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Parallel Transitive Reasoning in Mixed Relational Hierarchies

Eunice (Yugyung) Lee and James Geller
Department of Computer and Information Sciences
New Jersey Institute of Technology
Newark, NJ 07102

Abstract

Class hierarchies have been used tradition-
ally in Knowledge Representation and.Rea-
soning for a number of purposes such as in-
heritance, classification and transitive closure
reasoning, In the last several years we have
been following two lines of investigation to
extend this kind of research. From a con-
ceptual level we have worked on techniques
to extend such reasoning to hierarchies other
than the IS-A hierarchy. Specifically, we have
developed a model of inheritance for part hi-
erarchies (Halper 1992, Halper 1993, Halper
1994). From an implementation point of view
we have worked on building fast reasoners
based on massively parallel representations
of IS-A, Part-of, Contained-in, etc. hierar-
chies (Lee 1993, Lee 1995, Lee 1396a, Gelier
1991a, Geller 1991b, Geller 1993a, Geller
1993b, Geller 1994a, Geller 1994b). How-
ever, in all this work we assumed that there
exist separate hierarchies. In an often-cited
paper by Winston, Chaffin, and Hermann
{Winston 1987) a model of reasoning is intro-
duced that permits the combination of IS-A,
Part-of, and Contained-in in a single hierar-
chy. The purpose of our paper is to present
representational constructs and reasoning al-
gorithms that combine these three ingredi-
ents: mixed relation hierarchies, transitive
closure reasoning, and massively parallel al-
gorithms. It is hoped that this combination
will lead to progress both in better approx-
imating human commonsense reasoning and
in better approximating human speed of rea-
soning. We conclude the paper with a brief
description of a medical vocabulary that we
have been using as a source of test data.

1 INTRODUCTION

The use of IS-A hierarchies has been a main staple in
Knowledge Representation and Reasoning since Quil-
lian’s inception of semantic networks (Quillian 1968).
The number of papers that deals with other hierar-
chies of transitive binary relations is, comparatively,
much smaller. However, the Part-of hierarchy has re-
ceived some attention (Schubert 1979, Schubert 1983,
Schubert 1987). Specifically in (Schubert 1987) the
importance of transitive closure reasoning in IS-A and
Part-of hierarchies has been well explained. We have
previously done research on reasoning in Part-of hier-
archies, especially inheritance reasoning (Halper 1992,
Halper 1993, Halper 1994).

Schubert et al.’s approach to transitive closure reason-
ing has been an inspiration for us for another reason: It
permits transitive closure reasoning in constant time,
practically independent of the size of the knowledge
base. This scalability of reasoning power with growing
knowledge bases has been recognized as a very impor-
tant factor for improving implemented Artificial Intel-
ligence (Hendler 1995). In the past several years we
have developed techniques and algorithms for dealing
with two weaknesses of Schubert’s approach: (1) Up-
date algorithms are not independent of the size of the
knowledge base, and (2) Schubert’s original approach
is limited to trees. We have dealt with problem (1)
by using massive parallelism, following the paradigms
of Shastri, Kitano, Waltz, Hendler, and Evett (Shastri
1988, Shastri 1989, Shastri 1990, Kitano 1991, Kitano
1991b, Kitano 1991d, Kitano 1991e, Waltz 1990, Evett
1989, Evett 1993a, Evett 1993b). We have dealt with
problem (2) by adapting a representation of Agrawal
et al. (Agrawal 1989, Agrawal 1990) that permits di-
rected acyclic graphs instead of trees. As a result we
have developed and implemented massively parallel al-
gorithms for fast retrieval and update in hierarchies of
any kind of binary transitive relation (Lee 1993, Lee

el
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1995, Lee 1996a, Geiler 1991a, Geller 1991b, Geller
1993a, Geller 1993b, Geller 1994b, Geller 19943).

In this paper we are adding another ingredient to our
research. In (Winston 1987) it was pointed out that
it makes sense to combine different binary transitive
relations into a single reasoning process. However, not
every conclusion that can be drawn in such a case is
correct. Winston et al. describe a condition when such

reasoning is correct.

As an example, if the following premises are given:

(1) Wings are parts of birds.
(2) Birds are creatures.

We can consider the {ollowing two conclusions:

(3) Wings are parts of creature.
{4) Wings are creatures.

