Int. J. Man—Machine Studies (1991) 34, 97131

Propositional representation for graphical_knowledgef

James GELLER
New Jersey Institute of Technologyi, Newark, New Jersey 07102, USA

(Received 3 January 1989 and accepted in revised form 2 November 1989)

Multi-media interfaces with a graphics and a natural language component can be
viewed as a Natural Language Graphics systems without a host program. We will
investigate a theory of Natural Language Graphics that is based on the notion of
“Graphical Deep Knowledge” defined in this research. Graphical Deep Knowledge
is knowledge that can be used for display purposes as well as reasoning purpeses and
we describe the syntax and semantics of its constructs. This analysis covers forms,
positions, attributes, parts, classes, reference frames, inheritability, etc. Part
hicrarchies are differentiated into three sub-types. The usefulness of inheritance
along part hierarchies is demonsirated, and criticism of inheritance-based knowledge
representation formalisms with a bias towards class hierarchies is derived from this
finding. The presented theory has been implemented as a generator program that
creates pictures from knowledge structures, and as an augmented transition network
grammar that creates knowledge structures from limited natural langnage input. The
function of the picture generation program TINA as a user interface for a circuit
board maintenance system and as part of a CAD-like layout system is demonstrated.

1. Introduction

1.1. NATURAL LANGUAGE GRAPHICS

A valuable component of many systems employed in human—computer interaction is
a graphics interface. Systems that combine graphics with other modes of communica-
tion such as specch or natural language arc referred to as multi-modal user
interfaces (Reynolds, Postel, Katz, Finn & DeSchon, 1985; Poggio, Garcia Luna
Aceves, Craighill, Moran, Aguilar, Worthington & Hight, 1985). A user interface
management system that incorporates a knowledge representation system as a
functional part is referred to as a Knowledge Based User Interface Management
System (KBUIMS) (Neches & Kaczmarek, 1986; Sullivan & Tyler, 1988). If one
isolates the language and graphic capabilities of a knowledge-based multi-modal
user interface from the “host program™ the user interface is talking to, then one
ends up with a type of program which has been known since Brown and Kwasny
(1977) as a “Natural Language Graphics” program. This paper will discuss our work
in Natural Language Graphics and will present an application of this work as part of
a user interface. In this section we will briefly survey research that has been done

+ The bulk of this research was performed at the State University of New York (SUNY) at Buffalo, but
it was finished while the author spent a year at the University of Southern California at the Information

Sciences Institute (USC/ISI) in Los Angeles. Partial support by the Integrated Interfaces group at
USC/ISI is gratefully acknowledged.

$This work was supported in part by the Air Force Systems Command, Rome Air Development
Center, Griffiss Air Force Base, New York 13441-5700, and the Air Force Office of Scientific Research,
Bolling AFB DC 20332 under Contract No. F30602-85-C-0008, which supports the Northeast Artificial
Intelligence Consortivm (NAIC).

97
0020-7373/91/010097 + 35503.00/0 © 1591 Academic Press Limited

98 I. GELLER

under the name “Natural Language Graphics” or that shares enough features with
NLG or KBUIMSs to be of interest to us.

The: -manifesto of Natural Language Graphics is a paper by Brown and
Chandrasekaran (1981). Brown and Chandrasekaran supply an in depth analysis of
the graphics phenomena involved in NLG. The authors discuss an implementation
based on a frame representation, but the main focus of the paper is on “a design for
the picture production part of the system” (p. 178).

The earliest combination of graphics with semantic networks, the knowledge

" representation technique that we will make use of, is reported by Giustini, Levine
and Malowany (1978). Giustini et @l. refer to the reported semantic network as
“mathematical”, as opposed to “linguistic’’, meaning that it does not span the
complete set of properties that one would expect from a semantic network. OQur own
theory and implementation is based on SNePS, the Semantic Network Processing
System (Shapiro, 1979; Shapiro & Rapaport, 1986), a fully intensional propositional
semantic network.

The work by Adorni, Di Manzo and Giunchiglia (19844, 1984b) and Di Manzo,
Giunchiglia and Pino (1984) can be classified as Natural Language Graphics;
however, it concentrates on problems of equilibrium, support, instantiation of
unmentioned objects and space occupied by an object. It does not draw a clear
distinction between the domain of diagrams and the domain of real world objects.
This makes it difficult to think about different diagrammatical views of the same
object. The research concentrates on natural language problems and spatial
reasoning and seems to use diagrams only as a proof of the NL understanding
abilities of the system, not as main subject of investigation.

On the other side, the work of Kosslyn and Shwartz (1977) on imagery describes a
program that assembles a diagram from a partially propositional and partially iconic
representations. This general approach (also described by Kosslyn 1980, 198l1q,
1981h, 1985) captures many of the central elements of our research. However,
Kosslyn and Shwartz do not present a formal catalog of representations that they
use and do not investigate interactions with natural language.

Similarly, Friedell (1984) describes the generation of images from high level
object specifications, but also without language interaction. He presents two
example systems, one for the generation of ship images from a data base and one for
the automatic synthesis of backgrounds for three-dimensional scenes.

A third approach that concentrates on image generation from a knowledge base
and ignores language has been published by Zdybel, Greenfield, Yonke and
Gibbons (1981} under the category “Information Presentation System” (IPS). Their
AIPS system is based on the KL-ONE semantic network and is similar enough in
spirit to our approach to deserve mention. However, there is disagreement
concerning the success of the details of the AIPS theory. While Zdybel et al. (1981)
state that “By an IPS we mean a system that . . . functions reasonably well without
demanding custom-tooling for a particular application....” (p. 978) they do not
make it clear that their sysiem lives up to this expectation. Friedell (1984) notes that
“Systems such as BARAT and AIPS succeed in narrow, well-defined domains for
which it is practical to provide an adequate repertoire of predefined parameteric
object descriptions” (p. 54). Our own representation of atiributes is very general
and is not characterized by what Friedell calls “parametric object descriptions”.

PROPOSITIONAL REPRESENTATION FOR GRAPHICAL KNOWLEDGE 99

An important line of research that combines issues of computer vision with issues
of knowledge representation is the Mapsee2 project (Havens & Mackworth, 1987).
This system uses schemata (frame-like structures) as a knowledge representation
formalism for visual knowledge. The Mapsee2 project shares the use of diagram-
matic tepresentations with our work; a hierarchical structural description of a
cartographic map is produced from a hand-drawn sketch-map.

Recently Tranowski (1988) presented a system that is geared towards scene
analysis, which however permits the graphical definition of simple patterns in a
knowledge acquisition environment. A final line of work that is related to our own
but ignores natural language interaction is pursued by Borning (1986). In his
constraint based ThingLab system, a user may interact with the graphics environ-
ment through two different classes of windows, “use views” and “‘construction
views”’.

Our research has grown out of work on a circuit board maintenance system, and
this naturally raises the question about NLG-like work in CAD (Computer Aided
Design). It turns our that references to natural language in CAD are sparse. An
exception is Samad (1986) but his work deals with post processing and querying of
the output of a simulation system and is not graphics oriented.

An important example of work in KBUIMS that is related to our research, is the
HITS (human interface tools) system (Hollan, Miller, Rich & Wilner, 1988). HITS
is heavily graphics oriented, and also has a natural language component. While the
sub-systems of HITS surpass the sub-systems of our own implementation, the
designers of HITS apparently had to find out that the integration of subsystems in
NLG, unless planned from the beginning, is difficult, and the use of an appropriate
knowledge representation system crucial. “HITS currently exists primarily as a set
of independent tools, most of which are implemented on top of the Proteus
knowledge base system [...]. We are in the process of reimplementing many of these
tools on top of a richer knowledge representation system. . . .” (Section 4).

Finally we want to mention work (Neal & Shapiro, 1988} based on our earlier
endeavors (Geller & Shapiro, 1987) which combines a semantic network with
graphics and natural language processing in a user interface.

