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Partitioning the UMLS Semantic Network
Zong Chen, Yehoshua Perl, Michael Halper, James Geller, and Huanying Gu

Abstract—The unified medical language system (UMLS)
integrates many well-established biomedical terminologies. The
UMLS semantic network (SN) can help orient users to the vast
knowledge content of the UMLS Metathesaurus (META) via
its abstract conceptual view. However, the SN itself is large and
complex and may still be difficult to comprehend. Our technique
partitions the SN into smaller meaningful units amenable to
display on limited-sized computer screens. The basis for the
partitioning is the distribution of the relationships within the SN.
Three rules are applied to transform the original partition into a
second more cohesive partition.

Index Terms—Cohesive partition, IS-A relationship, partition,
orientation, semantic network, semantic type, unified medical lan-
guage system (UMLS), views.

I. INTRODUCTION

T HE unified medical language system (UMLS) [1]–[4]
combines many well established medical informatics

terminologies into a unified knowledge representation system.
The UMLS can be used to overcome problems caused by
discrepancies in different terminologies [5], [6]. However, the
UMLS’s enormous size and complexity (730 000 concepts in
the Metathesaurus (META) [7]) can pose serious comprehen-
sion problems for potential users [8].

The UMLS semantic network (SN) helps to orient users [9] to
the vast knowledge content of META. The SN is composed of a
set of 134 semantic types that define high-level abstractions for
sets of concepts from META [10]–[12]. Each concept in META
is assigned to one or more semantic types in the SN. Overall, the
semantic types are arranged in a hierarchy of IS-A relationships.
In addition, there are 54 other kinds of (semantic) relationships
that connect semantic types.

However, the SN abstract view of META can still be too large
and difficult for comprehension. A convenient way for a user to
get oriented to a large knowledge base is by studying a diagram.
For such a diagram to be easily comprehensible, it should fit on
a computer screen and thus contain a limited number of nodes
along with their interconnections. Fig. 1, showing only a quarter
of the SN, is already difficult to comprehend, and it displays nei-
ther the incoming relationships nor the inherited relationships of
the semantic types.

In this paper, we concentrate on providing comprehensible
access to the SN through simpler views, which fit easily onto
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a single screen. Such a need is even more urgent in light of
a refined object-oriented database representation of SN, con-
taining 1296 classes which we created as an extension to the
SN [13]. Specifically, we present a technique for partitioning the
SN based on its relationship configuration. The outcome of our
technique is a partition of the SN into sets of semantic types,
calledsemantic-type groups.Considering some enhancements
leads to a revised methodology that partitions the SN intocohe-
sive collections of semantic types.

We note the existence of efficient algorithms for partitioning a
tree structure according to various criteria such as max-min [14],
min-max [15], etc. However, such quantitative criteria do not fit
our purpose of obtaining cohesive units of semantically related
semantic types, each fitting a subject area. Although we apply
some structural measures in our partitioning, they are related to
semantics and result in a partition with the desired cohesiveness
(as shown in [16]). Due to the need for semantics, zoom-like
partitioning methods are not successful either.

A study was conducted in [16] to measure the meaningfulness
of such a partition by comparing it to experts’ partitions of the
SN, done according to semantic considerations. In [16], the col-
lections of the cohesive partition also served to define various
partial views of SN, resulting in a powerful viewing mechanism
for the SN.

Section II proposes a method to partition the SN based on the
structure of the relationships of its semantic types. Section III
defines three rules to enhance the structural partition resulting
in thecohesive partition. Section IV contains the conclusion.

II. STRUCTURAL PARTITIONING

In the SN, the IS-A hierarchy supports the inheritance of the
semantic relationships among semantic types. When two se-
mantic types are linked via IS-A, the child semantic type in-
herits all the relationships defined for the parent semantic type.
For example, the semantic-typeActivity IS-A Event and, there-
fore, inheritsEvent’s issuein relationship.1

The UMLS provides two additional modeling features that
affect the inheritance of relationships. The first allows a newly
introduced relationship to be designated as “defined but not in-
herited” (“DNI”), which means that the relationship is not in-
herited by any of the children of the semantic type that is in-
troducing it. The second feature called “blocking” nullifies the
definition of an inherited relationship.

