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Abstract. It has long been recognized that the “part” relation is an ex-
tremely useful modeling tool. This is especially true in areas such as man-
uwfacturing, design, graphics, and document processing. In this paper, we
present a comprehensive conceptual model for parts in the context of object-
oriented database (OODB) systems. Our model captures the semantics and
functionality of a variety of part relations with characteristics such as exclu-
siveness/sharing, multi-valuedness, cardinality restriction, ordering, essen-
tiality, dependency, and value propagation. Our notion of exclusiveness ex-
tends previous work by refinement into two kinds, inter-class and intra-class
exclusiveness. Dependency in our model is permitted from both the part to
the whole object, and vice versa. We also present a general mechanism for
upward and downward value propagation along the part relation. Of note
is the fact that we realize the part model without having to introduce any
extraordinary new comstructs into the underlying OODB data model. The
part relation itself is represented as am object class whose instances represent
the actual part connections between instances of the participating classes.
By elevating the part relation to the status of a “first-class citizen,” we are
following in the tradition of the ER and other semantic data models.

1 Introduction

The specialization (is-a) relation has long been the cornerstone of semantic [26] and
object-oriented data models {2, 5, 10]. Another relation which has begun to receive
considerable attention is the “part” relation. The need for part decomposition can
be found in many advanced modeling domains, many of which have been targeted as
testing grounds for object-oriented database (OODB) systems. In fact, a number of
such systems have included intrinsic support for the part relation (e.g., [21, 23, 25,
29]). An example application is a database used in a manufacturing enterprise, where,
after all, the main activity is the assembly of collections of parts into whole products.
The part relation is also used extensively in CAD systems [22] and computer graphics
{11].

Part decomposition has generated interest in Artificial Intelligence and related
fields, where much attention has been paid to the part relation as it occurs in the
context of logical syllogisms [31]. In particular, the question of the part relation’s
transitivity has been investigated [7]. The part relation has also been investigated
in the context of connectionist networks (e.g., [18]).



In previous work [12, 16], we have investigated different kinds of part relations
for graphical deep knowledge [13]. In this paper, we present a conceptual model for
“parts” in the context of an OODB. This conceptual model (henceforth referred to
as the part model) comprises a variety of part relations and their realization above
an existing OODB data model. Characteristics of the different part relations include
exclusiveness/sharing, multiplicity, cardinality restriction, ordering, essentiality, de-
pendency, and upward/downward value propagation.

The ORION part model [21] distinguishes between four types of part relations,
derived by imposing two types of constraints, exclusiveness and dependency, on
weak references (what we call relationships). The exclusiveness constraint permits a
“whole” object to put an exclusive hold on a part. In this paper, we further refine
the exclusiveness property into two kinds, intra-class and inter-class exclusiveness.
Dependency gives the schema designer the ability to make a part dependent on the
existence of the whole: If the whole is deleted, the part is deleted automatically.
Our model extends this idea and permits the specification of dependency in both
directions, from the whole to the part, and vice versa. ORION allows a part relation
to be set-valued. Our model includes the ability to impose cardinality constraints
on the part relation. For example, we can say that a car has exactly four tires or a
truck has between four and eighteen.

The part model of SNOOD [25] addresses the problem of value propagation
(or selective inheritance) where values of certain attributes are made available at
different levels of the part hierarchy. In our representation, we introduce a general
mechanism for performing both upward and downward value propagation along the
part relation.

An important aspect of our part model is the fact that we have avoided introduc-
ing any extraordinary new constructs into the underlying OODB model. We exploit
features of OODBs which have been widely investigated and studied. Our model
elevates part relations to the level of classes and objects: The part relation between
two classes is represented as an object class in its own right, with its instances repre-
senting the actual part connections between pairs of objects from the participating
classes [1, 8, 23, 28]. In this sense, our model is close to the ER [6] and other semantic
models [26], where both entities and relationships are viewed as “first-class citizens.”

The rest of the paper is organized as follows. In the next section, we discuss the
underlying OODB model. In Section 3, we define the different part relations included
in our model. Section 4 contains the details of incorporating these relations into the
OODB. Conclusions and a discussion of future work are found in Section 5.

2 Preliminaries

In this section, we present features whose presence we assume in the underlying
OODB model. While these features are common to existing OODBs, we closely follow
the terminology of the Vodak Modeling Language [9] and the Dual Model [14, 15, 24].
An OODB relationship is a (named) property of an object which references another
object. (At the schema level, we say that the relationship is a property of one class
referring to another.) A relationship which does not refer to some object is said to
be nil-valued.



