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Abstract. One method to overcome the notorious efficiency problems of logical
reasoning algorithms in Al has been to combine a general-purpose reasoner with
several special-purpose reasoners for commonty used subtasks. In this paper we
are using Schubert’s (Schubert ez al. 1983, 1987) method of implementing a
special-purpose class reasoner. We show that it is possible to replace Schubert’s
preorder number class tree by a preorder number list without loss of functionality.
This form of the algorithm lends itself perfectly towards a parallel implementa-
tion,! and we describe design, coding and testing of such an implementation. Qur
algorithm is practically independent of the size of the class list, and even with
several thousand nodes learning times are under a sccond and retrieval times are
under 500 ms. '
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1. Introduction

In this paper we share the beliefs expressed by Shastri (1988, 1989) that “To be
deemed intelligent, a system must be capable of action within a specified time
frame’, (1988, p. 3) because ‘in spite of operating with a large knowledge base,
human agents take but a few hundred milliseconds to perform a broad range of
cognitive tasks’ (1988, p. 2}. As Shastri we conclude that ‘A possible solution of
the computational effectiveness problem lies in a synthesis of the limited inference
approach and massive parallelism’ (1988, p. 4; author’s italics).

One of the most investigated constructs of artificial intelligence and knowledge
representation is the class hierarchy. It has been treated, with slightly different
orientations, by many researchers. A class hierarchy is the central element of
KL-ONE (Brachman 1979, Brachman & Schmolze 1985, Woods 1975) and of
other members of the KL-ONE family, e.g. KRYPTON (Brachman et al. 1983),
LOOM (MacGregor 1988), KL-TWO (Vilain 1985), and BACK {Nebel & von
Luck 1987).

Class hierarchies also form the basis of work in the ‘inheritance community’.
Based on Fahlman’s (1979) landmark dissertation, Touretzky (1986) has described
the mathematics of inheritance systems. Different approaches to inheritance
following this paradigm have been reported recently, e.g. by Horty & Thomason
(1988), Padgham (1988), and Stein (1989).

Ideas about class hierarchies go back to Quillian’s (1968) original work on
semantic networks which already contained a class subclass link. His memory
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model was the basis for subsequent spreading activation theories (Collins & Loftus
1975, Anderson 1983) and as such became a major source for the development
of cognitive science as a field. For more details on the development of class
hierarchies the reader is referred to Brachman & Levesque (1985) and Brachman
et al. (1989), which cover the knowledge representation view; Collins & Smith
(1988) which covers the cognitive science aspects, and finally Shastri’s (1989)
review.

In his papers Shastri describes a fast method to deal with attribute inheritance
and recognition of instances with given attributes in an integrated framework that

. lends itself to a connectionist implementation. The task that we are attacking in
this paper is more limited than Shastri’s. We are interested only in maintaining
a class hierarchy for the purpose of verifying whether two given classes stand in
a subclass-superclass relation or not. However, we show the complete implemen-
tation of our ideas on an existing parallel hardware facility. We agree with Wilson
(1989) that the SIMD architecture (= single instruction multiple data) is a good
candidate for building parallel intelligent systems, and with Evett et al. (1990)
that the Connection Machine is a good candidate for building parallel knowledge
representation systems.

Among the large number of papers that deal with class hierarchies we have
found Schubert ez al.’s work (1983, 1987) especially valuable, because it shares
our interests in limited inference class reasoners. Schubert’s papers describe a
system that combines a general-purpose logic based reasoner with four special-
purpose reasoners for commonly performed mental operations. These special-
purpose reasoners deal with classes, parts, time, and colors.

The basic idea of Schubert’s class reasoner is to define one (or a small number
of) class tree(s), i.e. strict hierarchies. In one such tree, a node represents a
subclass of the class represented by its parent node. Every node has a pair of
numbers associated with it. Figure 1 shows an example of such a tree. The first
number of every pair is the right to left preorder traversal number of this node
in the tree. That means that we perform a standard preorder traversal, but we
always start with the rightmost child instead of the leftmost child. On the way
we count the nodes that we are traversing and store with each node its own
count. This is the preorder traversal number.

The second number of every pair is the highest preorder traversal number
among all the descendents of this node. If a node is a leaf node, then the second
number is by definition identical to the first number. (One can replace this
definition by saying that a node is a descendent of itself.) We will refer to the
first number of every number pair as the PRENUM and to the second number
of every number pair as the MAXNUM of the given node.