The SN’s IS-A hierarchy has two roots,Entity andEvent. We
will demonstrate our technique on that portion of the SN rooted
atEvent (Fig. 1), with 35 semantic types, 34 IS-A relationships,
and 134 (semantic) relationships. (Note that in Fig. 1, rectangles

1Let us note some typographical conventions used throughout the paper: a
semantic type will be written in a bold font. The name of a semantic relationship
will be written in italicized lowercase letters.
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Fig. 1. Event portion of the UMLS SN.

represent semantic types, IS-A relationships are represented by
bold arrows, and other relationships appear as labeled thin ar-
rows. A semantic type appearing outside the scope of the figure

is denoted as a circle labeled with “?” inside. Also, the names
of some relationships are written as numbers and listed in the
legend of the figure.)
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Fig. 2. Structural partition consisting of semantic-type groups.

For a partitioning of the semantic types into groups to be ef-
fective for comprehension purposes, each group should have a
unifying theme. That is, each group should be a logical unit
composed of similar semantic types. Comprehension of such
uniform sets is easier than comprehension of nonuniform sets.

Our partitioning technique is based on the distribution of the
relationships among the semantic types of the SN. From now on,
whenever we use “relationship” we mean a semantic relation-
ship rather than IS-A. A relationship is introduced at a given
semantic type and inherited by all its descendants (unless the
inheritance is interrupted by the DNI designation or blocking).
E.g., all descendants ofPhenomenon or Processinherit re-
sult of, which is introduced at that point. In Fig. 1, when a se-
mantic type inherits a relationship from its parent but the target
semantic type is refined, we show the inherited relationship ex-
plicitly. For example,Organ or Tissue Function inherits the
relationshipoccursin, defined at its parentPhysiologic Func-
tion. However, it has a new target,Organism Function.

We focus on the relationships because of their overall
definitional importance. In fact, we define the “structure” of a
semantic type as the set of its defined relationships, whether
they be introduced directly or inherited. Two semantic types
are “structurally identical” if they both have the exact same
set of relationships defined for them. The identical nature of
their relationship structures suggests that they bear a close
resemblance in meaning. It is therefore justified to group them
together along that dimension of similarity to form unified
logical units: All semantic types exhibiting the exact same set
of relationships are grouped together. See [17] and [18] for an
example of using structural similarity to group concepts of the
Medical Entity Dictionary (MED) terminology for the purpose

of producing a terminology schema [19]. For another structural
technique for partitioning a vocabulary, see [20].

Definition (Semantic-Type Group):A semantic-type groupis
an abstract conceptual entity comprising the set of all semantic
types with the exact same set of relationships.

Definition (Root of a Semantic-Type Group):A semantic
type is a root of a semantic-type group if none of its parents
belong to that semantic-type group.

Clearly, a semantic type which introduces a new relationship
will be a root of its semantic-type group. Most, but not all, se-
mantic-type groups have unique roots. If a semantic-type group
has a unique root, then all other semantic types in the group are
its descendants and thus are more specialized semantic types of
the root semantic type.

Taken altogether, the semantic-type groups of the SN form
a partition: Every semantic type must be in one semantic-type
group, and, in fact, that semantic-type group is unique.

The semantic typeEvent, the root of this portion of the SN
hierarchy, introduces the relationshipissuein and, therefore,
starts a new semantic-type group.Activity inherits Event’s
issuein relationship and does not introduce any new relation-
ships of its own. Hence, it belongs toEvent’s semantic-type
group. In contrast, the other childPhenomenon or Process
introduces a new relationshipresult of and starts another
semantic-type group. (See Fig. 2 where semantic-type groups
with more than one member are enclosed in dashed bubbles.)