A multi-valued relationship references a set of objects. Explicit upper and lower
bounds can be placed on this set’s cardinality [3], yielding a range-restricled rela-
tionship. We assume that our underlying QODB supports two other types of such
constraining relationships, essential and dependent. An essential relationship is one
which must always refer to an existent object (i.e., which may not be nil}. It is equiv-
alent to a range-restricted relationship whose upper and lower bounds are both equal
to oné. A dependent relationship from a class & to a class B exists if the existence of
an instance of & depends on the existence of an instance of B. The deletion semantics
for such a relationship is as follows: If an instance a of A references an instance b of
B, and b is deleted, then a is also deleted.

A path method [14] is one which traverses a path through an object’s composition
hierarchy [20] to retrieve some data value. In other words, it is a sequence of messages
passed along such a path. The concept is similar to the notion of path expression
introduced in [5].

In [17}, we introduced a graphical notation for the specification of OODB sche-
mata, which will be employed throughout the paper. The conventions are: A class
is represented as a box enclosing the name of the class (Fig. 5). An attribute is
an ellipse which circumscribes a name. A single-valued relationship is denoted by
a labeled, single-lined arrow pointing from the source class to the target class. A
multi-valued relationship is similar, but the arrow is dual-lined (Fig. 11). A relation-
ship is designated dependent (essential) with the addition of an extra arrow head (a
circle). A path method is represented as a labeled, broken-lined arrow directed from
the class of definition to the data item it accesses.

3 Definitions of the Part Relations

Qur part model comprises a number of different part relations, defined with the
following characteristics: exclusiveness/sharing, single-valuedness/multi-valuedness,
cardinality range-restriction, ordering, and essentiality. There are also two part re-
lations which express dependency semantics, and two others which permit value
propagation along the part relation link.

Before getting to the specific definitions, let us define the terminology we will
be using when discussing the part relations. Following Winston et al. [31], we will
occasionally refer to the “part” relation as the merenymic relation. A part will be
called a meronym, while the whole will be called the integral object or holonym.
We will sometimes refer to the class of a part as the meronymic class; likewise, the
class of the integral object will be referred to as the holonymic class. For example,
an instance e of class engine would be a meronym and an instance ¢ of class car
would be a holonym. The classes, engine and car, would be the meronymic and
holonymic classes, respectively.

Part relations in general can be divided along the lines of exclusive and shared
[21, 25]. Designating a part relation exclusive means that the integral object is
the sole owner of the part object. The need for exclusiveness arises when modeling
physical (or eztensive) objecis [31] such as cars or buildings. In order to capture the
semantics of such applications, the part relation must permit the explicit statement
and enforcement of the fact, e.g., that cars do not share engines.



Part relations which are not exclusive are called shared. A shared part relation
puts no restrictions on the way other objects can reference an object which is already
part of some integral object. A part can be freely shared among several holonyms.
For example, many memoranda may share the same textual body, or two books
(compilations) may share the same chapter.

The exclusive/shared dichotomy is supported in a number of existing OODB part
models (e.g., [21, 25]). In our model, we further refine the notion of exclusiveness by
defining two kinds, inter-class and intra-class exclusiveness.

While it is the case that no two cars can share an engine, it is also the case
that a car and an airplane cannot share one either. Therefore, the exclusive part
relation between the classes car and engine has ramifications for the entire database
topology, restricting not only “part” references from cars but from objects belonging
to other classes as well. We call such a part relation inter-class ezclusive because
the reference restriction applies across all classes. There are times, however, when
we would like to enforce the exclusive reference restriction only within a single class,
and relax it otherwise. In other words, we want to be able to enforce the following:
The fact that an object a of class & has a part reference to an object b of class B
disallows any other instance of & from claiming b as its part, but does not disallow
an instance of a class other than 4 from doing so. Let’s look at an example where
this restriction is relevant.