These number pairs make it possible to decide whether a class B is a subclass
of a class A by comparing the number pairs of A and B. If the interval defined
by the number pair of B is a subinterval of the interval defined by the number
pair of A, then B is a subclass of A. If the two intervals defined by the two
number pairs are disjoint, then no such subclass relation exists. Note that
Schubert’s definition makes cases of partial overlap of two intervals impossible.

Compare in Figure 1 the node Bird with reference to the node Animal; (5, 7)
is a subinterval of (3, 7), and therefore a Bird is an Animal. On the other hand,
(5, 7) is not a subinterval of (8, 8), therefore a Bird is not a Mineral. If number
pairs are associated with node symbols through a hashing mechanism very efficient
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Thing (1, 8)

Mineral (8, 8)
Plant (2, 2)

Bird (5. 7) Dog (4, 4)

Eagle (7.T) Crane (6, 6)

Figure 1. A tree with preorder numbering.

verification of subclass relations becomes pOSSIbIe without requiring an actual
traversal of the tree.

Unfortunately, Schubert does not make any mention of an update operation
in the above papers. The .extreme retrieval efficiency of his algorithm stands in
stark contrast to naive update algorithms which require the complete recomputation
of all number pairs. In previous work (Simha er al., 1989, Kerven & Geller 1989)
we have investigated methods to improve the update behavior of this class tree.
During this work both we and Simha independently realized that the numbering
scheme effectively makes the tree unnecessary.

In this paper we will limit ourselves to one single update operation, (is-a B C),
which asserts that B is a subclass of C. For now we assume that B is a previously
unknown class, a limitation that will be relaxed in Section 3. A class tree is built
by repeated calls to the is-¢ function. For instance, the tree in Figure 1 could
have been built by a sequence such as (is-a plant thing), (is-a animal thing), (is-
a dog animal), (is-a mineral thing), (is-a bird animal), (is-a crane bird), (is-a eagle
bird). Contrary to the impression created by this example, it is permissible to
maintain several disconnected class trees belonging to the same hierarchy. This
happens if the node C is rot previously known. We will permit only one retrieval
operation {isa-p I} E), which returns true if D is a subclass of E, and nil otherwise.

In Section 2 and Section 3 of this paper we will show that a linear representation
of a Schubert tree is sufficient for all necessary update and retrieval operations.
In Section 4 we will argue that the list representation of a Schubert tree is ideal
for the fine-grained parallelism as it is incorporated in the Connection Machine.?
In Section 5 we will discuss an implementation of our linear class trees on the
Connection Machine and show that it performs well in the temporal ranges
required by Shastri’s notion of computational effectiveness (Shastri 1988, p. 3).
Section 6 describes limitations and future work, and Section 7 contains our
conclusions.

2. The linear tree representation

2.1 General description

Given that all the information necessary for answering questions about subclass
relations is contained in the number pairs, we may eliminate the explicit
parenthood relations and represent the tree as a list of nodes. Of course it would
be nice if we can choose a structure such that update operations become easy. It
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turns out that this is the case if we generate a list of nodes from the tree by
collecting nodes during a left to right preorder traversal.

In this section we will show that this representation conveniently discriminates
between the nodes that need to be updated and the nodes for which the number
ranges do not change at all. We will also show that the list can be updated
consistently with the tree representation by adding a new child node in the list
right after its parent node. Finally we will show how the pairs have to be updated
such that the list stays the functional equivalent of a Schubert tree.

2.2 Update rule and update range for the tree

. An important property of a Schubert tree is that the order of a set of siblings
does not contain any relevant information. We make use of this fact by requiring
that a new sibling is always added at the left-most position.

Theorem 1. Let a tree T be transformed into a list L by a left to right preorder
traversal. If a node X is added to T as a child of a node P (as a left-most sibling),
resulting in a tree T, then the following holds true. The list L’ created from I
by a left to right preorder traversal will be identical to the list L" created from
L by inserting X to the immediate right of P. :

Proof: Assume that a node X is added under a node P as its first descendent
or as the left-most sibling of all its descendents. Assume farther that before
X is added the node in L that comes immediately after P is N (if it exists).
That is, L” contains the consecutive subsequence (P,X,N). Clearly N must
be the left-most child of the nearest ancestor of P (including P itself) that
is to the right of the path from the root R to P.

It is well known that in a left to right preorder traversal all the nodes of
a subtree come immediately after its root, and before any other nodes.
Therefore, if X is added to T as described, then L' will contain the sequence
(P,X,N). No other area of the tree will be influenced. Therefore L' is
identical to L". d

Figure (2b) shows two examples of possible positions of N. Figure (2a) shows
the situation where P is interpreted as its owh ancestor.