We have obtained a reasonable conclusion (3) while
(4) is an invalid conclusion (Winston 1987).

Winston et al. introduced a hierarchical priority order-
ing among the hierarchical refations (Winston 1987),
such that mixed inclusion relation syllogisms are valid
if and only if the conclusion expresses the lower rela-
tional priority appearing in the premises. For an alter-
native approach to transitivity reasoning with mixed
relations, see {Cohen 1988).

We have encountered a practical example of this kind
of reasoning in our test bed domain which will be de-
scribed now. J. Cimino et ol of Columbia Presbyte-
rian Medical Center have created a large Medical En-
tities Dictionary (MED) on top of a semantic network
model (Cimino 1989, Cimino 1992, Cimino 1993). The
MED is a very large vocabulary, incorporating over
43,000 terms, 55,000 IS-A links, 2,500 Part-of links,
etc. We have chosen to focus on the InterMED, an
offshoot of the MED (Cimino 1994).

The question was posed whether Aspirin can be
coated. Aspirin itself would be represented in the
MED as a concept. This concept might have several
descendants according to different common prepara-
tions, such as pills, drops, or capsules. Capsules con-
sist of two parts, the active ingredient and the coating.
Thus, the answer is “yes, Aspirin can be coated.” In
our research, we want to answer a question that a hu-
man could answer quickly in a similarly quick manner,
avoiding the overhead of a general-purpose reasoner.
One way to answer this question quickly within our
framework would be to use mized transitivity reason-
ing which combines different hierarchical relations into
one single hierarchy. The combined hierarchy would
permit a fast positive answer to the given question,

In the next section we will describe our previous work
on massively parallel reasoning in detail (Lee 1993,
Lee 1995, Lee 1996a, Lee 1996b). In Sections 3 and 4
we will concentrate on the definitions and algorithms
necessary for intuitively correct reasoning with mixed
relations and for implementing this kind of reasoning
within our massively parallel paradigm. Section 5 de-
scribes experimental results of our work with the In-
terMED. Section 6 contains our canclusions.

2 EFFICIENT REPRESENTATIONS
FOR CLASS HIERARCHIES

This research has focused on building a massively par-
allel transitive closure reasoner, called Hydra, that can
dynamically assimilate any transitive, binary relation
and efficiently answer queries using the transitive clo-
sure of all those relations (Lee 1996b). Hydra can
dynamically insert new concepts or new links into a
knowledge base. Hydra can respond to questions using
transitive part relations (Schubert 1987), or to ques-
tions of the kind “Is an elephant bigger than a can
opener”? if it knows that an elephant is bigger than a
person, and a person is bigger than a can opener.
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[8 8]Siamese

Figure 2: IS-A Hierarchy

Qur tool of choice for achieving fast query arid update
operations is fine-grained parallelism. This raises the
question of how to map the IS-A hierarchy onto the
available space of processors. The most obvious intu-
itive choice is to assign every class of the hierarchy to
a single processor. However, this intuitive choice does
not carry over to the links between classes (Lee 1996b).
We have developed a three step mapping (Figure 1) to
deal with this problem.

Step 1: In the first step, an IS-A hierarchy of classes
of the real world is mapped onto an isomorphic DAG
of nodes, with one class per node. In the simplest
_possible case this hierarchy is a tree. It consists of
nodes, which stand for classes, and connecting arcs,
which stand for the IS-A relation. In Figure 2, an
example of such an IS-A hierarchy is shown. The IS-A
relation is transitive. The node Feline is connected by
one IS-A arc to the node Mammal, which means that
every Feline is a Mammal. Due to the transitivity of
the IS-A relation, every Siamese is also a Mammal,

etc.

More interesting than trees are directed acyclic graphs
which open the possibility of multiple inheritance. In
Figure 3, Siamese has another parent, Domestic An-
imal. In addition, we have also extended the rep-
resentation to mixed inheritance hierarchies, i.e., hi-
erarchies that combine relations such as IS-A, Part-
of, Contained-in, Greater-than, etc., in one reasoning

module.