Instrument_score

inst.ancx
ensemble.score

Beethoven

9th
Ist violin

part of
part of

] |
E T L I L ]
| = (& 1 I 1 e
E = 1

instance
cannot be part of!
staff

Fig. 1. Intra-class exclusive part relations in a music publication database

Consider a music publication system. The score for an orchestral composition is
typically available in two formats, the full (or ensemble) score and individual instru-
ment scores. The “staff object” representing the music to be played, e.g., by the first



violin section in Beethoven’s Ninth Symphony can be modeled as part of both an
ensemble score object and an instrument score object. However, it cannot be part of
more than one ensemble score because different musical compositions do not have
identical music played by the same instrument. For example, the music for the first vi-
olin section is not the same for Dvofak’s Ninth as it is for Beethoven’s Ninth (Fig. 1).
Thus, the part relation between the classes ensemble_score and staff is intra-class
exclusive. The same is true of the part relation between instrument_score and
staff. See Fig. 1 for an illustration of this scenario.

Another example of the intra-class exclusive link is found between
ensemble.score and score_expression_sequence. A score expression sequence is
the line above the staff of a musical score containing annotations such as “Allegro”
(Fig. 2). As tempo markings and other such performance notation vary from score
to score, an expression sequence object will always be part of only a single ensemble
score. In contrast, the same score expression sequence will constitute a part of ali in-
strument scores associated with a particular ensemble score. Thus, the part relation
beiween ensemble_score and score_expression sequence is intra-class exclusive,
while that between instrument_score and score_expression_sequence is shared.
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Fig. 2. An ensemble score and its score expression sequence

Single-valued part relations are those where the holonym can have only one
meronym of the given type. For example, a car has only one engine. When holonyms
can have many components of the same type, the relation is multi-valued, as with a
car and its doors. To enhance expressiveness, our part model includes a number of
variations of the multi-valued part relation.

The range-restricted part relation puts constraints on the number of meronyms
that an integral object can have, allowing explicit upper and lower bounds to be
placed on the relation’s cardinality. For example, an engine can be required to have
between four and twelve cylinders. The upper or lower hound may be omitted,
indicating an “n or greater” or “0 to n” semantics.

The fized-cardinality part relation is a special case of the range-restricted relation
with upper and lower bounds of equal value. If only engines with six cylinders are



being modeled in the database, then a fixed-cardinality relation of degree six would
be used.

memo text.block

set of 3
instances

instance

CC: Others ...
To: Someboby ...

has-parts

myMemo /-\—>

Fig. 3. Inadequate representation of memo

Another special type of multi-valued relation, the ordered part relation, accom-
modates an ordering among parts. For example, a memo can be modeled as the
composition of a header, body, and carbon copy {(CC) section. These latter objects
can be modeled as “text block” objects. Hence, it might seem possible to represent
memo with a fixed-cardinality part relation of degree three to text block (Fig. 3).
But throwing components together in a set with cardinality three does not preserve
the ordering among them. In fact, there is no way to tell the header from the body,
etc. Our ordered part relation resolves this problem by allowing an ordering to be
specified among the parts.

An essential part relation requires the holonym to have exactly one part of the
given type. It is therefore equivalent to the fixed-cardinality relation of degree one.
An example is the relation between a car and its frame.

Dependency semantics are often desired when modeling with parts. If a large
integral object, such as a CAD drawing, is deleted, then we may want to have all
its parts deleted, so that these need not be searched out and deleted separately. Our
model provides a “part-to-whole” dependent part relation for this purpose.

There are also times when a “whole-to-part” dependency is desired. Referring
back to our music publication system, consider what happens when a particular
instrument is removed from the orchestration of a score, meaning that the staff
containing the instrument’s music is removed from the ensemble score. In such a
case, the staff object is deleted from the database. Since an instrument score consists
of only a single staff, and since the staff contains the music, the deletion of its staff
leaves an instrument score with no music at all. Therefore, the instrument score
should be deleted as well. So it is sensible to make instrument_score dependent
on staff. Our model provides this complementary “whole-to-part” dependent part
relation.

In our part model, we define a general mechanism for value propagation [25] from
both the meronym to the holonym, and vice versa. Value propagation refers to the
flow of a data value across the part connection. As a modeling tool, it is useful for



expressing certain functional dependencies between integral objects and their parts.
As an example, the attribute age of a car can be taken to be identically equal to the
age of its frame. Hence, the value of age should be propagated upward through the
part link from the frame to car. Such an arrangement not only alleviates the need
to explicitly store age with car, it also eliminates the burden of having to maintain
the functional dependency. By propagating the attribute’s value, we insure that it
is the same at both car and frame.

