pair-V at ¢ DO
Redundant-Pair-Elimination {PM-Pair-V); eliminate ony redundant pairs

Order-Strand{) ; enumerate the marked processors
Propagate-Pair(P M-Pair-V) ~ ; propagate U and V pairs
Unset-Pvars _; do some house keeping

END FOR ‘ ‘

END

6. PERFORMANCE IN THE GR AND THE DSR

6.1. Space and run-time complexities

We now analyre how many processors are required for implementing the GR. and DSR.
Apgrawal ef al. proved that [LN—TEJ number pairs are required to represent the worst case
of a hipartite graph G with N nodes [18]. Let N be the number of nodes (the number of
tree pairs) and P be the number of graph pairs in a DAG; then in the worst case

P:{MJMM | e

Let £ be a predefined maximum number of graph pairs for the GR. For the GR the total
space requirement is O(k * V). In the worst case k can be O(V) and the space compléxity
for the GR. is O(N?). Note that we are currently fixing & to be 8 as a good compromise
between processor use and efficiency of the algorithm. In the DSR the space complexity
is

0(N+2_*G)=0(N+2*([W—ZI_PJ —N)) = O(N?) .7 . (4)

85

i.e., the same space complexity in the worst case. However, the DSR does not have the
problem of unused processors.

Now we analyze the run-time complexity for the GR and DSR. Qur paralle] algo-
rithms for subclass verification and propagation were presented in Sections 4 and 5. In
order to analyze the time complexity of these algorithms, we need to define the following
parameters:

TN, : Parallel time to determine whether the tree pair of N encloses the tree pair

of C.

T,(N, C} : Parallel time to determine whether the predecessors of N have a graph pair
from C.

T4(N) : Parallel time to determine every predecessor of a node N.

Tw{N} : Parallel time to determine every tree predecessor of a node N.

T.(N) : Parallel time to determine every graph predecessor of a node N.

T (N, C) : Parallei time to replace pairs at the predecessors of N with pairs from C or
mark the processors where redundant pairs may have appeared.

T,(N) : Parallel time to propagate a number pair to the marked predecessors.

P(CY : Average number of number pairs in C.

In the subclass verification algorithm, there are two possible cases with IS-A-VERIFY
(N, C). I N is a tree predecessor of ', the run-time for this operation is Ty. If N is a
graph predecessor of C, the run-time is 7,. Assuming a unit communication time [21], a
commonly made assumption, T; and T are O(1). Therefore, averall run-time complexity
for subclass verification is constant.

One guestion which arises now is whether there are any differences in run-time com-
plexity between the GR and DSR. The difference between the two representations is not
in-the verification processing, but in the graph pair distribution. The run-time complexity
of the subclass verification for the DSR. is the same as that in the GR. Consequently, we
have a constant subclass verification algorithm in both cases.

In the propagation algorithm for the Double Strand Representation, there are two
processing steps required as mentioned in Section 5: one for tree predecessors and another
for graph predecessors. There are three phases: (1) identify the tree predecessors {Ty,) and
the graph predecessors (7)), (2) replace any redundant pairs (T}, and {3) enumerate the
predecessors and propagate number pairs (T,). We can formulate the average run-time
for the propagation algorithm as follows:

T = TN} + Tu(N) + P(C) # (T:(N, C) + To(N)). {(5)

As before Tpy,, Ty, Tr, and T}, can be regarded as constants because within constant proces-
sor set size, these do not grow with increasing knowledge base size. Then, we can simplify
the run-time eomplexity to O(P). Similarly, the run-time of the propagation algorithm
in the Grid Representation is

T' = Ty(N) + P(C) % (T:(N, C) + T(N)). (6)

By the same reasoning, it can be simplified to O(P).

86

Processor Utilization

MNumber of Processors .vs. Number of Nodes

100.0
80.0 |
7]
g 60.0 +
=3
(=
B
=
E
E 400}
=
20.0 | &
0‘0 1 : Fl L ¥
0.0 500.0 ~ 1000.0 1500.0 2000.0

Number of Nodes

Figure 10. Processors Utilization

6.2. Experimental results

In this section we present experimental results of the parallel subclass verification and .
number pair propagation algorithms for theé GR and DSR. The experiments were done on
a Connection Machine CM-5, which makes use of groups of virtual processors executing
serially on real processors. There are 32 real processors on the NPAC CM-5. Every
processor emulates the activities of at least 32 virtual processors. The CM-5 [47] is
programmed in *LISP, a dialect of Common LISP by mappmg parallel var1ab]es (p'uar)
onto distinct processors. -