Let P(X) be the path in the tree T from the parent P of X to the root R. The
path P(X) partitions the tree into three areas (see Figure 3):

1. The left part L,{X) of all nodes to the left of P(X).
2. The right part R-{X) of all nodes to the right of P(X).
3. The path P(X) itself, containing all the ancestors of X.

Theorem 2. If a new child node is added to a Schubert tree, then the following
update rule holds in the tree:

1. There is no change to the pairs of RA{X).

2. For all the nodes of LAX) the PRENUM and the MAXNUM have to be
incremented by 1. -

3. For all the nodes of P(X) the MAXNUM bhas to be incremented by 1.

Proof; Theorem 1 implies that the PRENUM of each node in L(X) is
incremented by 1, as its position in the right to left traversal order is delayed
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Figure 2. Possible positions of succeeding nodes.
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Figure 3. Left and right parts of a tree.

by one, due to the addition of X. Similarly, one can see that the PRENUM
of each node in Ry(X) U P(X) is not changed, because these nodes come
before X in the right to left traversal.

Since the PRENUM of each node in LX) is incremented by 1, the
PRENTUM of all descendents of each node in L{X) is also incremented by
1, because they are all in L (X). Hence, the MAXNUM of each node in
LAX), which is defined as the largest PRENUM of any of its descendent
nodes, is also incremented by 1.

All descendents of each node in R{X) are also in R(X), and thus their
MAXNUM is not changed. The descendent of highest PRENUM for each
node in P(X) is either the new node X or a node in LAX). Thus the
MAXNUM of every node in P(X) is incremented by 1. d

2.3 Correct update in the list representation

So far we have shown how to update the tree representation correctly. Now we
have to show how to do the same update for the list representation. This is not
a trivial problem, because in the list representation the elements of L{X) and
P(X) are intermingled. We define L;(X) to be the part of the list representation
to the left of X, and R.(X) to be the list representation to the right of X.
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Theorem 3. The update rule for the list representation of a Schubert tree under
the operation of adding a new leaf X as a child of a node P is as follows:

1. The PRENUM is maintained correctly if we add 1 to the PRENUM of
~ every node N in L;(X) for which PRENUM(¥) > PRENUM(F) and leave

it unchanged otherwise,

2. The MAXNUM is maintained correctly if we add 1 to the MAXNUM of

every node in L, (X) and leave it unchanged otherwise.

Proof: Using Theorem 1 it is obvious that the nodes in Ry{X) are the same.
nodes as in R, (X). Using Theorem 2 we know that the PRENUM and
MAXNUM of these nodes do not change.

L, (X) consists of the union of L{X) and P(X). According to Theorem
2 the MAXNUM for all nodes in LX) and P(X) have to be incremented
by 1. These are exactly the nodes in L, (X).

In order to update the PRENUM in L,(X) correctly, we need to
distinguish which nodes in L;(X) belong to P(X) and which nodes belong
to LAX). Clearly the right to left preorder numbering will visit all the nodes
in P(X) before it visits any nodes in L{X). Therefore, the PRENUM itself
tells us which nodes N belong to L{X), namely the ones that have
PRENUM(N) > PRENUM(P). O

The final question we have to address is how to construct the pair for the new
node X itself. This is the subject of Theorem 4.

Theorem 4. The overall numbering scheme of the linear tree representation is
maintained correctly if we assign X the number pair (MAXNUM(P),
MAXNUM(P)). This has to be done after P has been updated according to
Theorem 3.

Proof: This follows directly from our assumption that new nodes are added
to the tree in the left-most sibling position. Every parent node has as its
MAXNUM the largest PRENUM of any of its descendents, and by updating
P we have precisely made space for X in P’s number range. (Remember
that updating P meant incrementing its MAXNUM by 1.) |

2.4 Description of the algorithm
The theorems proven in the previous sections provide justifications for the
following serial algorithm that describes how to update the linear representation
of a Schubert tree while adding one single new node which is always a leaf.

Later, we will show that this algorithm is a special case of an algorithm that
permits adding a whole new subtree of independently developed class relations
into an already existing tree. The root of the second tree may be attached under
any node of the first tree as a left-most sibling. With this generalized algorithm
it also becomes possible to add a new root on top of an already existing tree.
The only cases that are not permitted by our generalized algorithm deal with
structural changes to the tree. For instance, it is not permitted to say that ‘A cat
is a thing’ and then later on to interpolate that ‘A cat is an animal’ and ‘An
animal is a thing’.