The direction of flow may also be from the whole to the part. Such a scheme
captures the case where a data value of the whole determines something about
its parts. For example, if a filing cabinet is composed of steel, then its drawers are
probably composed of steel, too. In general, we could opt o model drawers such that
they are always composed of the same material as their filing cabinets. We stress
that within our part model, such an arrangement would not represent a default (see,
e.g., [27]) and would not be defeasible, but would represent a definitive modeling
decision. All drawers would be required to obtain their material make-up from their
filing cabinets.

4 Realization of the Part Relations

In this section, we discuss our realization of the above mentioned part relations.
Before getting to the specifics, we introduce our basic approach which is to repre-
sent the part relation as a type of object class—objects, in this case, representing
relationships between other objects [1, 8, 23, 28].

4.1 Generic Part Relation

Assume that we have two classes, A and B, and we wish to define a part relation
between them such that B is the meronymic class and A is the holonymic class. The
syntax for skeletal definitions of the two classes can be seen in Fig. 4, where the line
in the definition of & containing the keyword has-part indicates the part relation to
B. Included in the has—part specification is an optional selector “myB” which can
used by an instance of A to reference its part. The selector may be omitted, in which
case the name of the meronymic class is used by default. To improve readability, an
optional corresponding is-part-of can be placed in the meronymic class, as we have
done for B. Normally, this is not needed and just introduces unnecessary coupling
between the definitions. However, there are two types of part relations (discussed
below) which do require this explicit reference to the holonymic class.

To realize the part relation between the two classes, our system expands the
has-part construct into a subschema of its own. The system automatically defines
an object class B-PART-4 and connects it via the relationships kolonym and meronym
to A and B, respectively. The system also adds relationships pf to A and w! to B.
The names p! and w1 (“p” for part, and “w” for whole) are chosen arbitrarily by
the system so as not to conflict with the names of any other properties of the class.
As mentioned above, a selector (e.g., “myB” of 4 in Fig. 4) is used to retrieve the
part from within the integral object. This “selector” is actually the name of a path
method [14] defined by the systemn as the final step in the subschema expansion and
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class A holonym pl I
has-part (myB:B) |
class B B-PART-A |
is-part-of (4) ‘ I
meronym wl |

Fig. 4. Incomplete definitions of A and B B I= -

Fig. 5. Schema expansion for Fig. 4

added to the definition of the holonymic class. The method is defined such that it
traverses p! to the relation object (i.e., an instance of B-PART-A4) and returns the
part object’s OID which it obtains as the value of meronym. The entire subschema
expansion for the part relation between A and B is shown pictorially in Fig. 5.

This realization was chosen for a number of reasons. First, the arrangement does
not require the introduction of any extraordinary new OODB modeling constructs.
In fact, all the different part relations can be obtained by making straightforward
modifications to the basic configuration. The arrangement also permits traversal
from the whole to the part, and vice versa. Furthermore, the mechanism offers a
convenient way of performing value propagation along the part hierarchy. Finally, as
an object in its own right, the relation can be endowed with attributes in a similar
fashion to relationships in the ER and other semantic models.

4,2 Exclusive and Shared Part Relations

The part relation between instrument score and staff, introduced above, will
be used to demonstrate the realization of the inira-class ezclusive link be-
tween an integral object and its part. The (partial) definitions of two classes,
instrument_score and score, from the music publication database are shown in
Fig. 6. Note that the has—part specification in instrument._score has been changed
to has-intra-excl-part.

The subschema expansion for this part relation (Fig. 7) is actually the same as
the one presented above for the generic example. The key point here is that the rela-
tionship w1 is defined by the system to be single-valued. Because of this, an instance
of staff may only be related to a single instance of staff-PART-instrument.score.
This, in turn, means that it can be part of only one instrument_score. Hence, the
particular instrument score has an exclusive hold on the staff with respect to other
instrument scores. However, the configuration in no way precludes an instance of
another class (e.g., an ensemble score), with its own part connection to staf, from
making such a reference. Thus, the configuration indeed captures the desired intra-
class exclusive part semantics.