In summary, we have presented a number of different approaches that combine
varying amounts of natural language processing, graphics and knowledge repre-
sentation. Our own approach will rigorously describe the knowledge structures
involved in a system that completely integrates graphics and natural language into
the same sophisticated newtork-based propositional knowledge representation
system. This description will be completed by showing the application of our theory
to user interfaces.

1.2. A GLOBAL VIEW OF KNOWLEDGE REPRESENTATION

To place this research effort into a larger knowledge representation framework, four
principles will be formulated that I refer to as “Shapiro’s principles of Al
development”.

(1) If a person claims understanding of a natural language utterance or discourse,
then a computer proposed to have a comparable degree of intelligence must claim
understanding of the same utterance or discourse.

(2) If a person can respond to an utterance or take part in a discourse, then a

100 J. GELLER

computer proposed to have a comparable degree of intelligence must be able to re-
spond to the same utterance or take part in the same discourse in a comparable way.

(3) ¥ a person can react to an utterance or a discourse by changing his or her
behavior, then a computer proposed to have a comparable degree of intelligence
must be able to react with a comparable change of behavior.

(4) The preferred way for achieving (1) to (3) is to use a fully intensional and
propositional knowledge representation system.

Earlier publications by Shapiro and the members of the SNePS§ research group,
e.g. Neal & Shapiro (1987), have concentrated on the level of intelligent behavior
corresponding to (1) and (2). Recently the SNePS research program has been
extended to deal with (3) on an explicit level (Kumar, 1989). However, the
transition from (2) to (3) was first attacked in the work to be reported here which is
based on Shapiro and Geller (1986); Geller and Shapiro (1987); and Geller (1988).
The acts that have been added in this work to natural language interaction are
drawing acts.

2. Graphical deep knowledge for NLG

In this core section we will discuss knowledge structures for a graphics oriented NL
program. We will refer to the class of all such structures as “Graphical Deep
Knowledge”. More precisely we will call knowledge bases that can be used for
generating diagrams “projectively adequate”. In addition we want to do proposi-
tional reasoning about knowledge bases describing the physical structure of
diagrams, and a knowledge base that permits doing this will be said to exhibit
“deductive graphical adequacy”. While the terms ‘“‘visual knowledge” and “‘graphi-
cal knowledge™ are standard Al terminology, the literature reports no good name
for knowledge that exhibits projective and deductive graphical adequacy. This is
why we have introduced the term “Graphical Deep Knowledge” (Geller & Shapiro,
1987).

Definition: Graphical Deep Knowledge: A knowledge base is said to contain
Graphical Deep Knowiedge (GDK) if at least part of its knowledge exhibits
deductive graphical adequacy, and part of its knowledge exhibits projective
adequacy.

2.1. THE SNePS KNOWLEDGE REPRESENTATION SYSTEM

The work presented here makes use of the SNePS Semantic Network Processing
System (Shapiro, 1979; Shapiro & The SNePS Research Group, 1983; Shapiro &
Rapaport, 1986) as a notational formalism as well as an implementation language.
SNePS is a propositional network as opposed to an inheritance network such as
KL-ONE (Brachman & Schmolze, 1985), NIKL (Robins, 1986), LOOM
(MacGregor & Bates, 1987), KRYPTON (Brachman, Fikes & Levesque, 1983,
1985) or parts of KREME (Abrett & Burstein, 1987).

We will appeal to the intuition of readers unfamiliar with SNePS$ and present only
an example instead of an in depth explanation of its syntax and semantics (which can
be found in the previously given references). In Figure 1 the nodes m1, m2, m3, m4
and m5 represent propositions.t M2 represents the proposition that “D1A1” is an

T In some cases proposition nodes may be interpreted as “structured individuals™.

PROPOSITIONAL REPRESENTATION FOR GRAPHICAL KNOWLEDGE 101

Part-relation

Part-reiation

Type
Object

|M3A2] I D1A1J]Adderl I D1M1 I rultlpller

Sub-object

FiGURE 1. A typical SNePS network.

“Adder”. The arcs “object” and “‘type” build a case-frame (in Fillmore’s sense,
1968), i.e. the meaning carrying elements are combinations of arcs that emanate

- ~from proposition nodes. The arcs in a network point from proposition nodes to

nodes representing the concepts that take part in the proposition.

M1 expresses the fact that object D1 is of type M3A2. M4 expresses the fact that
the real-part relation holds between D1 and D1A1. M3 and M5 follow analogously.
An equivalent first order predicate calculus representation for Figure 1 would be the
following one:

type(ml, M3A2) & object(m1, D1)

type(m2, Adder) & object(m2, D1A1)

type(m3, Mutltiplier) & object(m3, D1M1)

subject-object{ m4, D1A1) & object(m4, D1) & part-relation(m4, real-part)
sub-object{ m5, D1M1) & object(m5, D1) & part-relation{ m5, real-part)

There is an obvious less redundant way of writing (1):

1)

ml(type M3A2
object D1)

m2(type Adder
object D1AL)

m3(type Multiplier
object D1M1) @

m4(sub-object D1A1
object D1
part-relation real-part)

m5(sub-object DIMI1
object D1
part-relation real-part)

102 ' J. GELLER

The above five network structures exemplify two case frames:

" {membership):
type {device-type) 3
object {object-1))
(part-rel):

sub-object (object-2)
object (object-3) (3b)
part-relation real-part

TR

Case-frame names (before the “:”’) will be omitted when they seem unnecessary.

This representation might look like BNF notation, but is different because the
pairs of slots and fillers may occur in any order. In continuous text, case frames are
sometimes simply shown as lists of arc labels. In this notation, (3) would be
represented as (type object).

We have introduced the above representational conventions to give a precise
linear representation of our semantic networks. This has been prompted by Hayes
(1977) who states, “If someone argues for the superiority of semantic networks over
logic, he must be referring to some other property of the former than their meaning
(for example, . . . their attractive appearance on a printed page)” (p. 561).

2.2. REPRESENTATIONAL CONSTRUCTS OF GRAPHICAL DEEP KNOWLEDGE

2.2 1. Form knowledge

A number of different scientific subfields and fields have been interested in the
representation of forms. Among these are computer vision, computer graphics and
imagery, but also solid modeling (Requicha, 1980), computer aided design (CAD),
and character recognition. We argue (Geller, 1988) that no representation in any of
these fields satisfies the requirements for graphical deep knowledge. These
requirements are: ‘

* The representation should be projectively adequate;

* The representation should be deductively adequate;

» The representation should be based on concepiual primitives which seem natural
to the human observer;

» The representation should support relations between primitives which are natural
to humans;

= The representation may contain redundant information.

To fulfill these requirements a representation that consists of basic forms (icons)
and asserted relations is used. The basic forms are (supposed to be) meaningful to
human observers. Every basic form is represented as a procedure that has three
properties: (1) The procedure consists of calls to graphics primitives; (2) Executing a
procedure of the name {name) results in the drawing of an object that is described
by (name); (3) The procedure {name) is accessible as a concept in the knowledge
representation system, i.e. it functions simultaneously as a node in a semantic
network. The representation of a basic form is therefore projectively adequate and
also a conceptual unit. Relations between icons are represented propositionally. A
number of different proposition types is permissible which will be elaborated in this

paper.

PROPOSITIONAL REPRESENTATION FOR GRAPHICAL KNOWLEDGE 103

The SNePS system is used in the following way to accommodate the described
form representation. The name of every basic form in the system is a base node in
the SNePS semantic network. The SNePS inference machine treats it as a
conceptual unit and permits reasoning about it. At the same time every SNePS node -
is also an uninterned LISP atom. This atom refers to a LISP function made up of
calls to graphics primitives from a LISP graphics package.t Objects and forms are
separate nodes, linked by an asserted proposition. This conceptual separation of
forms and objects makes it possible to associate a form with a class of objects,
instead of a single object.