Suppose that the tree T has n nodes and its nodes are stored in a list L in the
way described above, L = (N, N3, N3y, .. ., N,, Nyyy, oo, Np). X is a new
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node and is going to be attached under node N, = P of T. PRENUM(N,) and
MAXNUM(N,) represent the right-left preorder number of node N, and the
maximal preorder number among its descendents in the tree.

ATTACHING_NODE(X, N,, L}
BEGIN
FOR k := 1to p DO
BEGIN
MAXNUMI(N,) := 1 + MAXNUM(N,);

IF PRENUM(N,) > PRENUM(N,}
THEN PRENUM (N,) := 1 + PRENUM(N,);;
END;

PRENUM(X) := MAXNUM(N,);

MAXNUM(X) := MAXNUM(N,);

INSERT X into L right after N
END.

We make the assumption that when the tree is empty, just assign
PRENUM(X) := 1 and MAXNUM(X) := 1 and put X into the empty list. Figure
4 shows a tree before adding a new node X, and Figure 5 shows the same tree
after adding it.

3. Extended algorithm for attaching a tree under a node

The case of connecting two trees Ty, T,, such that the root of T, stands in a
subclass relation to a node of T is a simple generalization of the algorithm for
adding a single node. The operation of inserting oné node into a list is replaced
by splicing the list of T into the list of T, to the immediate right of the parent
node P.

AL, 8

B(2.2)

Ga@.n F(6,6)

(A(LHHE,HCB,NEG NG, NFE 60D @ HB(2,2)

Figure 4. A tree with PRENUM and MAXNUM.
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A(L9)

B(2.2)

G(E.D
X(8.8) F{5,6)

AQNDHO,HCBNEG,XEB,8CGE,NFG.6)DME, 4B (2, 2)

Figure 5. The tree from Figure 4, with one node added.

The necessary operations for updating the number ranges for 7, change in so
far that we are now adding a ‘supernode’ that contributes more than an increment
of 1 to the nodes in L, that need updating. The increment to be used is identical
to the number of nodes of T, which is itself identical to MAXNUM(R,). (L, is
the list representation of the nodes in T, and R, is the root of T,). The only
other question is how the number ranges of T, itself have to be updated. This is
the subject of the following theorem, for which we will first prove a lemma.

Definition 1: The operation of shifting a tree T by C is defined as adding a
constant C to the PRENUM and the MAXNUM of every node in T.

Lemma 1: Shifting the linear representation of a tree T does not change the
retrieval properties and the update properties of T.

Proof: In order to verify that a class B is a subclass of a class A we need
to compare the number pairs of those two classes. B is a subclass of A iff
the interval (PRENUM(B), MAXNUM(RB)) of B is a subinterval of the
interval (PRENUM{A), MAXNUM(A)) of A. If we add C to all number
pairs of 7, then we will get (PRENUM(B)+C, MAXNUM(B)+C) for B
and (PRENUM(A)+C, MAXNUM(A)+C) for A, and the subinterval
relation will not change. This shows the insensitivity of retrieval operations
with respect to adding a constant C to all number pairs.

Update operations rely only on the number pairs that the tree has at the
time of updating and are therefore naturally independent of an added
constant. O

Theorem 5: In order to attach a tree T, at its root R, under a node P of a tree
T, using the linear representations L, and L, of those two trees the following
has to be done. The value that MAXNUM(P) had at the time before L, was
updated has to be added to the PRENUM and MAXNUM of every node of L4,
i.e. L; has to be shifted by MAXNUM(P). L, has to be updated as in Theorem
3, except that every increment by 1 has to be replaced by an increment by M,
the number of nodes of L;.

Proof: Following our Lemma it is obvious that the segment representing L,
after the splice operation will be internally numbered in a consistent way if
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we shift L; by MAXNUM(P). What is left to show is that the new number
pairs of L, are consistent with the updated pairs of L.

Clearly, R, will be numbered before the splicing operation with (1, M).
All the nodes that were originally to the right of P will not be changed. All
the nodes that were originally to the left of P, including P, will now be
delayed in their preorder numbering by M positions. The rest of the proof
is analog to the proofs in Section 2.2 and Section 2.3. X

We will now present the extended algorithm. Assume that 7, is stored as
Ly =Ny, Noy Nay oo N, Npuy, - G N and Tooas Ly = (M, M, . . ., M)
M, = R, 1s the root of 7, and M,’s number pair is (1, MAXNUM(M,)); the node
N, = P of T, has (PRENUM(N,), MAXNUM(N,)). According to the above
assumptions, the result of attaching T, under N, into T, will be:

Lll :(NllaNZ”NS’, .o -3Np’5M1,aM211 v -st"Np+l, .- '5Nn)'

In the above equation @’ denotes a node with the same class as ®, but with
its number pair changed according to Theorem 5.