Before introducing the inier-class exclusive part relation, we need to discuss the
generic system operation make-part—of which is used to establish a part connection
between a pair of objects. The operation takes two arguments, the OIDs of the inte-



clase score class instrument_score

attributes: subclass—of (score)
title; titleType hag-intra-excl-part(stf:staff)
dedication: string has-part (ecore_expression_seguence)
year: yearType attributes:
opus_number: integer instrument: instrumentType
pages: integer

relationships:

composed_by: composer

Fig. 6. Some class definitions from music publication GODB

Instrument_score

holonym pl

staff-PART-instrurnent_score

meronym wl

I
|
|
|
|
|
staff |€ — —

Fig. 7. The part relation between instrument.score and staff

gral object and the part. For instance, assume that we have an instrument score SC
and a staff ST. Invoking make-part-of{SC, ST) causes the following actions to take
place. First, an instance of the class staff-PART-instrument_score is created, and
its relationships kolonym and meronym are assigned values of SC and ST, respec-
tively. After that, the relationships pI of object SC and wf of object ST are given
the value of the OID of the new part relation object.

Because one inter-class exclusive part relation affects all the part relations of a
meronymic class, it is not possible for the system to properly enforce the semantics of
the restriction just by relying on the structure of the subschema expansion between
the pair of classes. An operational approach is required. Our approach is to augment
the writer methods [19] for the wi’s, the relationships automatically installed in the
meronymic class by the system. The augmentation is such that the methods enforce
the “make-component” rule defined in [21], as explained in the following.

Assume that we have a class B which is the meronymic class in n different part
relations. The holonymic classes are A1, 42, ..., An. The system-defined relationships
emanating from B to the part relation classes B-PART-A1, B-PART-A2, ..., B-PART-4n
are wil, w2, ..., wn, respectively (Fig. 8). The part relation between A1 and B is
taken to be inter-class exclusive.

Let z be the OID of the instance of B-PART-A1 created when make-part—of is
invoked with a pair of OIDs, a and b, representing instances of A1 and B, respectively.
Instead of just assigning wi the value z when it is invoked by make-part-of, the
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F_ig. 8. A meronymic class with multiple part relations

writer method does the following. It scans the relationships w2 through wna of the
instance b searching for values other than nil. If it finds such a value, it knows that
b is already part of an object other than a and thus cannot be grabbed exclusively
by a. The writer then refuses to perform the assignment of z to wi. This failure
implies the failure of make-part—of and guarantees the maintenance of the inter-
class exclusive reference constraini. In the case of an intra-class exclusive or shared
part relation, the writer method for the concomitant wj need only check the wi’s
of inter-class exclusive relations for nil values; a meronym can participate freely in
other intra-class exclusive or shared relations so long as it is not in any inter-class
exclusive relation.

Syntactically, we represent the inter-class exclusive relation by replacing
has-part with has-inter—excl-part. In Fig. 9, we see an inter-class exclusive part
relation between the classes car and engine.

class car
subclass—of (vehicle) class instrument.score
has-inter-excl-part(engine) subclass-of (score)
attributes: has-intra-excl-part (staff)
model: modelType has-shared-part .
(score_expression.sequence)
class engine attributes:
attributes: instrument: instrumentType

model: engineModelType
fuel: gasOrDiesel
Fig. 10. Instrument.score with shared part

Fig. 9. Classes car and engine

A shared part relation is obtained in our model when the system-defined relation-
ship w1 is made multi-valued. By doing this, meronyms can be associated with many
part relation objects, and thus with many integral objects. In Fig. 10, we show a re-
vised version of the class instrument_score which indicates that many such objects
can share the same score expression sequence. Note that has~part is replaced by
has-shared-part. The schema expansion for this part relation is shown pictorially



in Fig. 11, where w! appears as a dual-lined arrow to indicate its multiplicity.

instrument.score

holonym pl
¥
score.expression_sequence- PART-instrument.score

AM

wl

meronym

score.eXpression_sequence

Fig. 11. Shared part relation of instrument.score and score.expressionsequence

4.3 Single- and Multi-valued Part Relations

Instrument scores, because they contain music for a single instrument, require only
one staff. Hence the part relation between the classes instrument_score and staff
is single-valued. In our realization, a single-valued part relation is obtained when
the relationship pI of the meronymic class is defined to be single-valued (Fig. 7).
This implies that an instance of instrument_score can be related to at most one
instance of staff-PART-instrument.score, and consequently to only one staff.