2.2.1. 1. Individual form. Figure 2 shows a structure that can be read as “‘the
object chipl has the form ‘xand’ under the modality logical”. The meaning of the
structure results from the combination of the form, modality and object arcs. The
impact of the modality arc will be explained below. According to the notational
conventions established earlier, the network in Figure 2 has the following linear
representation:

ml(form xand
modality logical) 4
object chipl)
The form function “xand” that draws the icon displaying an and-gate is coded as
follows:

{defun xand (xy)
(setq CENTER (list x y))
(mapcar (function draw-wse)
*((xplylnrel-wse 002" 5 *b) &)
(xarcrel 20 —200Z, -180 *b)
(xplylnrel-wse 20 —40 —20 0 *b)

{(xplylnrel-wse 40 —20 300 *b)})))

The function “xand” consists mostly of calls to the two graphics primitives xarcel
and xplylnrel-wse. Xarcrel draws an arc and xplylnrel-wse a polyline (a train of line
segments) respectively. The picture created is shown in Figure 3.

Modality

FIGURE 2. Object chipl has the form “xand”.

1 The linkage of the function has been handled differently depending on the dialect of LISP used. Qur
favorite solution has been to use the function cell of an interned atom of the same name as the node.

104 . I. GELLER

|

FIGURE 3. An AND gate.

Abstracting from the given example a syntactic description of an individual form
would consist of the following case frame:

form {form)
modality (modality) (6)
object (object) '

We will supply a descriptive semantics for every given case frame. (6) represents
the proposition that the object (object) has the form (form) under the modality
(modality).

This structure can be used to answer questions such as “What is the form of
{object}?” or for identifying all objects that have the form {form), or for asserting
that some agent believes in the fact that {object) has the form {form). Assuming a
model of an abstract graphics machine that receives the request to draw the object
{object) under the modality {modality) and at a location (x, y), then the function
denoted by (form) is applied to the arguments x and y. The location (x, y) will be
the location of a privileged point of the object {object) called the reference point.
How x and y can be determined, their meaning relative to the sereen, and the nature
of the reference point will all be explained below.

Two notes about the epistemic status of the syntactic variables {object), {form}
and {modality) have to be made: (1) If one of these variables is used again later on
in the context of this paper, even if it is modified by an integer number (e.g.
{objectl), (form-1}), it refers to the same syntactic variable as defined here; (2) It
has been pointed out repeatedly in the literature (e.g. McDermott, 1981) that one
cannot rely on a label to express a meaning. Therefore we will not hesitate to give a
semantics specification such as “‘{modality) represents a modality”. After all, we
could have used a term such as {g0001) as a syntactic variable. Nevertheless we will
strive to use self documenting names for syntactic variables.

The syntactic variable {form} stands for the concept of a form, i.e. of an entity
that can be visualized by a person, and that can be projected by the abstract
graphics matching; {object) denotes the concept of an individual object. Finally,

FiGURE 4. The physical structure of an AND gate.

PROPOSITIONAL REPRESENTATION FOR GRAPHICAL KNOWLEDGE 105

{modality) stands for the concept of a modality, whereby a modality can best be
understood as one of several possible “views™ of an object. Clearly an AND gate
looks different in a logical representation (Figure 3) and a physical representaion
(Figure 4).

2.2.1.2. Class form with n step inheritance. An object may inherit a form along a
class hierarchy.

Syntax:
object {object))]
type {class)
modality (modality)
sub-class {class) (7b)
class {class-2)

modality {modality)

sub-class (class-2}

class (class-n)

modality {modality})

class {class-n) (8)
form (form}

modality (modality)

Semantics: (7) describes a simple class membership, meaning that {object) is a
member of {class) under the modality (modality). (8) asserts that every member of
the class {class-n) that does not have its own form has the form (form} under the
modality {modality). The intermediate structures (7b) represent sub-class assertions.
(Class) stands for the concept of a class i.e. an entity that is by itself not
displayable, but which has members that are (potentially) displayable.t All other
syntactic variables in the above structure have been defined in the previous sections.

Assuming that there is no other network structure present that could have an
influence on the display of {object), we can summarize the procedural effect of the
above structures in the following way. If the structure (7) is asserted, and the
structure (6) is not asserted, when requested to draw the {object) at location (x, y),”
the abstract machine has to apply the function {form} to x and y.

A final note on forms: all forms in this investigation are assumed to be rigid.

2.2.2. Positions

2.2.2.1. Reference frames. In understanding utterances about spatial relations the
identification of a correct reference frame is often the first problem that has to be
solved (Sondheimer, 1976). For NLG the problem of reference frame identification
means to determine whether a person is referring to a screen or a world coordinate
system, and in the latter case to determine the relation between the world
coordinate system and the screen coordinate system.

To project an object of the world onto a screen two conceptual steps are

+ We are not interested in empty classes or infinite classes.

106 I. GELLER

necessary. First a projection plane is selected, and the object is projected onto the
planc with beams orthogonal to it. Then an area on the projection plane needs to be
selected and mapped onto the screen or onto a window.}

A complete representation of this projection process needs to include the
concepts of world coordinate systems, projection planes, screen coordinate systems
and numeric values describing the details of the used projections. We will simplify
our representation by permitting only a few specialized plane positions and by
defining a privileged screen coordinate system. Nevertheless we will permit
alternative screen coordinate systems also. We will first represent a space which is
independent of a coordinate system.

Syntax:

(space-description }:
space (space-descriptor) 9
space-type {space-type)

Semantics: The space denoted by (space-descriptor) is of the type (space-type).
{Space-descriptor) denotes any concept of a coordinate space. {Space-type) is one
member of the set {world, plane, screen}. This definition does not make any
statements about the coordinate system used in {space-descriptor}.

Syntax:
{coordinate-system):
space {space-descriptor)
coord-sys {coord-sys-descriptor)
coord-type {coord-type) (10)
first-axis {axis)

second-axis (axis-2)
third-axis {axis-3)

Semantics: The coordinate system ({coord-sys-descriptor) represented by an
atomic node is resident in the space (space-descriptor), is of the coordinate type
{coord-type) and has the three axes ({axis) (axis-2) (axis-3)) in exactly this order.
{Space-descriptor) denotes any concept of a coordinate space. {Coord-sys-
descriptor) denotes any concept of a coordinate system. {Axis), (axis-2), and
{axis-3) denote concepts of coordinate axes. {Coord-type) is one of the atomic
nodes {cartesian, polar, cylindrical, spherical}. {Axis) will be interpreted as an X
axis, if the {coord-type) is cartesian, and as an R axis otherwise. (Axis-2) will be
interpreted as a Y axis if {coord-type) is cartesian, and as a @ axis otherwise.
{Axis-3) will be interpreted as a Z axis, if {coord-type) is cartesian or cylindrical,
ignored if it is polar, and interpreted as a 7 axis otherwise. If {space-descriptor) is
defined as a two-dimensional space by its {space-description), then the third axis
will be ignored. We will consider the origin of the coordinate system as its reference
point; therefore, any reference to the position of the coordinate system is a
reference to its origin.t '

For notational purposes we will refer to world coordinate axes as X, Y and Z, to
plane coordinate axes as X, ¥,, and to screen coordinate axes as x and y (See

T It is now customary to refer to an area on the screen of a terminal as a window. Strictly speaking this
is wrong, the correct term is viewport. Window refers to an area in the world.

1 In general the reference point of an icon may be chosen arbitrarily when the icon is designed.

PROPOSITIONAL REPRESENTATION FOR GRAPHICAL KNOWLEDGE 107
Y
z World
X

—
.
/

Plane

Screen

FiGURe 5. Three differeat coordinate systems.

Figure 5). More precisely, x and y are used generically or with reference to the
privileged screen coordinate system. The discrimination between these two choices
will always be possible by context.

The following positions of projection planes relative to world coordinate systems
will be permitted: (1) X parallel to x, and Y parallel to y,; this will be called a “front
view”, (2) X parallel to x, and Z parallel to y,; this will be referred to as a “top
view”’,

The reasons for these choices are as follows: People often look at a two-
dimensional diagram with a preconception that this is really a projection of a
three-dimensional world. Imagine a screen with a vertical arrangement of two circles
(Figure 6). If one assumes that this scene represents a front view, then one circle is

FIGURE 6. An arrangement of two circles can be described in two ways.