ATTACHING_TREE(L,, N, Ly)

BEGIN
MAX_Np_NUM := MAXNUM(N,);
FOR k :=1 to p DO
BEGIN
MAXNUM(N,) := MAXNUM(M,) + MAXNUM(N,);
IF PRENUM(N,) > PRENUM(N,)
THEN PRENUM(N,) := MAXNUM(M,) + PRENUM(N,);
END;
FOR k :=1 to m DO
BEGIN
PRENUM(M,;) := PRENUM(M,) + MAX_Np_NUM;
MAXNUM(M,) := MAXNUM(M,) + MAX_Np.NUM;
END
INSERT L, into L, right after N,;
END.

An example of a complete update operation is shown in Figure 7. We attach the
tree from Figure 6 under the tree from Figure 4 such that the node V becomes
a child of the node G.

4. Parallelizing the algorithm

In this section we will first discuss a few basic concepts of the Connection Machine.
This discussion alone should make it clear that the update algorithm can be
parallelized with moderate effort, while the retrieval algorithm is almost a
paradigm example for the use of the Connection Machine and can be completely
parallelized with a few lines of code.

4.1 The Connrection Machine

The Connection Machine is a single-instruction multiple-data (SIMD) high-power
fine-grained parallel processing system. The basic architecture consists of a front
end and a set of small interconnected processors. The front end is usually a VAX
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or a Symbolics. The largest Connection Machine configuration consists of 64K
processors. Due to the astronomic price of this full configuration, smaller versions
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Y@, XG.3
(VLHNZENWZHYEHXE.3)

Figure 6. The tree to be attached.
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E(5,12) D@4, 4)

G(7.12) E(6,6)

V(§,12)

Z(12,12)

X (10, 10)

Y (11,11}

(A(LIDHUZLINCGIDEG I1GI 1) VE, 1) Z(12, 1) W (S, 11)
Y (11, 11), X 10, 10) F(6, 6) D (4, 4) B (2, 2))

Figure 7. The result of attaching a tree under G.

with fewer processors are also available.

Every one of the small processors has a limited amount of its own memory,
depending on the model, between 8K and 64K. Sixteen processors are implemented
on one chip, and the chips are interconnected as a hypercube. Nevertheless, the
user has a wide degree of flexibility in how he wants the processors to be organized
logically. To do this he can define so-called virtual processor sets using software

commands.

The two most useful configurations (according 10 our experience) organize all
available processors as one long chain, or as a two-dimensional grid.
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The Connection Machine can be programmed with Paris, a low-level language,
with a dialect of C, or with a dialect of LISP. The dialect of LISP is called “*LISP’
(pronounced Star LISP; Thinking Machines Corporation 1988) and is based on
the Common LISP standard, incorporating necessary extensions and limitations.
While the small processors are mostly using these extensions, the front end
processor has access to a full implementation of Common LISP.

The most important entity of *LISP (and Connection Machine software in
general) is a construct called a Pvar (parallel variable). A Pvar is a variable with
one name but many memory locations. More precisely, there is one memory
location on every small processor that corresponds to this variable name.

*LISP has two kinds of special constructs which are marked by a preceding *°
or a succeeding ‘!!” respectively. For instance, the *LISP command (+!! a b) will
add the values of the two Pvars a and b in every single processor. The *LISP
command (*sum c) will return the sum of the values of the Pvar ¢ taken from all
processors.

One more important concept will finish this minimal introduction. It is possible
to select at any time a set of active processors. Only these processors will be
considered for any operation executed. This construct permits selective operation
on processor groups in parallel and is therefore of fundamental importance.

In this research we are using the CM2 of the NPAC computing center in
Syracuse, and we are running it as a linear configuration of 8K processors.