6.2.1. Experiments with random data

For our experiments, we are using a random generator for DAGs. The following pa-
ramneters are supplied as input to this generatar: the number of nodes (N}, the hranching
factor of each node (B}, and the depth (D). Preliminary experiments with several values
of B and D showed that the computation time seems to be unaffected by Band D. Th]s
should be expected as we have eliminated the exphcit representatlon of the ISA hnks;
from the outset. Therefore, we limited D =9,...,12 and set B = 5. The effect of graph
size on run-time was determined for both represeutat]ons The number of nodes was var-
ied from 25 to 2000. Graphs have apprommately 20% of gra.ph arcs, e.g., a graph with
2000 nodes has about 400 graph arcs. ‘

For the GR, assume that & is 8. Then 1K processors are reqmred for 1 t0 128 nodes,
2K for 1 to 256, ..., 16K for up to 2K nodes. Processor utilization is very low, only up

87

Subclass Verification

Run Time .vs. Number of Nodes

0.014 . T T
pe-a Beg
H bl TEr-E-])
o.oiz ; GO GR
— 0.010 | i _
o :
Lre) i
@, h
© H
E H
= i
5) ;
= g.008 | ERED + B
i B
p.0ce |- 4
Q.004 . . :
6.0 500.0 1000.0 1500.0 2000.0

Number of Nodes

Figure 11. Run Time for Subclass Verification

to 18%. We also determined that the maximum number of actually used rows in the GR
was 5. o - : -

Our experiments with random graphs showed that the number of graph pairs increased
at approximately the same rate as the number of nodes. For instance, 48 graph pairs
are generated in a 100-node graph, ..., 900 graph pairs in a 2000-node graph. In our
experiments, typically, the number of graph pairs is limited to less than half the number
of tree pairs. According to that, for the DSR, approximately 1K processors are required
for graphs with up to 0.5K nodes, 2K processors for graphs with up to 1K nodes, and 4K
for up to 2K nodes with very high processor utilization (up to 99%). In Figures 11-13, the
run-times jump at two critical peints, namely at the node numbers 500 and 1000. These
jumps are due to doubling of the number of allocated virtual processors, i.e., from 1K to
2K and 2K to 4K. As the number of real processors stays the same, every real processor
has to double the number of operations it performs. The DSR shows better performance
than the GR in terms of both the amount and utilization of processors with increasing
knowledge base size {(Figure 10).

For the comparative run-time evaluation of DSR and GR with various sizes of the knowl-
edge base, we implemented the graph insertion, link insertion, and subclass verification
algorithms. The test data for link insertion makes a number of simplifying assumptions
which are based on problems described in [23]. Figures 11-13 show the results of experi-
ments with various sizes of the knowledge base. The figures show the run times in seconds

88

Graph Insertion

Bun Time .vs. Number of Nodes
Q.20 T T T

g----3a GR
Gt DBRA

gQa----EH-E-g-a |

Run Time {Sec.)
o
o

ll \E
.‘. L g e e LY
I 1
0.05 5B /
ARGl
0.00 . . :
0.0 500.0 1000.0 1500.0 2000.0

Number of Nodes

Figure 12. Run Time for Graph Insertion

over the total numbers of nodes in a graph for the subclass verification (Figure 11), graph
ingertion (Figure 12), and link insertion (Figure 13) in both representations. As can be
seen, the computation times of subclass verification and dynamic update algorithms in
the DSR grow much more slowly than in the GR. Tt is interesting that the execution time
for increasing numbers of nodes in a graph are almost the same for constant processor set
size.

In summary, when we are increasing the size of the graphs, the cost of implementing
the subclass verification and number pair propagation algorithms in the DSR. in terms of
processor utilization is much lower than that in the GR. For run-times, the DSR becomes
better for over 500 nodes.

6.2.2. Experiments with INTERMED

Now we want to show experimental results using an existing large medical vocabulary.
We have tested our verification and update operations in the Grid Representation and the
Double Strand Representation using the INTERMED (INTERnet version of the Medical
Entities Dictionary). system of CPMC {Columbia Presbyterian Medical Center) [35-38].

The INTERMED system currently has about 2,500 medical terms. Thege terms are
related by general relations such as IS-A, but also by domain specific relations such as
PHARMACEUTIC-COMPONENT-OF.

The following results show the necessity of the Double Strand Representation as well as

89

Link Insertion

Run Time .vs. Number of Nodes
0.40 T T v

0.35 | -

0.30

025 2]

0.20 | i

Run Time (Sec.)