108 J. GELLER

clearly above the other circle. But if a person looks at the diagram as a map and at
the two circles as two trees and pictures herself “below” the lower circle, then she
will think of the “upper™ circle as being behind the lower circle! Thus, some natural
language utterances can only be interpreted if one starts with the idea of a
three-dimensional world coordinate system. Luckily people do not seem to assume
arbitrary projection angles, so it will be sufficient for us to use (1) and (2).
Interestingly, if one does not want to specify “behindness™ by concrete (= numeric)
terms, the world coordinate system is not necessary at all, and one can talk about
one object being behind another object even in reference to a screen coordinate
system!

We will now present the knowledge structure} that covers the projection choices
that we have considered interesting.

Syntax:

(projection):

coord-sys-w {coord-sys-descriptor)
coord-sys-p {coord-sys-descriptor-2)
view {top-or-front)

(11

Semantics: The case frame (11) describes a projection. It asserts that a projection
from the coordinate system {coord-sys-descriptor) to the (plane) coordinate system
{coord-sys-descriptor-2) is done such that the following holds true: (1) The origins
of the two coordinate systems are connected by a vector orthogonal to the plane; (2)
The plane is located such that the projection amounts to a {top-or-front) view. The
only values that can be taken on by (top-or-front) are “top’ and “front”. In other
words, for a front view the projection plane is parallel to the plane defined by the
[X Y] plane, and for a top view the projection plane is parallel to the plane defined
by the [XZ] plane. It is permissible to omit the slot containing (coord-sys-
descriptor). In that case the (view) structure is used only to interpret fuzzy natural
language terms.

Without such an assertion the following question would be meaningless to the
system: “Is this a top view or a front view?”

The above structure has the following effect on display requests to the abstract
graphics machine. If required to display an object A “behind” an object B, and
{top-or-front) is “top”, then A will be displayed vertically above B. If the view
specified is “front” then A will be displayed at the same location as B, such that B is
drawn later and overdraws A. “In-front”, “above” and “below” are interpreted
analogously.

The reader might think that this representation is too parsimonious to be useful,
because we have not mentioned anything about numerical values concerning the
mapping from the projection plane to the screen. However, this is often not the
case, because an NLG user has different expectations from users of standard
graphics packages. An NLG user prefers to specify the objects that he wants to see
and expects the program to find its own window that includes all these objects as
large as possible, and to map this window correctly into a user selected viewport.
The necessary translation factor and the necessary shift vector are dynamically

+ This is somewhat simplified compared with the representation in Geller (1988).

PROPOSITIONAL REPRESENTATION FOR GRAPHICAL KNOWLEDGE 109

adapted whenever necessary. For more details on possible projections and for the
question of how to represent units in a coordinate system we have to refer the
reader to Geller (1988). There we discuss concrete units (pixels) as well as fuzzy
units (near/far).

2.2.2.2. The representation of positions. Positions are the most complex phenom-
ena in graphical deep knowledge. Nevertheless it turns out that one can get by with
a single structure to represent every possible case. In this section this overarching
representational structure will be discussed. First we have to introduce the
representation of a measurement which consists of a value and a unit.

Syntax:

(linear-measure }:
value (value) (12)
unit (unit)

Semantics: {Linear-measure) describes a measurement, such that (value) is the
value and (unit) is the unit of the measurement. {Value) may be any numerical
value or an element of a small set of conceptual values, namely {left, right, above,
below, near, far, behind, in-front}. We will refer to numerical values as “concrete”,
and to conceptual values as “fuzzy”. (Unit) may be any unit of length measure-
ment, including one of a small set of conceptual units, namely {left-right,
above-below, near-far, behind-front}, or it may be the concept of an object used as
a unit.

Syntax:

(angle-measure }:
value (angle-value) (13)
unit {angle-unit}

Semantics: An {angle-measure) consists of an (angle-value) and an ({angle-
unit), such that {angle-value) is any number} and {angle-unit) is any measuring
unit for angles, such as degrees or radians.

In the specification of a position we will make use of linear as well as angular
measures; we define therefore the following .alternative. The exclamation mark
denotes a BNF-like “or”, but remember that this and all previously shown
structures are not BNF structures, because slot-filler pairs may be arranged in any
desired order.

Syntax:

{measure):
(angle-measure} ! {lincar-measure)

(14)

It is sometimes useful to have an area measure, so we include it here.
Syntax;

(area-measure):
value (area-value) (15)
unit {area-unit)

 More precisely {angle-value} stands for a node that represents the concept of a number that can
specify an angle. We will somewhat relax the rigor of our specifications.

110 I. GELLER

Semantics: An (area-measure) consists of an (area-value) and an (area-unit),
such that {area-value) is any number or one of the fuzzy values {small, large}, and
{area-unit) is any concrete measuring unit for areas or the conceptual unit
small-large. We now need to assign a direction to a measurement.

Syntax:

{component):
direction {axis)) (16)
measure (measure}

Semantics: (Component) describes an oriented measure, such that (axis) is an
axis of a known coordinate system, and {(measure) is a measure as defined
previously. {Axis) may refer to a linear axis, as well as to a conceptually bent axis,
as they are made use of in non-cartesian coordinate systems.

Syntax:
(vector}:
coord-sys {coord-sys-descriptor)
component {component) : (17)

component {component-1)
component {component-2)

Semantics: (17) describes a {vector) that is defined in a coordinate system
(coord-sys-descriptor) and that consists of three components (component},
{component-1) and {component-2) which are all {component)s. In the most
general case this vector will be defined in a three-dimensional space. However, as
noted before, it is permissible to omit irrelevant or unavailable information,
therefore a two-dimensional vector will be represented by omitting the slot for
{component-2}.

Syntax:
{object-position }:
object {object)
relpos {vector) (18)
rel-to {object-or-co) :

modality {modality)

Semantics: {Object) denotes an object concept. (Object-or-co} denotes an
object concept or a coordinate system concept. (Object-position) describes the
position of an object {object) by supplying a reference object {object-or-co) and a
vector {vector) that has its starting point in the reference point of the reference
object {object-or-co) and its end point in the reference point of {object). The
{object-position) specified this way is valid for the modality (modality) only.

Syntax:
{class-position):
class {class)
relpos {vector)
rel-to {object-or-to)

modality {modality)

PROPOSITIONAL REPRESENTATION FOR GRAPHICAL KNOWLEDGE 111

Semantics: The {(class-position) case frame defined in (19) defines the relative
position for a class (class). Every (object) that is a member of {class) and that
does not own a position by virtue of an (object-position) case frame and that does
not inherit a position from a sub-class of (class) has its position assigned by the
(class-position) case frame. The position is specified by the vector (vector)
positioned such that it starts in the reference point of {object-or-co) and ends in the
reference point of {object). The {class-position) is only valid for the modality
(modality).

Syntax:

{position}: 20
{class-position) ! {object-position) (20)

Semantics: A position description {position) is either a (class-position) or an
{object-position). We will now represent an {object-position) in its expanded form
by replacing syntactic variables by appropriate sub-structures.

{ object-position }:
object {object)

relpos coord-sys {coord-sys-descriptor)
component direction {axis)
measure value {value)
unit {unit)
component direction {axis-2) 21
measure value (value-2) (1)
unit {unit-2)
component direction {axis-3)
measure value {value-3)
unit {unit-3)
rel-to {object-or-co)

modality {modality)

(21) represents a proposition that, in modality {modality), {object) is (value)
{unit)s in the {axis) direction and (value-2) (unit-2)s in the {axis-2) direction and
{value-3) {unit-3)s in the (axis-3) direction away from the position of {object-or-
co) in the coordinate system given by (coord-sys-descriptor).

Given a display request for {(object) in the modality (modality}, (object-
position) can be used to derive the position of (object), if the position of
{object-or-co) and the valid reference-frame (coord-sys-descriptor) are known.