4.2 Parallelizing the update algorithm
This section presents a parallel version of the update algorithm used when adding
a new node. We will informally explain the overall approach and then give an
algorithmic description of the part of the program that updates the pairs. Details
that distract from the general principles are omitted. ‘

Our basic approach is that one class node is represented by one processor. We
define three Pvars that store the name of the class of this processor, the value of
the PRENUM for that class, and the value of the MAXNUM for that class. A
list (standing for a tree) is represented by a segment of consecutive processors.
Because it is possible that several trees exist at the same time (as before any
attach operation) we distinguish between different lists by assigning all processors
of one list the same segment number, which is stored in another Pvar. Global
variables on the front end keep track of the number of processors used and of
the number of segments,

Entering a new node consists of the following steps:

1. Assume that a contiguous block of processors starting with the left-most
processor {processor 0) is in use.

2. Load the new child node into the first unused processor.

3. Identify the parent node. This is basically done by asking all processors
in parallel whether they are the parent node, and only one of them will
respond. '

4. Copy the whole block of all processors starting right after the parent node
and up to the last processor by one position to the right. More precisely, we
are of course not copying processors, but we are copying their contents to
the right. The important point here is that all processors are copied from the
point of view of *LISP by one single operation per Pvar used. There is no
looping or recursion, and the operation does not change whether three nodes
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are moved, or 3000 nodes are moved.

5. Copy the right-most processor in use, which contains the new child node,
to the position right after its parent node.

6. Update the PRENUM and MAXNUM of the child processor in the same
way as described for the serial case.

7. Update the PRENUM and MAXNUM of all processors to the left of the
processor that contains the parent node (including the parent node). This is clearly
also done in parallel and independent of the number of nodes in the tree.

The last item in above explanation corresponds to the FOR loop in our serial
algorithm.

FOR k := 1to p DO
BEGIN
MAXNUM(N,) := 1 + MAXNUM(N,};

IF PRENUM(N;} > PRENUM(N,}
THEN PRENUM(N,} := 1 + PRENUM(N,);
END;

A short look at this loop shows why it is an ideal candidate for parallelization.
Every single iteration in this loop is completely independent from every other
iteration. It is therefore possible to execute all iterations in parallel.

We would like to express this fact as a parallel algorithm. As is well known,
most algorithm descriptions are given in a form of pseudo-PASCAL. However,
the advent of parallel algorithms makes it impossible to be limited to such a
language, disproving once and for all claims that the algorithmic level is completely
abstract and separate from the language level of computing.® Our own algorithmic
description is therefore a mixture of *LISP and PASCAL without care about
parentheses, prefix notation and exact function names.

ACTIVATE-PROCESSORS-WITH
(SELF-ADDRESS!! >!! ¢!!) AND!!
(SELF-ADDRESS!! <=1 (!! pp

DO BEGIN
MAXNUM!! =111 +!! MAXNUM!!

IF!! PRENUMI! >!! (1! PRENUM(N,)) THEN!!
PRENUM!! :=!! 11! +!! PRENUM!!
END

SELF-ADDRESS!! is a Pvar that contains in every processor the running
number of this processor, starting with 0 and up to 8K. PRENUM! and
MAXNUM!! are Pvars containing the corresponding PRENUM and MAXNUM
values for every processor. 0! and 1!! are ‘constant Pvars’ containing the values
(0 and 1 in every processor. The operations =>!l, <=Il, IF!l, +! and :=!! do
exactly what one would expect them to do, except that they do it in parallel for
every single processor. Finally, the (!!) prefix operator that is used e.g. in (!! p)
transforms a single value into a parallel value.

The first four lines select a set of active processors, and therefore these lines
correspond functionally to defining the limits of the FOR loop. The fifth line
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adds 1 to the MAXNUM value in every single activated processor. The next two
lines add 1 to the PRENUM in every single processor, under the condition that
the previous value of the PRENUM is larger than the PRENUM of the parent
node. Note that all these operations are done in parallel.

4.3 Parallelizing the retrieval algorithm

For the retrieval algorithm two classes are given, and we want to verify whether
they stand in a superclass—subclass relation, by comparing their number pairs.
Thus, the front end processor broadcasts a signal to all used processors (in
parallel), asking them whether they contain the superclass or the subclass. Under
normal circumstances only two of the processors will respond (at most) and we
can then compare their number ranges.

5. Implementation

5.1 The program

The program is completely implemented following the descriptions given above.
Initial test clauses for a new is-a assertion have to decide whether the given
information does not contradict previously entered information, is not already
known, and does not contradict the required tree format of the class hierarchy.

If all these conditions are passed, a number of parameters have to be computed,
e.g. where the segment starts that has to be moved, etc. We have somewhat
simplified our previous explanation of the algorithmic steps by ignoring that an
attach operation might have to be done to the left, or to the right, which slightly
changes these parameters. We have also ignored intermediate segments not
involved in the actual operation, which complicates the movements slightly.