Step 2: In the second step (Figure 1}, the hierarchy of
nodes is mapped onto a set of those nodes, so that ev-
ery node is annotated with one or more number pairs.
This is called the node set representation. The number

Cheetah [7 7]

{8 8]Siamese

Figure 3: Directed Acyclic Graph of Class Hierarchy

pair assignment was developed based on Schubert et
al.’s (Schubert 1983, Schubert 1987) special-purpose
reasoner for subclass verification. Schubert ef al.’s ap-
proach (in a tree} permits transitive closure reasoning
in constant time, practically independent of the size
of the knowledge base. Note that in Figure 2, we may
conclude that a Cheetah is an Animal, because [7 7]is
contained in [3 9], Based on techniques that appear in
(Schubert 1987, Agrawal 1988), we have extended this
work to directed acyclic graphs (DAGs) (Figure 3).

In Figure 3, Siamese is a Domestic Animal because
[8 8] is a subinterval (or equal to) (8 8). This is
explained in more detail in the next section.

The node set representation makes it easy to represent
class hierarchies on arrays of processors. The node set
representation is completely order independent, i.e.,
node sets are used without loss of relevant hierarchy
information. This simplifies the parallel update oper-
ations necessary to maintain, e.g., a class hierarchy.
More details on our node set representation can be
found in (Lee 1993, Lee 1996b).

Step 3: In the third step (Figure 1), this node set
and the associated number pairs are mapped onto the
processor space of a fine-grained parallel computer.
We have developed and implemented two methods for
mapping this set-based representation onto the pro-
cessor space of a Connection Machine (initially CM-2,
then CM-5). These two representations, the Grid Rep-
resentation and the Double Strand Representation suc-
cessively improve tramsitive closure reasoning in run
time and processor space utilization.

In brief, our three step mabping (Figure 1) can be sum-
marized as follows: class hierarchy — directed acyclic
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Figure 4: A Backbone of Mixed Relational Hierarchy
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graph — node set + number pairs — processor space.
We repeat that as a result of this mapping we get,
within certain limitations, constant time responses for
transitive closure queries (Lee 1995). In other words,
it takes as much time to verify that a Cheetah is an
Animal as it takes to verify that a Cheetah is a Feline

(Figure 3).

3 EXTENSION TO MIXED
RELATIONAL HIERARCHY

Our main idea for constructing a mixed hierarchy rep-
resentation is to extend our previous approach (Lee
1995) and combine all hierarchical relations into one
mixed relational hierarchy. A mized relational hierar-
chy of the real world is mapped onto an isomorphic
directed acyclic graph of nodes. Then a special span-
ning tree of IS-A relations becomes the backbone of
the structure while other hierarchical relations form its
branches. Figure 4 shows the backbone and Figure 5
shows the backbone and the branches of an example.

The following questions regarding the mixed relational
hierarchy arise: First, how do we distinguish one rela-
tion from another? Second, how do we combine them
when required? These questions relate not only to the
construction of the hierarchy but also the transitiv-
ity reasoning. In order to avoid any possible conflict
due to a combination of relations, we shouid design
the mixed relational hierarchy to efficiently distinguish
one relation from another. Let us consider the exam-
ple in Figure 6. There, three relations IS-A, Part-of,
and Contained-in are involved in a mixed relational

hierarchy.

Qur representation, extending what was described in
Section 2, is generated as follows: (1) Construct an
optimal spanning tree of a given DAG such that at
every node with multiple parents, we select the link to
the parent with the maximum number of weak prede-
cessors. Informally, a weak predecessor ¥ of a node
X is a predecessor which is reachable from X by an
upward path containing at least one graph arc and Y
is at the head of a graph arc. A graph arc is an arc
that was found not to belong to the spanning tree. As-
suming a top-down algorithm, all relevant graph arcs
are known by the time they are needed. (2} Assign a
pair of preorder and maximum number to every node.
Preorder nuumbers are generated by a right-to-left pre-
order traversal of the spanning tree. The maximum
number for every node is the maximum preorder num-
ber in the subtree rooted at that node. Tree pairs
result from this step. {3) All the arcs that are not
part of the optimal spanning tree are used to propa-

gate number pairs upward. Graph pairs result from
this step. (4) The set of all nodes together with the
tree pairs and graph pairs is sufficient {o represent 3
class hierarchy. Tn Figure 6 we use the notation [r a
for tree pairs and the notation (7 p) for graph pairs.
For instance, “Water is a Fluid” exactly because the

number pair of Water {8 8] is contained in the pair for-

Fluid {5 11]. For more details, see (Lee 1993, Lee 1995
Lee 1996a). We need to integrate the different kindg
of relations into our numerical representation. For this
purpose, we introduce a data element, called “relation
type.” Each relation is associated with a relation type.