Above representational structure for positions is flexible enough to represent all
the distinctions that we need to capture. In Geller (1988) we demonstrate this in
depth. Here we will limit ourselves to name the distinctions which can be expressed.

Concrete (numeric) vs fuzzy relative position descriptions

Cartesian vs polar coordinates

Absolute vs relative positions

Positions with explicit vs deduced reference objects

Own vs inherited relative positions

Absolute coordinate units vs reference objects used as coordinate units

Screen us plane coordinates

Real three-dimensional coordinates vs two and a half-dimensional representations

112 I. GELLER

2.2.3. The representation of attributes in Graphical Deep Knowledge

2231 Types of attributes. One of the big advantages of a knowledge-based
graphics system is that one can freely and dynamically associate object attributes
and pictorial attributes. Besides analysing attributes into these two classes (as done
in detail in Geller, 1988) we can analyse attributes according to the number of
attribute values. Although there are very few clear cut cases, it scems reasonable to
represent faultiness of a device as a binary attribute. The device is either in need of
repair or it isn’t.t In other words, this is an atiribute that does not have any
attribute values.

An attribute such as color can better be captured by an attribute value from
a small base set. Although one could deal with 10 binary attributes of the
form being-red vs not being-red, etc. it seems more natural to talk about the
attribute color which can have one of 10 attribute values. We will refer to the
attribute itself as attribute class and to the attribute value as such or as argument
position. The semanticist Lyons (1977) refers to this distinction as “bipartite
sense-components consisting of (i) a superordinate marker taken from the set
M= {SEX, COLOUR, AGE, SPECIES, ...} and (ii) a subordinate marker u,
specifying which particular location within the domain denoted by the superordinate
marker is denoted by the subordinate marker” (p. 325). The analog extension to
two, three or more attribute values presents no difficulty.

If one combines attributes with forms then two ways of interpreting the relation
between these two entities become necessary in the presence of an abstract graphics
machine. An attribute may be strictly descriptive, i.e. describe a feature that is
incorporated in the form of an object. We will refer to such attributes as unmapped
attributes. Alternatively an attribute might be used “modificatory”, to change the
form of an object which has been inherited along a class hierarchy. This will result in
a modified graphical display. We will refer to such an attribute as a mapped
attribute. For a discussion of unmapped atiributes such as “symmetry”, refer to
Geller (1988).

The final way to discriminate between different attributes which we want to
discuss, is the distinction -between relative attributes and absolute attributes. An
attribute such as ““faultiness” of a device is absolute. It is possible to decide that the
device is faulty, without any reference to another device. On the other hand, an
attribute such as “large” requires a reference class to be meaningful.

2.2.3.2. Simple attribute representations. We will initiate this section with the
representation of an absolute attribute with one argument position.

Syntax:

{a-attribute-1): .
atrb-cls attribute-class) 22)
atrb {attribute-value)

Semantics: (22) is a structured individual describing an absolute attribute with
one argument position, whereby {attribute-class) denotes any concept of an
attribute, and {attribute-value) denotes any concept of an attribute value belonging

+ Even if the state of a device can be described by a number of different possible levels of functioning,

we will assume that in every case a decision has been made whether a repair action is needed or not, This
decision defines a binary faultiness attribute. ')

-~ I

PROPOSITIONAL REPRESENTATION FOR GRAPHICAL KNOWLEDGE 113

to this {attribute-class). Here and in all future uses of (attribute-value) it is
permissible that (attribute-value) be itself a structured individual. The case-frame
for an absolute object with two argument positions becomes by simple extension
(atrb-cls atrbl atrb2).

The structure for an attribute with three argument positions follows analogously.
The structure for a zero-value attribute (a-attribute-0) is created by omitting the
{attribute-value) slot from the {a-attribute-1) definition. With this we can define
the structure of an absolute attribute {a-attribute) as a choice.

{a-attribute):

{a-attribute-0}) ! {a-attribute-1) ! (a-attribute-2}) ! (a-attribute-3) (23)

We will now turn to the representation of relative attributes.
Syntax:

(r-attribute-1):

rel-atrb-cls {attribute-class)
atrb {attribute-value)
ref-set {reference-set)

(24)

Semantics: (24) is a structured individual describing a relative attribute with one
argument position, whereby (attribute-class) denotes any concept of an attribute,
and {attribute-value) denotes any concept of an attribute value belonging to this
(attribute-class). (Reference-sct) denotes any concept of a group of objects, being
either a (class) of objects, or a structured object with parts. If an (r-attribute-1)
case frame is given without a {reference-set), then it is assumed that the immediate
super-class of the object provides the reference. (This relies on a non-tangled class
hierarchy).

If somebody says, “Joe is tall”, we assume that Joe is a human, and that his
height is probably in the area of 6 feet and over. Therefore we will not represent the
reference class explicitly in the system. If somebody wants to preempt the default
interpretation he has to supply a reference set. This would be the case in a sentence
such as “Joe is tall for a kid of four years”, or “Joe is small for a basketball player”.

The extension of this representation to two, three or zero attribute values raises
no problems, and we can summarize an attribute as being either a relative
attribute or an absolute attribute.

{r-attribute):
(r-attribute-0) ! {r-attribute-1) ! {r-attribute-2) ! {r-attribute-3)

{attribute):
{r-attribute) ! {a-attribute)

(25)

(26)

After clarifying what an (attribute) is, we now have to assign it to an entity in our
knowledge base.
Syntax:

{attribute-assignment }:
patient {patient)
attr {attribute)
modality {modality)

@7)

114 J. GELLER

Semantics: The (attribute-assignment) case frame asserts that a patient{patient)
has an attribute(attribute) in the modality (modality). (Patient) represents the
syntactic class of all units that may receive an attribute. It may be an {object), a
(form) or a {(class). This structure makes it possible to query what attributes
(patient) has.

2.2.3.3 Anribute mappings. One of the attractive features of GDK based
systems is that mappings between different representational formats can be done
declaratively and therefore changed easily, but still show a procedural effect. This
has a number of practical applications. Color is usually a strong medium of
communication and can be used to symbolically represent other attributes which are
of a non-graphical nature. However, if a specific user happens to be color-blind,
then he will lose important features of the system. In a knowledge-based
representation system one can specify the desired mapping of object attributes to
picture attributes explicitly. Because this information is accessible to the abstract
graphics machine, it can be used to change the display format.

We first need to introduce a structured individual that will be used in attribute
mappings.

Syntax:

{value-mapping}:
expressed (attribute-value) (28)
expressed-by (argument)

Semantics: (28) expresses a structured individual describing a mapping between
one ({attribute-value) and a corresponding argument to a modifier function
(argument). The {attribute-value} usually describes an invisible attribute value,
while the (argument) is its corresponding symbolic attribute value. {Argument}
must be represented by a base-node. The following structure completely describes
how to represent the necessary mapping. '

Syntax:
{attribute-mapping)
attr {attribute-class)
mod-func {modifier-function)
valt {valuec-mapping) ' 29
vall {value-mapping) (29)

vall {value-mapping-2)

modality (modality)

Semantics: The structure (29) expresses the proposition that attributes of the class
{attribute-class) can be expressed graphically by the functional {modifier-function).
In addition it expresses the correct mapping between argument positions of the
attribute case frame and arguments of the (modifier-function). Each syntactic
variable named (value-mapping), possibly with a number after the word “map-
ping”, expresses one mapping between an argument position and a corresponding
function argument. The “vall” arc makes it possible to differentiate between
attributes with one or more argument positions. If an attribute happens to have two
argument positions then the (value-mapping) case frames are extended to have

PROPOSITIONAL REPRESENTATION FOR GRAPHICAL KNOWLEDGE 115

“val2” arcs. The “val2” arcs mark mappings for the second additional argument.
For attributes with three values “val3” arcs are necessary.