After those steps, the parallel version of the attach algorithm, i.e. of the second
algorithm, is executed. Finally, processors that were set and contain now invalid
information are erased.

There are two parts of this solution which could be improved. The first is the
unpleasant fact that *LISP cannot process symbolic atoms in parallel. We have
claimed before that there is a Pvar with the name of every class. This is not true,
because we could not test for these atoms in parallel. Rather, at the first mention
of every atom a hash table on the front end processor is used to translate the
class rame into an integer, and all further operations are performed with these
integers.

One (unattractive) alternative would be to store the class names as arrays of
characters. Other than that, we would hope that future versions of *LISP permit
storage and comparison of atoms on the individual processors.

A second problem is that the copying of groups of processors is done in a
wasteful way. Even if 8K of processors are available, it would currently be
impossible to connect two trees of size 4K each, because the algorithm would
involve copying a 4K segment to a group of unused processors, which would limit
the second segment in the extreme to the size 0. A safe version of the program
should limit the use of nodes to groups of under 8K/3 size. Alternatively the
reuse of one processor for several nodes has to be considered.

5.2 The test data
A program that tries to emulate human performance will need to deal with several
10,000s of nodes, so it is necessary to do testing with realistic problem sizes. To
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avoid the typing of several thousand assertions, test data were generated
mechanically. To make sure that these test data did not result in any erroneous
cases, which are uninteresting for our efficiency testing, the following strategy
was used.

A function built on (gensym) was written that creates new and unique LISP
atoms. This function takes three parameters, i, j, and k. Three pools of LISP
atoms are generated. The first pool is of size i. The second pool is of size i%,
and the third pool is of size i*i*k.

After these steps, every atom of the first pool is paired with j atoms of the
second pool. Every atom of the second pool is paired with k atoms of the third
pool. By doing this we create a set of i*j + i*j*k pairs of atoms. Every one of
these pairs is then interpreted as one is-a assertion and stored in a list. These
i*j + i*j*k assertions are then randomized in their order. The result list might
look as follows. ({is-a cl00I12 cl0031) (is-a cl0021 cl0056) . . .).

The described sctup corresponds to having { independent two-level class trees
with j intermediate nodes in every tree and j*k leaf nodes in every tree.

Testing means that all is-a assertions of the randomized list will be executed.
The time of executing the whole list is recorded, and a number of retrieval
operations (is an X a Y?) are executed and timed after that.

5.3 The test results

We will now present the results of our timing tests, which show that learning of
a new is-a relation can be done even for several thousand nodes in under 1
second, and that retrieval can be done even for the same large trees in under
0.5s. All experiments were done with compiled *LISP. However, the *LISP
compiler is more of a macro expander and does not compile every structure, even
if careful type declarations are given (which we did).

An issue that has to be addressed before showing actual timings are the garbage
collections of *LISP. Garbage collections are a fact of life in LISP, and for large
problems it becomes difficult as well as unrealistic to try to ignore them, or to
ity to eliminate the time component due to garbage collections. Therefore, when
we report the times of building a system of is-a trees with several thousand nodes,
the garbage collection times are distributed throughout those times.

On the other hand, if a garbage collection occurs during a retrieval operation
which takes at most 5 seconds (namely when we repeat the same operation 10
times to average the timing!) then 10 seconds of garbage collection do serious
harm to our measurement, and we will ignore such values.

In Table 1 we show the times it took to build class hierarchies. Some experiments
were repeated, and for those we will show all results. For every test run we show
the problem size, (that is Z, j, k), the total number of is-a relations, the user ran
time as reported by *LISP, and the user run time per is-a assertion. This last
number is, of course, the most interesting to us. '

Visual inspection of the above data shows a small increase of the time for one
assertion, when changing the problem size from 12 assertions to 4352 assertions.
More than doubling the problem size from 1872 assertions to 4352 assertions
results in a change of about 5%. Even for 4352 assertions, which is quite a decent
size for a realistic system, update times stay well under 1 s.

For retrieval tests we used three groups, the first of which has three subgroups
of data items.