0.10

a.05

0.0 500.0 10C0.0 1500.¢ 2000.0
Number of Nodes

Figure 13. Run Time for Link Insertion without Propagation

the efficiency of the Double Strand Representation. First, we extracted information from
the INTERMED and then translated it into a format fit for our system. Each term in the
INTERMED is treated as a node and we maintain only the IS-A relation. We used 8K
processors with the Double Strand Representation while 32k would be necessary with the
Grid Representation. The average run-times for a subclass verification, a graph insertion,
and a link insertion in the Double Strand Representation are 0.0004 sec, 0.023 sec, 0.139
sec, respectively. Figure 14 shows the run-time results for the link insertion algorithm
over the number of pairs propagated. As the number of number pairs to be propagated
increases, the run-time for the link insertion algorithm increases. This confirms our claim
in Section 6.1 that the run-time for the number pair propagation algorithm is proportional
to the number of number pairs to be propagated.

In the Double Strand Representation, 2494 tree pairs and 1442 graph pairs are gener-
ated. However, some nodes have up to 456 graph pairs. This means 449 graph pairs cannot
be represented in the Grid Representation because the Grid Representation restricts the
number of rows to 8.

As it would be guite unacceptable to extend the Grid Representation to 512 rows, this
result shows that with real data the Grid Representation is not practical at ali, while the
Double Strand Representation performs well.

90

-Link Insertion

Run Time vs. Number of Pairs to be propagated
4.0 T T

3.0 F -

Run Time (Sec.)
]
o

0.0 o 10.0 20.0 30.0
The Number of Number Pairs to be propagated

Figure 14. Run Time for Link Insertion with Number Pair Propagation

7. CONCLUSION

In this paper, we have introduced a new massively parallel representation for class
hierarchies that are constrained to be representable by directed acyclic graphs. We call it
the Double Strand Representation. This representation maps the node set representation
onto a linear space of processors. Processor space is divided into two strands, the tree
pairs strand and the graph pairs strand.

We showed how the DSR can be used to quickly verify the existence of an IS-A re-
lationship that is possibly the result of transitive closure, and therefore not explicitly
represented. We also showed how to implement the propagation of a number pair in
parallel. Propagation is fundamentally necessary for every update operation based on
Agrawal ef ol’s encoding.

Experimental results show that the processing times of subclass verification and number
pair propagation are mainly affected by the number of allocated processors. The DSR
achieves high performance compared with the GR in terms of processor utilization and
run-time.

Acknowledgments o .
We thank James Cimino for making the MED available to us and for explaining it to us.
Scott C. Pearson has written the random graph generator that was used for providing us

wi
of

91

th random test data. We also thank Mike Halper who has improved the presentation
this book chapter.

REFERENCES

1.

2,

10.

11.

12.

13.

14.

15.

16.

17

R. I. Brachman, On the epistemological status of semantic networks, Associative
Networks (N. Findler, ed.), pp. 3-50, New York, NY: Academic Press, 1979.

R. J. Brachman and J. Schmolze, An overview of the KL-ONE knowledge represen-
tation system, Cognitive Science, vol. 9, no. 2, pp. 171-216, 1985.

W. A, Woods, What's in a link. foundations for semantic networks, in Representation
and Understanding (D. G. Bobrow and A. M. Collins, eds.), pp. 35-82, New York,
NY: Academic Press, 1975,

W. A. Woods, Knowledge representation: What’s important about it?, in The Knowl-
edge Frontier (N. Cercone and G. McCalla, eds.), pp. 44-79, New York, NY: Springer
Verlag, 1987.

A. Borgida, R. J. Brachman, D. L. McGuinness, and L. A. Resnick, CLASSIC: A
structural data model for objects, in Proceedings of the 1989 ACM SIGMOD Interna-
tionat Conference on the Management of Data, appeared as SIGMOD, vol. 18, no. 2,
pp. 5867, 1989.

R. J. Brachman, R. E. Fikes, and H. J. Levesque, KRYPTON: A functional approach
to knowledge representation, IEEE Computer, vol. 16, no. 10, pp. 67-73, 1983,

R. M. MacGregor, A deductive pattern matcher, Seventh Notional Conference on
Artificial Inlelligence, pp. 403-408, San Mateo, CA: Morgan Kaufmann, 1988.

B. Nebel and K. von Luck, Tssues of integration and balancing in hybrid knowledge,
GWAI-87 (K. Morik, ed.), pp. 114-123, Berlin, Germany: Springer Verlag, 1987.

5. Bayer and M. Vilain, The relation-based knowledge representation of King Kong,
SIGART Bulletin, vol. 2, no. 3, pp. 15-21, 1991.