This structure incorporates the knowledge necessary to answer questions such as
“How would you display something {atiribute-value)?” The procedural effect of a
mapped attribute comes about in the following way. Assume that the user’s request
is to display an object which has the attribute {attribute-value) belonging to the
attribute class {attribute-class) and that (attribute-class) is linked to the LISP
function {modifier-function) by a structure such as (29). Assume further that the
{attribute-value} is linked to (first-argument). The abstract graphics machine then
has to call the function {modifier-function) with the form of the object as first
argument and with (first-argument) as second (first additional) argument. So the
{modifier-function) takes a (form) as the main argument, and it returns a
form-function that has been changed such that if it is executed it will incorporate the
attribute expressed by {attribute-value).

Example:
mld(attr state

modality logical
mod-func tint-jg

vall ml12(expressed faulty (30)
expressed-by green)
vall ml3(expressed working

expressed-by magenta))

The above example expresses that faultiness of the attribute-class ‘“state™ is
expressed by the “tint-jg”* function with the argument “green’ while a “‘state” of
“working” is expressed by the color “magenta”.

The use of the modifier function requires some more clarification. In our theory
an attribute-class is considered as an abstract functional which takes the object it is
applied to as argument. If there are any attribute-values asserted, then these
correspond to additional arguments to be supplied to the functional. The node at the
end of the “mod-func™ arc is at the same time the concept that represents the
abstract functional, and a reference to the code that performs the operations of the
concrete functional. This is done in complete amalogy to form concepts which
simultaneously refer to procedures embodying graphics code.

This attribute theory is true to the following two important principles:

(1) A form which is modified by an attribute is itself a form and should therefore
be represented consistently with all other form representations.

(2) All attributes in the system should be treated consistently. The other way one
could incorporate attributes in a form function is to make the attribute-values
arguments to the form functions themselves. However, this would require the user
to predict all attributes he would ever want to use, or fo recode all forms for every
new attribute, or to use the method of modifier functions for all the attributes he had
not thought of in the first place. This would create form functions with many
arguments in the first place and would still result in ad hoc extensions for newly
discovered attributes. Obviously none of these alternatives is very satisfying.

In conciusion, the solution to the previously raised problem of changing the
representation of a certain attribute by color to a representation by a special line
style is to introduce a new attribute mapping.

116 J. GELLER

2.2.3.4. Inheritability of attributes. Some observations on inheritance and in-
heritability will be offered in the section on part hierarchies. In this section it will
simply be pointed out that attributes might or might not be inheritable, and that this
item of information is dependent on the attribute itself and can be communicated in
a simple sentence. Therefore it should be representable in the system in a simple
declarative structure. '
Syntax:

inheritable ({attribute-class) (31

Semantics: The above structure expresses the assertion that (attribute-class) is an
inheritable attribute.

It will be explained later that if an object has attributes such that their
{attribute-class }es are not marked by the inheritable case frame, then they are not

considered for being propagated down a (part) hierarchy. If an attribute class is

marked by structure (31) then all attributes will be applied not only to objects for
which they are asserted, but also to all their parts.

2.2.4. Part hierarchies

Part hierarchies have been of fundamental importance in a number of different areas
of artificial inteiligence. Knowledge representation (Papalaskaris & Schubert, 1981)
has dealt with them as well as hardware modeling in maintenance (Taie, 1987) and
research in computer vision (e.g. Leyton 1986; Biederman, 1987).

Qur interest in part hierarchies is motivated by the need for a method to decide
what content to put on the screen of an NLG system and how to organize it to be
optimally useful to a viewer. In. KBUIMS (knowledge-based user interface
management system) design, this complex of problems has been referred to as
“presentation planning” (Arens, Miller & Sondheimer, 1988).

Part hierarchies permit a strategy to decide what to show and how to avoid
information overload: ““do not show all the parts of a requested object”. If a simple
display is expected, “just show an integral object”. If a more informative display is
expected, “then show the integral object with its parts”. More generally, “control
the complexity of a display by selecting the number of levels of the part hierarchy
that are shown on the screen”. This method has led us to distinguish three different
types of part hierarchies (Geller and Shapiro, 1987} which we will discuss in detail in
this report. An alternative analysis of part-whole relations based on sentence
patterns has been described by Winston, Chaffin and Herrmann (1987). A
comparison between their analysis and our analysis is contained in Geller (1988) and
is also the subject of a forthcoming paper.

2.2.4.1. The definition of parts. It is difficult to find a necessary and sufficient
condition for the part relation, but we can improve the definition given by Winston
et al. (1987) who characterize being a part by “the elements of inclusion and
connection” (p. 438). In addition to this we think of parts as being smaller than their
corresponding wholes.

For abstract objects it is necessary to talk in terms of a mapping function that
transforms them such that a spatial measuring function or a counting function can be
applied to the image. Such a mapping function always selects a salient feature that is

e EE—

PROPOSITIONAL REPRESENTATION FOR GRAPHICAL KNOWLEDGE 117

common to both whole and parts. We will formulate this in the following necessary
condition for being a part.

If an object P is part of another object W, then a mapping m and a function f exist
such that m and f fulfil the following four conditions: (1) m is a mapping function
that can be applied to both P and W and which transforms the same salient feature
of both of them into a spatial or into a countable representation; (2) f is a measuring
function which assigns a measure of size or a count to the mapping of W as well as
to the mapping of P; (3) The size assigned by f to the mapping of W must be larger
than the size assigned by f to the mapping of P.

f(m(P)) < f(m(W)) (32)

{(4) The sum of the measures or counts of the mappings of all immediate parts of an
integral object is smaller or equal to the corresponding measure or count of the
mapping of this object. If there are & immediate parts this can be formulated as
follows.

E Hm(P,)) = £(m(W) (33)

The reason for the use of the sign =< will be explained with an example. If we
consider a forest and apply a-count function f, then the sum of trees will be exactly
equal to the number characterizing the forest. If we use an area function instead,
the sum of the areas of the trees will be smaller than the area taken by the whole
forest.

2.2.4.2. A general purpose part representation. We will now introduce an over-
arching representational structure that covers the three different types of part
hierarchies that we have found necessary to distinguish.

Syntax:

object {object)
modality {modality}
part-relation (real-assem-clu)
sub-object (object-2)

(34)

Semantics: The above structure asserts that {object-2) stands in the part-relation
to {object) which is specified by (real-assem-clu) and is valid in the modality
{modality). (Real-assem-clu) may be one of the base nodes {real-part, sub-
assembly, or sub-cluster}.

2.2.4.3. Real parts. In the realm of graphical deep knowledge an object P is
defined to be a “real” part of another object W if the following conditions are
fulfilled:

(1) The object P is considered part of the object W in the real world;

(2) Both the object W as well as the object P have a form, i.e. they are both by
themselves displayable and can be displayed simultaneously; and

(3) The display of W without the display of P creates a “‘useful” image.

The last criterion is of course in the eye of the beholder and cannot be formalized
any further. The purpose of this definition is obvious: for real parts the complexity
of a display can be limited by showing only the integral object without its parts, and
without in this way creating an “amputee”. For this purpose we assume that the

118 I. GELLER

form of W shows some sort of sketch that is suggestive of the object and all its parts
without showing the parts in too much detail.

The representation of a real part is done by placing the concept “real-part” in the
position marked by the arc “part-relation”. If requested to display an object with
real parts at a low level of graphical complexity, then this is interpreted as a
requirement to display it alone. If required to display it with complete information,
then also its (first level) real parts will be displayed, although they were not explicitly
requested.

2.2.4.4. Assemblies. In the realm of GDK an object P is defined to be a
“sub-assembly” of another object W if the following conditions are fulfilled:

(1) The object P is considered part of the object W in the real world;

(2) Both the object W as well as the object P have a form, i.e. they are both by
themselves displayable and can be displayed simultaneously.

(3) The display of W without the display of P creates an image which is not
desirable for the user.

An object that has sub-assemblies, such as W in the above definition, is called an
“assembly”’. An assembly may also have real parts. An example from the domain of
circuit board maintenance will clarify the changed condition. In a purely functional
representation a pin of an integrated circuit will not be displayed at all, it will
just be implied by the wire that connects the pin to another circuit. In maintenance
such a display is not sufficient, because the pin as well as the connecting wire can be
defective. Therefore one would want to display pin and wire separately, and this is
usually done by a little rectangle, representing the pin and called the port of the
component.