Overall, the event hierarchy of the SN is partitioned into 21
semantic-type groups, as shown in Fig. 2. For the entire SN,
there are 71 semantic-type groups. Of these, 47 contain just
one semantic type. (We call such groups “Singletons.”) Eleven
groups have two semantic types; five groups have three semantic
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Fig. 3. Cohesive partition consisting of semantic-type collections.

types; three groups have four semantic types; two groups have
five semantic types; one group has six semantic types; and one
other has eight. Finally, there is one group with 14.

Note that a semantic typewhich introduces a DNI relation-
ship is a root of a group since its parent semantic type’s structure
does not contain this relationship. On the other hand, this rela-
tionship is not contained in the structure of any child semantic
type of because of the lack of inheritance due to the DNI des-
ignation. We call such a semantic type aDNI root.

III. COHESIVE PARTITIONING

For an effective partitioning of the SN, the groups of semantic
types have to be not just uniform in their structure but also co-
hesive. For a group of semantic types to be cohesive, it should
have a unique root, i.e., one semantic type which all other se-
mantic types in the group are descendants of. The cohesiveness
is a result of the fact that each one of the semantic types in the
group is a specialization of the unique root. Hence, by naming
the semantic-type group after the root, this name properly re-
flects the overarching semantics of the group. As we see in Fig.
2, most of the semantic-type groups have unique roots. There
are only a few that do not and these are said to be noncohesive.
This phenomenon shows that uniform structure groups tend to
be cohesive most of the time, but not all the time. Since cohe-
siveness is also important for comprehension, we will provide,
in this section, rules to convert the structural partitioning into a
cohesive partitioning. For this conversion, we will need to make
some tradeoffs, meaning some cohesive groups will lose their
structural uniformity. However, they will still have approximate
structural uniformity.

Another problem with the structural partitioning is the large
number of Singletons, which do not help comprehension. Thus,
we will provide a rule to add Singletons to other semantic-type
groups to minimize the number of Singletons in the partition.
Again, this implies creating groups which are not structurally
uniform, since those Singletons were created due to structural
differences. The rule that we will provide will, nevertheless, en-
sure that the new groups have approximate structural uniformity.

The cohesive partition which will emerge from applying our
rules to the structural partition will be based onsemantic-type
collections. Each semantic-type collection is an abstract concep-
tual entity representing a set of semantic types in the SN. Each
will have a unique root and will thus be cohesive. When a se-
mantic-type collection is also a semantic-type group, it will be
structurally uniform. Otherwise, it will have approximate struc-
tural uniformity.

Rule 1: Each semantic-type group with a nonleaf unique root
becomes a semantic-type collection.

The second rule deals with “leaf” semantic types which are
semantic types without children.

Rule 2: If a leaf semantic type is in a Singleton in the struc-
tural partitioning, and its parent semantic-type group does not
have a DNI root, then it is added to the semantic-type collection
which contains its parent.

Note, e.g., that the Singletons containing the leavesSocial
Behavior and Individual Behavior (Fig. 2) are combined
with the Singleton containingBehavior to produce a new se-
mantic-type collection with three members (Fig. 3). Applying
Rule 2 helps to merge many Singleton semantic-type groups
into larger semantic-type collections. We still allow a nonleaf
Singleton in the partitioning since it may play a role as a
branching point.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 27, 2010 at 14:52 from IEEE Xplore.  Restrictions apply. 



106 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 6, NO. 2, JUNE 2002

TABLE I
SEMANTIC-TYPE COLLECTION LIST
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TABLE II
DISTRIBUTION OF SIZES OFSEMANTIC-TYPE COLLECTIONS

Let us define the “structure” of a semantic-type collection to
be the set of relationships of its root. The structure of a leaf
added to a semantic-type collection is equal to the union of the
semantic-type collection’s structure with any relationships in-
troduced by the leaf. (This is true in the case where none of the
relationships of the leaf’s parent semantic-type collection are
declared DNI.) It will be noted that no other semantic-type col-
lection can have the structure of that leaf. Furthermore, several
leaves added to a semantic-type collection will have all the rela-
tionships of the root of the semantic-type collection in common.
Thus, although the semantic types in a semantic-type collection
do not always have uniform structure, that structure is approxi-
mately uniform and unique.