On the other hand, ensemble scores are defined to have many staves, and so
the part relation between the two respective classes is multi-valued (Fig. 12). The
has-part construct, in this case, is modified with a pair of curly brackets surrounding
its argument, conveying the fact that there are a set of parts from the given class.
The schema expansion for the multi-valued part relation is obtained by defining pf
to be multi-valued, as in Fig. 13. In this way, instances of the holonymic class can
be related to any number of instances of the part relation class, and therefore any
number of instances of the meronymic class.

ensemble_score
holonym
class ensemblescore pl
subclasa-of (score) NV
has—:!.ntra-excl—part({sta:ff}) staff- PART-ensemble_score
has-intra-excl-part
{score_expresaion sequence)
meronyim wl
Fig. 12. Mulii-valued part relation staff

Fig. 13. Realization of Fig. 12



4.4 Range-restricted, Fixed-Cardinality, and Essential Part Relations

Above, we used the example of the engine with between four and twelve cylinders to
define the range-restricted part relation. Here, we use the same example to discuss the
realization. Syntactically, the range-restriction is expressed by adding a numerical
range extension to the set notation as in Fig. 14. (The syntax used here is similar
to Sowa’s pluralization notation [30]). In terms of the subschema expansion, the
range-restriction is obtained by placing upper and lower bounds on the cardinality
of the relationship p1 of the holonymic class {3, 4]. The subschema expansion for
the part relation between the classes is shown graphically in Fig. 15. The numerical
range 4-12 in parentheses following p! is our notation for the range constraint on
this multi-valued relationship.

engine
class engine holonym
has-inter-excl-part pl(4-12)
({cylinder}:4-12) h1 4
attributes: cylinder-PART-engine
model: engineModelType
fuel: gasOrDiesel .
IMEronyIn w1l
. . . . cylinder
Fig. 14. Engines with 4 to 12 cylinders

Fig. 15. Realization of Fig. 14

Asthe fized cardinality and essential part relations are special cases of the range-
restricted relation, their realizations are readily derived from the one just presented.
Syntactically, however, we employ a different notation for each of these. For the
fixed-cardinality relation, a single number is shown after the colon, instead of the
numerical range (Fig. 16). The numerical range and curly brackets are omitted for
an essential relation, and has-part is replaced by has-essential-part (Fig. 17).

class engine ¢lass car
has-inter-excl-part subclass-of (vehicle)
({cylinder}:6) has-inter-excl-part (eng:engine)
attributes: has-essential-part (frame)
model: engineModelType attributes:
fuel: gasOrDiesel model: modelType

Fig.16. Engines with exactly 6 cylinders Fig. 17. Car with essential part frame



4.5 Ordered Part Relation

The class memo, discussed above, will be used to introduce the realization of the
ordered part relation. The has—part specification for this relation includes a list
of selectors in square brackets before the meronymic class’s name (Fig. 18). Each
element of the list is a selector for a single part object. (Cf. the generic part relation
with the optional selector above.) To realize this part relation, the system places
three relationships in memo, rather than one as with the other part relations discussed
so far. It also creates three path methods to function as the selectors for the parts
from within the holonyms. In general, the integral class must be equipped with n
new relationships and methods. The schema expansion for the part relation between
memo and text_block can be seen in Fig. 19.
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has-intra-excl-part {
([header, body, CC]:textblock) text_block-PART-memo |
‘ |
Fig. 18. Definition of class memo meronym w1 N
s
text_block 1

b _

Fig. 19. Realization of Fig. 18

4.6 Dependent Part Relations

The realizations of the two kinds of dependeni part relations can be derived by
further refining the relationships p7 and w! of the generic subschema expansion with
dependency. As an example of the “pari-to-whole” dependent part relation, assume
that block is dependent on engine: If an engine is deleted from the database, its
block is deleted, too. The definitions of these classes in Fig. 20 show that here,
for the first time, an explicit reference (is-dependent-part-of) to the holonymic
class is needed in the meronymic class. In the schema expansion in Fig. 21, we see
that both w! and holonym are dependent (with dependency indicated by a double-
headed arrow). Thus, if an instance of engine is deleted, the related instance of
block~PART-engine is deleted, which in turn causes the deletion of the related
block.