It would make no sense to display a component and the wire leading to it, but
omit the port that creates the connection between these two objects. In other words,
whenever a display of the component is required, one automatically also wants the
ports shown. A representation of ports as real parts of the component is therefore
not advisable, because a user could specify a complexity limited display which would
show the component but omit its parts. Therefore the ports have to be made
sub-assemblies of the component.

For display purposes the sub-assembly structure in a sense overrides user requests
for low complexity displays. If the display of an object is requested, then its
sub-assemblies will be displayed, even if the user has asked for a display of low
complexity. Sub-assemblies are non-separable parts.

2.24.5 Clusters. In the realm of GDK an object P is defined to be a
“sub-cluster” of another object W if the following conditions are fulfilled:

(1) The object P is considered part of the object W in the real world.

(2) The object P has a form, while the object W usually has no form at all in the
real world but has an assigned symbolic form.

(3) It is not desirable to display P and W together.

An object, such as W in the above definition, that has sub-clusters is called a
“cluster”. A cluster may not have real parts or sub-assemblies, although some of the
sub-clusters may be real parts of another object. Several sub-clusters are said to
“form a cluster” if they are all and the only subclusters of a cluster. Clusters are
standing nearer to what one could call an abstraction hierarchy, than the other two
types of part hierarchies. The definition given here corresponds to an improvement
of the definition of clusters presented in (Geller & Shapiro, 1987). In our original

PROPOSITIONAL REPRESENTATION FOR GRAPHICAL KNOWLEDGE 119

definition symbolic forms were always only boxes, and this fact was not represented
in the knowledge base. This is quite satisfying for technical applications, however, if
one wanis to replace a cluster of trees in a map by a green blob, then this blob will
not usually be a rectangle. This improved definition permits one to associate a
symbolic form with every super-cluster, as a “real” form is associated with every
real super-part, and store it in the knowledge base.

If the drawing of a cluster is requested in complete detail, then only its
sub-clusters will be drawn. If its drawing is requested at an appropriately reduced
complexity level, then such a request is interpreted as a command to display the
symbolic form of the cluster itself, but not its sub-clusters.

It is permissible to have an object with real parts, such that some of those parts
form one or more clusters. The usefulness and naturainess of such a construct is
discussed in (Geller, 1988).

2.2.4.6. The inheritability of attributes in a part hierarchy. Consider the attribute
of “faultiness”, which is very popular in the domain of circuit board maintenance.
At the beginning of a majntenance session it is known that a whole board is faulty.
The purpose of the maintenance session is to narrow down the fault to a single, or
possibly a few, faulty components and acquit all the others. To inherit the attribute
of faultiness would completely defeat the purpose of the maintenance system!

However, in creating a picture from predefined components, another view
emerges. It is the nature of (our) graphic primitives that they do not represent an
object in a size invariant format. In other words, the form-function of an object
always incorporates a size. To assert in the network that one wants a scaled
multiplier, this operation has to be represented as an aftribute of the picture of the
multiplier.

If a whole board is to be scaled, then all of its parts also have to be scaled. In that
case it is obvious that one wants to inherit an attribute from an object to its parts.
So, two attributes have been shown, an inheritable one, and an non-inheritable one.
This is the reason why inheritability of an attribute has to be asserted explicitly.
Also note again that this is inheritance along a part hierarchy, not along a class
hierarchy, a technique that has not been used extensively in the KR literature. [We
know of one approach that permits inheritance to any ‘“grouping” (Smith, 1983)
including parts.] The case frame for asserting inheritability has been presented in the
section on attributes.

The necessity of inheritance along part hierarchies is a very important and
interesting finding, because it forces us to raise some criticism of the KL-ONE
family of knowledge representation (Brachman & Schmolze, 1985). KL-ONE and
its descendents comprise the currently most popular family of network based
knowledge representation systems in the field. The basic assumption made by these
systems is that knowledge representation environments should include a taxonomic
reasoner that is operating on a class hierarchy (IS-A hierarchy). The KL-ONE
interpreter automatically takes care of inheritance (better: role inheritance) along
this class hierarchy. However, it does not supply a general purpose inheritance
mechanism for other hierarchies, such as part or containment hierarchies. As we
have shown, it is a reasonable request to ask for inheritance along part hierarchies,
and it seems that a knowledge representation system should treat different
inheritance hierarchies consistently.

SNePS$, a propositional network-based knowledge representation system, does not

120 J. GELLER

supply any automatic inheritance, but supplics the ability to write path-based
inference rules. An interpreter for such rules is implemented. It is the responsibility
of the user to incorporate any required inheritance in his specific network
interpreter. This is consistent with SNeP§’ status as a network at what Brachman
has called the “logical level” (Brachman, 1979). However, knowledge repre-
sentation systems af the “epistemic level” (such as KL-ONE) should give due
consideration to uniform treatment of other major ontological hierarchies.

2.2.5. The class hierarchy

In our theory a non-tangled class hierarchy is used for standard downward
inheritance (Geller, 1988). However, we also supply a limited upward inheritance -
facility. We find justification for this in the psychological research on categorization.
The cognitive science literature reports three different approaches to categorization
(Smith & Medin, 1981) the classical approach, the prototype approach and the
exemplar approach. The classical approach has been all but totally rejected from a
cognitive point of view. It requires that every member of a class be described by
necessary and sufficient conditions.

The protype view as developed by Eleanor Rosch (1978) describes a “protoype”
as a summary description of all the members of a class. The third theory of
categorization, the exemplar view, differs from prototype theory in the following
way. The summary description used by prototype theory is not necessarily identical
to any existing member of the category. Exemplar theory on the other hand
postulates the use of one or more stored real exemplars of the category; in other
words ro summary description exists.

The exemplar view of categorization permits us to think in terms of upward
inheritance from an individual to a class, because if we do not assume a summary
description we may not associate attributes with it, and then the only source from
which to derive inherited attributes are other exemplars. This implies that it must be
possible to inherit attributes from one exemplar upwards to a class and then back
downwards to another exemplar.

For example, a knowledge base in our system might contain an object with no
specified form that belongs to a class hierarchy. Classical downward inheritance
would search up in the hierarchy until at some higher level a form is encountered.
However, it might happen that no form is found anywhere in the hierarchy. In our
interpretation of the exemplar theory it is valid to do a down search in the hierarchy
for an object that belongs to the same class as the current focus object, and to
inherit an existing form with up-and-down inheritance for it.

The idea of up-inheritance is not popular in Al. It is either ignored or explicitly
prohibited. For instance, knowledge representation of the NETL style (Fahlman,
1979), which is based on marker passing, prohibits the idea of inheritance according
to an up-and-down-movement because if one would permit markers to move up and
down in the network the whole network would eventually be marked.

One is tempted to interpret up-and-down inheritance by considering the first step
(the up-inheritance) as a form of generalization or inductive learning. However, this
is not what we have in mind, because the representation of the class itself is not
changed by a step of up-and-down inheritance. If a class should have many members
only one of which has a form, and if this form should be changed after one

PROPOSITIONAL REPRESENTATION FOR GRAPHICAL KNOWLEDGE 121

application of up-and-down inheritance, then the second application of this
inheritance rule will supply the new form, not the old form. If we were talking about
a step of generalization, then the class would preserve the form after the first use of
up-inheritance.}

Are we then making a decision for the universal use of examplar inheritance and
against prototype theory? Clearly this is not our intention, because up-and-down
inheritance is only used when no sufficient information is associated with the classes
used for inheritance, i.e. when our version of a summary description fails. We do
not eliminate the use of a summary description!