Parallel Implemeniation of a Class Reasoner 123

Table 1. Run-times for update operations

Problem size Number of assertions Total run-time Run-timelassertion
(222) 12 4.8 0.4
333) 36 27.26 0.75
(333) 36 15.89 0.44
(44 4) 80 49.18 0.613
(555 150 107.43 0.716
(66 6) 252 176.08 0.698
{6 6 6) 252 193.57 .768
(777) 392 296.43 0.755
(8 8 8) 576 462.22 0.802
999 810 650.96 0.802
(999 810 639.87 0.789
(10 10 10) 1100 896.83 0.814
(11 11 11) 1452 1213.8 0.835
(12 12 12) 1872 1610.66 0.860
(12 12 12} 1872 1583.57 0.845
(13 13 13) 2366 2065.41 0.872
(14 14 14) 2940 2633.15 0.8955
(15 15 15) 3600 3376.99 (.9377
(16 16 16) 4352 3924.77 0.901

1. Both atoms are known and are also known to stand in a class—subclass
relation. (This case will be subdivided below.) In fact we retrieve the atoms
directly from the randomized list of test data.

2. Both atoms are known, but they are selected from different sets, such that
the is-a relation does not hold.

3. One of the atoms is known, one is a newly generated atom.

As might be expected, the first group is the slowest, and the most interesting. It
is the slowest because the PRENUM!! and MAXNUM!! are never retrieved for
an atom that is not known; therefore only in the first case all operations are
exccuted, and the time is therefore relatively the longest.

The first group needs to be subdivided as follows:

tm: One atom is from the top pool, and one item is from the middle pool.
mb: One atom is from the middle pool, and one item is from the bottom pool.
th: One item is from the top pool, and one item is from the bottom pool.

Because no tree traversal is performed, the top-bottom cases that span two levels
should not be slower than the other two cases,

Table 2 shows run-times for retrieval operations. The first row defines again
the problem size and the total number of is-a assertions processed. The first
column defines the type of operation according to the above subdivision, i.e.
1.tm 1.mb L.tb 2. or 3. The numbers in the fields show the run-times,

Many retrieval operations were repeated 10 times, to permit averaging of the
run-times. Those cases are marked by prefixing the subdivision number by ‘10x.’
In that case the time is not divided by 10, but given as required for 10 runs, As
mentioned above, we omit runs that were interrupted by garbage collections. A
‘=" in Table 2 indicates a garbage collection. All times are given in seconds.
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Visual inspection of the data confirms that retrieval times barely change with
the number of nodes in the system, and retrieval times do not grow for two-level
(tb) access as compared to one-level (tm, mb) access. As expected, times in group
1 are considerably longer than times in group 2 and group 3. The longest single
access time measure for all operations is 420 ms. This is well in the requested
range of ‘a couple of 100 ms’ for human-like information retrieval.

6. Current limitations and future work

Qur current theory is limited in that it permits only one kind of update operation.
We intend to investigate more sophisticated update operations that permit the
restructuring of an existing tree.

The current version of the program permits only one class hierarchy, although
Schubert et al.’s theory and common sense require the use of several independent
hierarchies. There is no difficulty in achieving this goal. The only change necessary
is to add several new Pvars. The same processor can be used as a node of several
independent class hierarchies.

Schubert et al. use a special-purpose reasoner for part hierarchies. Given our
own previous research on part hierarchies (Geller 1988, 1991, Geller & Shapiro
1987), this is an obvious choice for continuing our work on parallelizing special-
PUrpose reasoners.

7. Conclusions

Following work by Shastri (1988, 1989) and Schubert ef al. (1983, 1987) on special-
purpose reasoners we have shown a parallel algorithm that maintains and updates
a large system of subclass assertions.

The algorithm is based on a linear representation of a tree with nodes that are
numbered according to a preorder traversal scheme. We have proven in detail
that this linear representation has the full power of the original tree representation
with respect to update and traversal.

It was argued that the parallel algorithm is ideal for the fine-grained parallelism
exhibited by the Connection Machine, Such a parallel implementation was
presented and discussed in detail.

Timing experiments have shown that retrieval times are practically constant
with respect to tree size and are well under 0.5 s even for systems with several
thousand nodes. Update times grow very moderately with the size of the class
tree, but even for an example with over 4000 assertions, learning times for new
subclass assertions are well under 1 s.

We see this successful implementation as the proof that it is possible to solve
an important class of limited inference problems by using massive parallelism.
However, this work differs from Shastri’s in two major ways. The problem that
we are solving is much more limited. We are interested only in updating and
retrieving relations in a class hierarchy. No attributes are assigned to the classes,
and no inheritance or recognition is intended. On the other hand, we are using
existing parallel hardware, as opposed to a connectionist simulation on a serial
computer.
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Notes
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2. Connection Machine is a Trademark of Thinking Machines Corporation.

3. It is hard to resist reporting a stedent quip on the topic. ‘An algorithm -is when the. professor
cannot remember the semicolon rules of PASCAL, or when he is too lazy to declare his variables.”
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