Referring back to our music publication system, we will use the part relation
between the classes instrument.score and staff to demonstrate the realization
of whole-to-part dependency. Remember that an instrument score contains a single
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engine

class engine
has~-inter-excl-part(block) holonym pl
attributes:
model: engineModelType
fuel: gasOrDiesel

block-PART-engine

N
class block 1
is-dependent-part-of (engine) meronym w
block

Fig. 20. Engine and dependent part block
Fig. 21. Realization of Fig. 20

staff, and this staff contains all the music for the score. Without its staff, an instru-
ment score contains no music at all. Thus, it is reasonable to make instrument score
dependent on its part staff (Fig. 22). To realize the dependency, the system desig-
nates pI and meronym dependent (Fig. 23), which causes deletions to be propagated
from staff to instrument_score through staff-PART-instrument score.

. instrument_score
class instrument score
subclass—of (acore) pl
has-intra-excl-part-depends-on{staff) holonym
has-shared-part : R
(score.expression sequence) staf PART-instrument_score
attributes: ]
ingtrument: instrumentType meronym wl
> staff
Fig. 22. Instrumentscore with depen-

dency Fig. 23. Realization of Fig. 22

4.7 Part Relations with Value Propagation

The realization of upward value propagation is illustrated with the example of the
propagation of age from frame to car. In Fig. 24, we show the textual definitions of
these two classes, where the argument frame to the has-part statement is further
qualified by the name of the attribute (age) whose value is to be propagated. In
general, this secondary argument can be any method which is part of the meronymic
class’s public interface and which returns a data value.

To realize the propagation, the system installs, in the receiving class, a method
which performs a traversal to the sending class and retrieves the value of interest
(Fig. 25). In the figure, we see that the class car is augmented with the path method
“age.” The method operates as follows. It first crosses p! and arrives at the class



class car

subclass~of (vehicle) car {— 9-56—|
has-inter-excl-part{(eng:engine) holonym

1
has-essential-part (frame(age)) \ i

atiributes:
model: modelType frame-PART-car

class frame mMeronym wl
attributes:

age: ageType frame —

Fig. 25. Realization of Fig. 24

|
I
I
|
¥

Fig. 24. Car with propagation of age

frame-PART-car. From there, it follows meronym to the class frame and accesses
its namesake, the attribute age (through the selector method).

A similar scheme allows a value to be propagated down the part relation. Let’s
look at the example of the filing cabinet and its drawers (Fig. 26). Here, as in the case
of part-to-whole dependency, an is-part-of statement is placed in the meronymic
class. And as with has—part above, the argument to is—part-of is given an argu-
ment of its own (maierial), which is the property whose value is to be propagated.
We once again emphasize that this value propagation is not a default: the value of
a drawer’s material is defined to be that of its filing cabinet.

class filing.cabinet

has-inter-excl~part({draver}) " - 4
attributes: filingcabinet ]
material: 1 i
one-of {steel, aluminum,...} holonym | P |
class draver drawer-PART-filing cabinet | |
is-part-of \ |
{filingcabinet(material)) meronym wl |
drawer |material |

Fig. 26. Filing cabinet with propagation
of material Fig. 27. Realization of Fig. 26

The realization of the downward propagation is analogous to that of upward
propagation. Whereas for upward propagation, a method is installed by the system in
the holonymic class, for downward propagation, a method is added to the meronymic
class. In the example, a method “material” is installed in drawer to retrieve the value
of the attribute material defined for filing.cabinet (Fig. 27).



5 Conclusion

In this paper, we have presented a comprehensive part model for OODB systems,
Our model comprises a number of different part relations with characteristics such
as exclusiveness/sharing, multi-valuedness, cardinality range-restriction, ordering,
essentiality, dependency, and value propagation. All the relations were realized with-
out modifying the underlying QODB data model. As a refinement of previous work,
we have distinguished between two kinds of exclusiveness, intra-class and inter-class
exclusiveness. The concept of dependency was refined to allow it in fwo directions,
both from the part to the whole, and vice versa. We have also presented a general
mechanism for upward and downward value propagation along the part relation.

In the tradition of the ER and other semantic data models, we have realized
the part relation as a class whose instances represent the actual part connections
between objects of the participating classes. Because of this, there is the possibility
of defining attributes and even methods on the relation. In future work, we will
consider how to exploit such capabilities. For example, the position of an integrated
circuit on a circuit board might very well be stored as an attribute of the part
relation between the respective classes.

An important issue is that of the transitivity of the part relation, which impacts
on value propagation and “parts-explosion” retrieval. Ordinarily, transitivity is tac-
itly assumed. However, work in Al and related fields [7, 31] has shown that such an
assumption is ill-founded. This issue is currently under investigation.
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