W. Kim, N. Ballou, H.-T. Chou, and J. F. Garza, Features of the orion object-oriented
database system, in Object-Oriented Concepts, Databases, and Applications (W. Kim
and F. H. Lochovsky, eds.), Reading, MA: Addison Wesley, 1989,

€. Lecluse, P. Richard, and F. Velez, Oy an object-oriented data model, Readings in
Object-Oriented Database Systems (S. B. Zdonik and D. Maier, eds.), pp. 227-236,
San Mateo, CA: Morgan Kaufmann, 1990. :

V. Soloviev, An overview of three commercial object-oriented database management
systems: ONTOS, ObjectStore and Oy, SIGMOD Record, vol. 21, no. 1, pp. 93-104,
1992.

Q. J. Dahl and K. Nygaard, SIMULA-an ALGOL-based simulation language, Com-
munications of the ACM, vol. 9, no. 9, pp. 671-678, 1966.

A. Goldberg and D. Robson, Smalitalk-80: The longuage and ifs implementation.
Reading, MA: Addison Wesley, 1983.

§8. C. Dewhurst and K. T. Stark, Programming in C++. Englewood Cliffs, NJ: Pren-
tice Hall, 1989.

L. Cardelli and P. Wegner, On understanding types data abstraction, and polymor-
phism, ACM Computing Surveys, vol. 17, pp. 471-522, 1985.

- 5. E. Keene, Object-Oriented Programming in COMMON LISP. Reading, MA:

92

18.
19.
20.
21.
22.
23.
24.

25.

26.
27.

28.
29.
30.
31

32.

33.
..computationally effective recognition queries; in Proceedings of the Eleventh Nutional

Addison-Wesley, 1989.

R. Agrawal, A. Borgida, and H. V. Jagadish, Efficient management, of transitive rela-
tionships in large data and knowledge bases, in Proceedings of the 1989 ACM SIGMOD
International Conference on the Management of Data, (Portland, OR), pp. 253-262,
1989.

H. V. Jagadish, A compressed transitive closure technique for efficient fixed-point
query processing, (San Francisco, CA), pp. 209-223, 1988,

K. Guh and C. Yu, Efficient management of materialized generalized transitive elosure
in centralized and parallel environments, IEEE Transoctions on Knowledge and Data
Engineering, vol. 4, no. 4, pp. 371-381, 1992,

W. Wang, 5. Tyengar, and L. M. Patnaik, Memory-based reasoning approach for
pattern recognition of binary images, Pattern Recognition, vol. 22, no 5, pp. 505-518,
1989.

J. Han and W. Lu, Asynchronous chain recursions, IEEE Transactions on Knowledge
and Data Engineering, vol. 1, pp. 185-195, 1989.

E. Y. Lee and J. Geller, Representing transitive relationships with parallel node sets,
in Proceedings of the IEEE Workshop on Advances in Parallel and Distribuled Systems
(B. Bhargava, ed.), pp. 140-145, Los Alamitos, CA: IEEE Computer Society Press,
1993.

E. Y. Lee, Massively Parallel Reasoning in Transitive Relationship Hierarchies PRD
disserfation, NJIT, 1996,

J. Geller, Upward-inductive inheritance and constant time downward inheritance in
massively parallel knowledge representation, in Proceedings of the Workshop on Par-
allel Processing for AT at IJCATI 1991, (Sydney, Australia), pp. 63-68, 1991.

J. Geller and C. Y. Du, Parallel implementation of a class reasoner, Journal of Ex-
perimental and Theoretical Artificial Intelligence, vol. 3, pp. 109-127, 1991.

J. Geller, Innovative applications of massive parallelism, AAAT 1993 Spring Sympo-
sium Series Reports, Al Magazine, vol. 14, no. 3, p. 36, 1993.

J. Geller, Massively parallel knowledge representation, in AAAT Spring Symposium
Series Working Notes: Innowative Applications of Massive Porallelism, pp. 90-97,
1993.

L. Kanal, V. Kumar, H. Kitano, and €. Suttner, Inheritance operations in mas-
sively parallel knowledge representation, Perallel Processing for Artificial Intelligence,
pp- 95-113, New York: North Holland Publishing, 1994.

H. Kitano and J. Hendler, Advanced update operations in massively parallel
knowledge representation, in Massively Porallel Artificial Intelligence, pp. 74-101,
AAAT/MIT Press, 1994,

L. K. Schubert, M. A. Papalaskaris, and J. Taugher, Accelerating deductive infer-
ence: special methods for taxonomies colors and times, in The Knowledge Frontier
(N. Cercone and G. McCalla, eds.}, pp. 187220, New York, NY: Springer Verlag,
1987. .

M. Evett, L. Spector, and J. Hendler, Knowledge representation on the connection
machine, in Supercomputing ‘89, (Reno, Nevada), pp. 283-293, 1989.