In this paper we assume that the possible relation
types are s (for IS-A), p (for Part-of), and ¢ (for
Contained-in). As shown in Figure 6, we assign the
lowest priority (1) to IS-A, the intermediate prior-
ity (2) to Part-of, and the highest priority (3) to
Contained-in. In this assignment we follow (Winston
1887). Now we need to define rules how the relation
type is assigned to a number pair.

Rule 1: The relation type of a graph pair that was
created by propagating a tree pair along one edge is
identical to the relation type of the edge.

Rule 2: If a pair with a relation type K with relational
priority X is propagated along an edge with a relation
type L with relational priority ¥ then the result

e[ K HY<X
"F1 L fY>X

is the relation type of the pair at the head of the edge.

In our example (Figure 6) assume that a Part-of arc
from Plasma to Blood was just inserted. Now the tree
pair 5{9 9] and the graph pair ¢(8 8) need to be propa-
gated to the nodes (Blood, Heart) {Lee 1996a). There-
fore, this pair s[9 9] is propagated through a Part-of
relation from Plasma to Blood, and a Contained-in re-
lation from Blood to Heart. The tree pair {9 9] of
Plasma,is propagated through Part-of to Blood, result-
ing, by Rule 1, in the pair p(9 9). Continuing from
Blood to Heart, the pair p(9 9) needs to be changed to
(9 9), by Rule 2. In contrast, the graph pair ¢(8 8)
at Plasma has a Contained-in relation type and its pri-
ority is higher than the Part-of relation of the arc from
Plasma to Blood and is equal to Contained-in of the
arc from Blood to Heart. Therefore, the pair ¢(8 8)
is propagated to Blood and Heart with its own rela-
tion type, by Rule 2. At this point, because Heart has
a pair e(8 &) that is propagated from Water, we can
conclude directly that Heart contains Water, using the

.
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A Mixed Relational Hierarchy

Symbol Relation Priority | Relation Type
—>| Isa 1 low) s
..................... B | Part-of 2 (mid)

““““““““ ® | Contained-in | 3 (high)

Figure 6: An Example of Constructing Mixed Relational Hierarchy

relation type c.

4 TRANSITIVE REASONING IN
MIXED RELATIONAL
HIERARCHY

In this section we show that we can achieve constant
time responses (for a given machine size) for parallel
transitive closure queries in a mixed hierarchy. Assume
that Ry, Ra,..., R, are hierarchical relations.

Definition I: A target of transitivity, T, is a node
at the end (top) of a path that is used for transitive
closure reasoning.

Definition 2: A source of transitivity, o, is a node at
the gtart (bottom) of the path that is used for transi-
tive closure reasoning.

We will now define paths with two different kinds of
transitivity.

Definition 3: A path P from o to 7 is purely transi-
tiveiif P=e¢ RyoyRyos ... Ry Tand By = Ry =
... = Ry.

Definition 4: A path P from ¢ to 7 is mized tran-
sitive (¢ R* 1) if P=¢ Ry oy Ry 05 ... R, T and
R? is such that Priority(z) = Maximum(Priority{R;),
Priority(R») , ..., Priority(Rn)).

Both transitivities satisfy the following property: If ¢
Ryoy...00 Ry 7 holds, then (c R7) & (R =R or
... R = Ry,). Importantly, pure transitivity reasoning
and mixed transitivity reasoning can be done in one
step. We will present how these mechanisms can be
integrated during reasoning.

‘We now query which relation holds form ¢ to 7. Qur
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transitive reasoning mechanism works based on an ex-
tension of a number pair propagation algorithm intro-
duced in (Lee 1996a). There we proved that if the
relation type of the path is IS-A, i.e., there is a tree
path from ¢ to 7, we can achieve the effect of having
all graph pairs of o at 7, without actually propagating
these pairs to 7, resulting in an additional saving of
space. Ahove “achieve the effect of having all graph
pairs” means that we can perform constant time sub-
class verification and all operations that rely on sub-
class verification, including propagation itself. We now
have to prove that the algorithm still works after in-
cluding the concept of relation type.