The childrenSocial Behaviorand Individual Behavior of
Behavior were originally in Singletons. On one hand, they in-
herit all relationships ofBehavior. On the other hand, they are
structurally different from their parent.Social Behavior intro-
duces a new relationshipconceptualpart of directed at itself.
Individual Behavior introducesprocessof directed atSocial
Behavior and two other relationships. However, their structure
is more similar to that ofBehavior than it is to that of other se-
mantic-type collections.

We are now turning our attention to cases of semantic-type
groups with multiple roots. In our discussion, we will concen-
trate on those appearing in Fig. 2. One example contains the sib-
ling semantic typesOrgan or Tissue FunctionandOrganism
Function. Both inherit all relationships of their parentPhysio-
logic Function and introduce the new relationshipdegreeof.

Another example centers aroundExperimental Model of
DiseaseandDisease or Syndrome, each of which defines the
new relationshipconceptuallyrelated to directed at the other.
Both semantic types designate this relationship “DNI,” meaning
that it is not inherited by any of their respective children. Since
the children ofDisease or Syndromedo not introduce any new
relationships, the subtree rooted atPathologic Functionis par-
titioned into two semantic-type groups. One includesExperi-
mental Model of DiseaseandDisease or Syndrome. The other
includesPathologic Function, Cell or Molecular Dysfunc-
tion, Neoplastic Process, andMental or Behavioral Dysfunc-
tion (again, see Fig. 2). For such cases, we need to introduce an
extra rule.

Rule 3: Let the semantic types be
roots of the same semantic-type groupof the structural par-
titioning. Add all semantic types of to the semantic-type col-
lection of their lowest common ancestor in the IS-A hierarchy,
assuming the root of that semantic-type collection is not a DNI
root.

For example,Organ or Tissue Function and Organism
Function join the semantic-type collection rooted atPhysi-
ologic Function (Fig. 3) based on Rule 3. Then, by Rule 2,
the semantic-typeMental Process also joins the same
semantic-type collection. Hence, all the descendants ofPhysi-
ologic Function belong now to its semantic-type collection.

Fig. 3 shows the SN’s event hierarchy after the cohesive
partitioning technique has been applied to identify the final
semantic-type collections. The semantic-type collectionsNat-
ural Process or Phenomenonand Biologic Functionare still
Singletons.Biologic Functionis the branching point into the
Physiologic Functioncollection and thePathologic Function
collection. There are ten semantic-type collections in the figure.
In the entire SN, there are 28 semantic-type collections. In
Table I, we list the 28 semantic-type collections of the SN
alphabetically, with the number and list of semantic types in
each collection. The average size of a semantic-type collection
is 4.786. In Table II, we list the distribution of the sizes of
the 28 semantic-type collections.

Based on this partition, we developed in [21] a metaschema,
which is a compact abstract level for the SN. Each node of
the metaschema corresponds to a collection of the cohesive
partition. An alternative partition of SN into 14 groups is
presented by McCrayet al. in [22]. Each group of [22] rep-
resents a subject area. Their partition is designed to conform
to six criteria: validity, parsimony, completeness, exclusivity,
naturalness, and utility. However, some of their groups are
disconnected. This contradicts the property of validity, as noted
by the authors themselves. Due to this fact, the partition of [22]
does not lend itself to the extraction of a natural metaschema.
This stands in contrast to the partition that we presented. The
metaschema, together with the partial views of [16], help the
user to obtain an orientation in the collection of semantic types
and an understanding of the interactions among them.

IV. CONCLUSION

We have presented a partitioning method specifically
designed for the SN of the UMLS that relies on structural
similarity between semantic types, combined with a step to
eliminate Singleton leaves and a step to find unique roots for
each partition. The resulting partition contains 28 semantic-type
collections of sizes that are easily displayable on one screen.
In [16], we present an evaluation study that compares our
cohesive partition with the results that human experts obtain
when partitioning the (same part of the) UMLS SN.
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