M. P. Evett, J. A, Hendler, and W. A. Andersen, Massively parallel support for

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.
46.

47.

93

Conference on Artificial Intelligence, pp. 297-302, Cambridge, MA: MIT Press, 1993.
K. Stoffel and J. Hendler, PARKA on MIND-supercomputers, in 1JCAI-95 Workshap
Program Working Notes, (Montreal, Quebec), pp. 132-142, 1995.

J. J. Cimino, G. Hripesak, §. B. Johnson, and P. D. Clayton, “Designing an introspec-
tive, multipurpose, controlled medical vocabulary,” in Preceedings of the Thirteenth
Annual Symposium on Computer Applications in Medical Care, pp. 513-518, Los
Alamitos, CA: IEEE Computer Society Press, 1989.

J. J. Cimino, P. L. Elkin, and G. O. Barnett, “As we may think: The concept space
and medical hypertext,” Computers and Biomedical Research, vol. 25, pp. 238-263,
1992.

J. 1. Cimino, A. A. Aguirre, S. B. Johnson, and P. Peng, “Generic queries for meeting
clinical information needs,” Bulletin of the Medical Library Association, vol. 81, no. 2,
pp- 195-206, 1993.

J. I. Cimine, P. D. Clayton, G. Hripcsak, and S. B. Johnson, “Knowledge-based
approaches to the maintenance of a large controlled medical terminology,” Journal of
the American Medical Informatics Association, vol. 1, no. 1, pp. 35-50, 1994,

M. P. Evett, W. A. Andersen, and J. A. Hendler, Massively parallel support for effi-
cient knowledge representation, in Proc. of the 13th Int. Joint Conference on Artificial
Intelligence, pp. 1325-1330, San Mateo, CA: Morgan Kaufmann, 1993.

L. Shastri, Default reasoning in semantic networks: a formalization of recognition and
inheritance, Artificiel Intelligence, vol. 39, no. 3, pp. 283-356, 1989.

L. Shastri, Semantic Networks: an Evidential Formalization and its Connectionist
Realization, Morgan Kaufmonn Publishers, (San Mateo, CA),1988.

L. Shastri and V. Ajjanagadde, An optimally efficient limited inference system, in
Proceedings of IJCAI-20, (Boston, MA), pp. 563-570, 1990,

L. Shastri, A computational model of tractable reasoning — taking inspiration from
cognition, in Proc. of the 13th Int, Joint Conference on Artificial Intelligence, pp. 209—
207, San Mateo, CA: Morgan Kaufmann, 1993.

R. Sun, An efficient feature-based connectionist inheritance scheme, JEEE Transac-
tions on SMC, vol. 23, no. 2, 1993.

R. Sun, Integrating Neural and Symbolic Processes, Connection Seience, 1994,

R. Sun, Robust Reagoning: Integrating Rule-Based and Similarity-Based Reasoning,
Artificial Intelligence, no. 1, 1995.

Thinking Machines Corporation, *LISP Reference Manual Version 5.0 edition. Cam-
bridge, MA: Thinking Machines Corporation, 1988.

I
|
i
|

94

Eunice (Yugyung) Lee

Eunice (Yugyung) Lee received a BS degree in Computer Science from the University
of Washington at Seattle, in 1990. She is currently a Ph.D. candidate, expecting her
Ph.D. in the Summer of 1996, at the New Jersey Institute of Technology. Her research
has been published in workshops on parallel AT and on parallel and distributed systems.
Her current research interests include massively parallel knowledge representation and
reasoning, object-oriented modeling, and high performance distributed databases.

James Geller

James Geller received an Electrical Engineering Diploma from the Technical University
Vienna, Austria, in 1979. His M.3. degree (1984) and his Ph.D. degree (1988) in Computer
Science were received from the State University of New York at Buffalo. He spent the
year before his doctoral defense at the Information Sciences Institute (ISI) of USC in Los
Angeles, working with their Inteiligent Interfaces group. James Geller received tenure
in 1993 and is currently associate professor in the Computer and Information Science
Department of the New Jersey Institute of Technology, where he is also Director of the Al
& OODB Lahoratory. Dr. Geller has pubtished numerous journal and conference papers in
a'number of areas, including knowledge representation, parallel artificial intelligence, and
object-oriented databases. His current research interests concentrate on object-oriented
modeling of medical vocabularies, and on massively parallel knowledge representation and
reagsoning, James Geller was elected SIGART Treasurer in 1995, His Data Structures and
Algorithms class is broadcast on New Jersey cable TV.

Home Page: http://hertz.njit.edu/~geller