In Figure 7, the left part shows propagation based on
Agrawal’s approach (Agrawal 1989) and the right part
shows propagation based on our approach. When a
graph arc is inserted from { to ¢ with the relation
type T, we propagate the pair z(7 u) only to o instead
of propagating z(m p) up to all tree predecessors of
o (including 7). Our approach is called Maximally
Reduced Propagation and its advantages are explained
in (Lee 1996a). This example shows how we reduce the
number of graph pairs for all tree predecessors of o.
That the relevant algorithms work was proved in (Lee
1996a). We now show how we can achieve constant
time mixed transitivity reasoning for the z relation
type from § to all tree predecessors of ¢ (including o
and 7) with the maximally reduced pair propagation.

x(rn u)'r%\ T

S hR S
x(n L) \‘\
%‘\ A}
S \\ \‘ S
( ) \\\ v X
x(m Co
?\\ \‘x ‘| %
S ' \ : S
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S |'|' ': II [’ S
! '
xmp) 607 x(m ) ©
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Figure 7: Maximally Reduced Propagation

Lemma 1: Pure Transitivity in IS-A Path

Let BE* be an IS-A relation (R® = R*). o R® 7 holds
through a pure inference path, then after applying our
propagation algorithm from (Lee 1996a), the target +
or one of its tree successors will have a number pair

with the relation type z = s propagated from o or

from one of its tree predecessors.

Proof: By contradiction, assume that the target 7 has
a graph pair s(m, y,) from the source o, although an
arc A in the inference path from o to 7 is not an IS-A
relation. Since the IS-A relation has the lowest rela-
tional priority among all relations, the pair s(m, g,)
can not be propagated through A4 unless the relation
type of s(m, u,) changes to the relation type of the
arc A (Rule 2). Therefore, the pair (w5 p,) cannot be
associated with the relation type z = 5. This results
in a coniradiction. m

Lemma 2: Mixed Transitivity

Let R? be a relation. If a source o relates by R to a
target T because of a mixed inference path from o to 7,
the target T or its tree successor must have a number
pair with relation type x propagated from the source
o or its tree predecessor.

Proof: By using Rule 2, this is trivial. =

Theorem 1: If 7 (or a tree successor of T} has a pair
that contains (or is equal to) a pair from o (or a tree
predecessor of o) then the relation type of the pair
of  (or a tree successor of 7) tells the relation which
actually holds between ¢ and 7.

Proof: We prove it by using the above two lemmas.
If the relation is an IS-A relation, the query is an in-
stance of IS-A pure transitivity reasoning (Lemma 1).
Otherwise, the query is an instance of mixed transitiv-
ity reasoning or pure transitivity reasoning with other
relations (Lemma 2). m

Now we will show how to answer mixed and pure tran-
sitivity queries within our paradigm in parallel. We
divide pure transitivity into two subcases: one for an
IS-A relation and another for other hierarchical rela-
tions. A formal description of pure transitivity with
other relations will be omitted for space reasons. For
more details, see (Lee 1996b). Our massively parallel
Double Strand Representation (Section 2) uses pairs of
adjacent processors to represent a sequence of graph
pairs. In each pair one processor has an odd processor
ID and is used to represent a node which propagates
its tree pair and its right adjacent processor has an
even processor ID and is used to represent a node from
which a number pair is propagated (Figure 8).
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Figure 8: Double Strand Representation

We now introduce some CM-5 terminology. A par-
allel variable (pvar) is an array (possibly multi-
dimensional) where every component is maintained by
its own processor and all values are usually changed in
the same way and in parallel (TMC 1988).

In the algorithm, variables marked with !! are parallel
variables, and operations marked with !! or involving
parallel variables are parallel operations. The paral-
lel variable pre!! contains for every node its preorder
number, and the expression max!! stands for a par-
allel variable that contains for every nede its maxi-
mum number, and the expression reltype!! stands for
a parallel variable that contains for every number pair
its relation type. The functions prenum(), maxnum(},
and tree-pair() retrieve the preorder number, maxi-
mum number, and the tree pair, respectively, for the

given argument.

Additionally, the variable &, represents the lower
bound of the graph pairs strand and @, represents
the upper bound of the tree pairs strand. The parallel
function self-address!! returns IDs of all active proces-
sors and oddp!! contains TRUE on a processor if the
processor’s ID is an odd number. The parallel control
structure ACTIVATE-PROCESSORS-WITH consists
of two parts. The first part describes a set of proces-
sors to be activated. The second part, starting with
DO, describes what operations should be performed

on all active processors.
Algorithm: Pure Transitivity with IS-A (o, 7)

s Activate every processor that contains a pair with
the IS-A relation type (s).

e (Case 1: a tree path from ¢ to T}
Among active processors, check whether the tree

pair of ¢ is contained in or equal to the tree pair
of 7.

e (Case 2: a graph path from o to 7)
Among active processors, check whether any pro-
cessor has a tree pair of 7 or a pair of a tree suc-
cessor of T at an odd processor ID = x, and the

processor with ID = 2 + 1 contains a pair [prop-
agated| from the tree predecessor of o.

o Iff Case 1 or Case 2 is the case, return “yes.”

We now show a function IS-A-VERIFY that performs
pure subclass verification. As we mentioned above, if
T is a tree predecessor of ¢ (by IS-A-VERIFY-1) or 7
is a graph predecessor of ¢ (by IS-A-VERIFY-2), then
¢ IS-A 7. Note that as every tree pair has associated
with it a single relation type s, it is not necessary to
check the relation type for IS-A-VERIFY-1.

; B is-a A iff IS-A-VERIFY returns TRUE.
IS-A-VERIFY (o, 7: Node}: BOOLEAN
return(IS-A-VERIFY-1{o, 7} OR.
IS-A-VERIFY-2(o, 7))

IS-A-VERIFY-1 (o, 7: Node): BOOLEAN
; If T is a tree predecessor of o, then
; the tree pair of T subsumes the tree
; pair of o.
ACTIVATE-PROCESSORS-WITH
prenum(tree-pair(e)) >!!
prenum(tree-pair(r)}) AND!
maxnum(tree-pair(o)) <!!
maxnum(tree-pair{7)) AND!!
self-address!!() <!! &,
DO BEGIN
IF any processor is still active THEN
return TRUE
END

Now we will show how to verify that ¢ IS-A = when
T is a graph predecessor of ¢. Remember that a pair
of processors (U, V} in the graph pairs strand is used
to represent a graph pair propagation. The tree pair
in the odd processor (I/) is used to represent a node T
and the graph pair in the even processor (V) is used
to represent a node which propagates its tree pair to
7. Therefore, we are looking for a pair of processors
(7, V) such that the tree pair of T or of one of its
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tree successors is contained in processor U and the
graph pair of o or its tree predecessor is contained in
processor V. In the following functions the expression
mark!|[z] := y means that the pvar mark!! on the
processor with the ID x is assigned the value y. We
omit the initialization of mark/!.

IS-A-VERIFY-2 (o, 7: Node): BOOLEAN
; Activate every occurrence of the tree pair of
; T or its tree successors assaciated with the
; 5 relation type in the graph pairs strand. Set
; the parallel flag mark!! on the right neighbor
; processors of the aclive processors.
ACTIVATE-PROCESSORS-WITH
reltype!! =!I 5 AND!
pre!! >!! prenum(tree-pair(r)) AND!
max!! <!! maxnum(tree-pair{r)) AND!
self-address!!() >!! &, AND!!
oddp!! (seli-address!!())
DO BEGIN
mark!!{self-address!!() +!! 1:= 1
END

; Test whether any marked processor has the tree
; pair with the relation type s from o or from
; a tree predecessor of o, as a graph pair. If this
; i the case, return TRUE.
ACTIVATE-PROCESSORS-WITH
reltype!l! =!! s AND!!
prell <!! prenum(tree-pair(c}) AND!
max!! >!! maxnum(tree-pair(c)) AND!!
mark!![seif-address!!()] =!' 1
DO BEGIN
IF any processor is still active THEN
return TRUE
END

MIXED-RELATION-VERIFY
(&: Relation Type: o, 7: Node): BOOLEAN
; Activate every occurrence of the tree pair of 7
; and of its tree successors associated with the
; relation type s. Set the parallel flag mark!!
; on the right neighbor processors of the active
; DTOCESSOTS.
ACTIVATE-PROCESSORS-WITH
reltypel! =!! s AND!!
pre!! >!1 prenum(tree-pair{r)) AND!!
max!! <! maxnum(tree-pair{r)) AND!
seif-address!!() =!! ., AND!
oddp!! (self-address!!{())
DO BEGIN
mark!!fself-address!!() +!! 1]:= 1
END

; Test whether any marked processor has the tree
; pair from o, or from a tree predecessor of o,
; as a graph pair with the relation type £. If this
; i8 the case, return TRUE.
ACTIVATE-PROCESSORS-WITH
reltypel! =1 £ ANDY
pre!! <! prenum(tree-pair(c)) AND!!
max!! > maxnum(tree-pair(s)) ANDN
mark!![self-address!!()] =1 1
DO BEGIN
IF any processor is still active THEN
return TRUE
END

Consider again our example of pure transitivity in Fig-
ure 6: Is Water a Fluid? The tree pair of Fluid s[5 11]
contains the tree pair of Water s[8 11]. The answer
“yes” can be given by comparing these two tree pairs
(by IS-A-VERIFY). What about the mixed transitiv-
ity example? Is Water contained in Organ? As the
query is about Contained-in {c} and o is Water and ris
Organ, the procedure MIXED-RELATION-VERIFY
will be invoked with a list of arguments (e, Water, Or-
gan). We are first looking for Organ and its tree suc-
cessors. These are nodes with tree pairs contained in
$[3 4]. However, as we are interested in propagations,
we are looking for these tree successors (or Qrgan it-
self) in the graph pairs strand. There we find Heart
s[4 4] with a right neighbor Water (8 8) (Figure 8).
In the second stage we are looking for a tree prede-
cessors of Water s(8 8] (or Water itself), but with s
replaced by the value of £, which is ¢. This perfectly
matches the pair ¢(8 8) identified in the first step,
and we can conclude that the answer is “yes, Water
is contained in Organ.” Due to parallel processing,
the mixed transitive closure query can be answered in
constant time.

An analysis of the parailel operations involved shows
that both kinds of queries can be answered with our
parallel representation in constant time, independent
of the size of the knowledge base (assuming constant
machine size) (Wang 1989). '

5 EXPERIMENTS WITH InterMED

We have performed a set of experiments that ana-
lyze the run-times for purely transitive IS-A queries
and mixed relational queries using data from the In-
terMED. For this experiment, we have used 2495
nodes, 3372 IS-A links, and 682 Pharmaceutic-
component-of links from the InterMED. Note that the
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Figure 9: An Experiment of Mixed Transitivity Reasoning

fan-in and fan-out of the hierarchy are not of imme-
diate experimental importance because the node set
representation eliminates the explicit 1S-A links. The
only relevant factor is the number of graph pairs gen-
.erated. The experiments were performed on a Con-
nection Machine CM-5 (TMC 1988) programmed in
*LISP. For this purpose, we constructed a hierarchy
for each experiment as follows: (1) We created an IS-
A hierarchy (SubClass Hierarchy, SCH): (2} We cre-
ated a mixed relational hierarchy (Mixed Relational
Hierarchy, MRH).

The results in Table 1 show that the run-times for
transitive reasoning in both hierarchies are the same
within unit processor space (8K virtual processors).
We show run-times for “normal” transitive reasoning
in the SCH hierarchy, for pure transitivity reasoning
in the M RH hierarchy, and for mixed transitivity rea-
soning. Specificaily, IS-A-Verify-1 and IS-A-Verify-2
represent the first and the second cases of the parallel
bure transitivity reasoning algorithm in Section 4.

As another experiment, we measured how the number
of relations is related to the run-time of mixed rela-
tional queries. For this experiment, we tested the run-
times by increasing the number of relations in tran-
sitive closure queries within constant processor space
{8K). These additional relation types were created by

a random generator. Figure 9 shows that the run-
time for mixed relational transitivity reasoning is in-
dependent of the number of relations in a hierarchy. In
summary, we can conclude that our mixed transitive
queries can be executed in constant time, as in a pure
IS-A hierarchy.

6 CONCLUSIONS

In this paper, we have discussed techniques for fast
evaluation of transitive queries in mixed relational hi-
erarchies. We have introduced a paradigm based on
number pair propagation with a relation type. This
paradigm avoids any invalid conclusions of mixed re-
lational transitivity and integrates several relations
when needed. Due to our new mixed relational rep-
resentation and parallel processing, it is possible to
perform fast mixed transitivity reasoning. Experimen-
tal results using an existing medical vocabulary show
that mixed transitivity reasoning can be executed in
constant time assuming constant processor space.
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