For practical purposes we have limited the use of up-and-down inheritance in two
ways. Up-search is done from the lowest level, the level of the individuals, to the
fevel immediately above it, i.e. to the lowest level of classes. If there is no other
member in this class, or if the other members do not carry the desired information,
then up-and-down inheritance fails. One can argue that this does not make complete
use of the class hierarchy, but it secems like a reasonable compromise, because
humans use hierarchies that are flat and bushy. Rosenfeid has even argued that it is
not necessary to view operations on hierarchies as recursive to an arbitrary depth,
because this constitutes an unnecessary effort if one has only a flat hierarchy.:

Secondly, up-and-down inheritance is used only for information that is urgently
needed, and not as the default case. In a graphics system the one item of
information that is obviously needed most is the form of an object, for which no
“reasonable defaults” can be supplied. We will now formally define up-and-down
inheritance which we also refer to as exemplar inheritance.

Definition: Exemplar inheritance. If an individual is missing information about an
important property, and this property cannot be derived by inheritance from a
superclass of the individual, then the property may be inherited from any of the
other members of the immediate superclass of the individual.

In our domain only “forms” are considered important, and we have therefore
decided not to represent the fact that a property is important by an explicit
assertion.

It is not yet clear what happens when several members of a class offer different
properties for upward inheritance. In such a case a combined strategy of majority
and recency may be used. In addition we argue (Gelier, 1988) that this does not
constitute a real problem in the GDK domain.

3. Reasoning

The major reason for introducing the notion of graphical deep knowledge as
separate from graphical knowledge has been the interest in doing reasoning about
graphical structures. The first step of making a corpus of representations accessible
to logic based reasoning is to transform it into a well formed declarative format with
a defined syntax and semantics. It has been the approach of this investigation to
limit the procedural representations which at some point are not avoidable in
graphics to a small area, namely to iconic primitives. All conceptual relations
between these iconic primitives are represented declaratively.

T This is not necessarily true if one wants to deal with generalization combined with truth maintenance.
 Azriel Rosenficld, talk 4/28/87 SUNY at Buffalo, on “Recognizing unexpected objects™.

122 1. GELLER

The second step is to formally define reasoning patterns. SNePS provides two
different facilitics for doing so, a system of rules and a system for defining paths.
Although the rules that can be defined are very powerful and permit quantification
as well as the use of non-standard connectives (Shapiro, 1983) we have chosen to
concentrate in our implementation on the use of paths which are more efficient.

Path-based inference in SNePS assumes that one has a node of a well-specified
category available (typically an “object’”) and follows the arcs that are pointing to
this node backwards until one hits a node describing unknown and interesting
information (for instance a ‘“form” or ome coordinate of a position). The well
specified case frames of GDK assure that if the required information exists at all in
the network, then it will be reachable by a well defined path. Paths can be described
by a LISP-like language as explained in Shapiro et al. (1983), but we will limit
ourselves to an example.

(find
compose
form-!
(domain-restrict
(modality function)
class)
(kstar
{compose _ '
class-! (35)
(domain-restrict
(modality function)
sub-class)))
type-!
(domain-restrict
(modality function)
object))
pcm-1)

The “find” function denotes a retrieval operation from a SNePS network. Two
arguments are supplied to this operation, a modality (namely “function”) which is
used at three positions in the find call, and an object, namely “pcm-1". All other
symbols in (35) correspond either to arcs of GDK case frames or to keywords of the
path language. The goal of this operation is to retrieve a form for pcm-1. Figure 7
will be helpful in understanding this example.

The “compose” keyword introduces a path. A path is constructed from its tail to
its head; therefore, we start with a “form-" arc that would emanate from our
requested result, should it exist. (Every arc A in the system has an antiparallel arc
that is not shown in the diagram and that has a name of the form A-). The
exclamation mark indicates that we are looking for an assertion, i.e. it would not be
sufficient to find a correct structure if it only described a hypothesized proposition.
The “(domain-restrict (modality function) . . .” piece expresses an additional con-
straint on this assertion: it must dominate a node “function” by way of a “modality”
arc. Finally our path leaves the assertion node along a class arc. This time no
negation is specified, because the path actually runs parallel to the arc.-

PROPOSITIONAL REPRESENTATION FOR GRAPHICAL KNOWLEDGE 123

Sub-class

Form

IXDOEFCHI

Modality

Modality Modality

Function

FiGure 7. An example structure for path-based inference.

The “kstar” keyword indicates that the structure that is parenthesized together
with it can be repeated 0, 1 or arbitrary many times, i.e. it is a Kleene * operator.
The potentially omitted or repeated structure consists of a “class-” arc, followed by
a “sub-class” arc. As before, this piece of path can be passed only if the node
dominating it is asserted (*‘I"), and if it is also dominating a modality arc pointing to
a “function” node. Finally the structure must terminate with a ““type™ arc which is
traversed in the reverse direction, and an “object” arc that coincides with the head
of the path which is pointing to “pecm-1". Like before, modality and assertional
status must be correct, otherwise the path traversal fails.

For use in a graphical generator function the described path is encapsulated in a
LISP function, with “pcm-1”" and ‘“‘function” replaced by parameters. For answering
a question about an object the same path will be used for information retrieval.

4. Implementation

We will now discuss the implementation of the theory described in the previous
sections which was realized at USC/ISI (the Information Sciences Institute of the
University of Southern California) on an HP 320 workstation with color graphics.
SNePS as well as TiNa, the GDK interpreter, are coded in Common LISP. (TiNa
stands for “Tmna Is No Acronym”.) The necessary graphics primitives are
implemented using primitives of the X window environment.

Natural language parsing is done by using a semantic grammar (Burton & Brown,
1979) based on the ATN formalism (Woods, 1970; Bates, 1978). The used ATN is
extended over the version described in Bates (1978) and is part of the standard
SNePS distribution (Shapiro, 1982).

The grammar written for this investigation categorizes input into assertions,
questions, and commands. Assertions result in building GDK structures that
represent the language utterances. Questions activate retrieval operations and
return the results of these operations, sometimes combined with a canned phrase.
Whenever possible, questions also activate calls to the display function, such that

124 J. GELLER

replies are given graphically as well as with language. Commands always activate
calls that change the display.

During natural language input a user might refer to a “form’ which is unknown to
the system. In this case, the grammar invokes a graphics editor (called Readform)
that permits the user to design the referenced form-icon. After exiting the editor,
the user will find himself again in the language interaction environment.

Diagram display is performed by the TiNa program which is activated from the
grammar and understands a number of options, e.g. the number of part levels to be
displayed. In Geller (1988) twelve extended test runs demonstrate the abilities of
our system and the interactions between language input and graphics output.

4.1. TINA USED AS MAINTENANCE INTERFACE

The use of the TiINA program as a graphics interface of the VMES project has been
described in a number of earlier publications (Shapiro, Srihari, Taie & Geller, 1986;
Taie, Geller, Srihari & Shapiro, 1987; Geller, Taie, Shapiro & Srihari, 1987; Taie,
1987). The VMES system consists of a maintenance reasoner and a graphics
interface. The graphics interface is an application of an older versiont of the Tina
program. The task of the maintenance reasoner is to identify a faulty component in
a given device, usually a circuit board. The maintenance reasoner and the display
program share a knowledge base realized as a SNePS network.

During the process of identifying a faulty component in a device, the maintenance
reasoner repeatedly updates the shared knowledge base. It categorizes components
as being in a “default state”, being in a state of violated expectation, being
recognized faulty or being suspected to be faulty. Information about any of these
states is asserted in the network, using the attribute case frame described earlier on.
Whenever the maintenance reasoner wants to express changes in its state of
knowledge about the analysed device, it executes a call to TiNa. TiNa presents the
current state of the maintenance process to the user. This is done by mapping
attributes into signal colors (red = faulty, blue = default green = suspect, magenta =
violated expectation).

Typically a device will be displayed completely blue in the beginning. After
finding a violated expectation, for instance a port that has a wrong voltage value,
this port will receive an attribute “violated expectation”. The device will now be
blue, except for the port in question which will be magenta. Finally, after several
steps of reasoning and redisplay, the device will be shown in blue with the faulty
component(s) in red.

The procedural interface between maintenance reasoner and display program
consists of the TINA function only! All other communication is done through the
shared knowledge base that both parts of the program have access to. Qur
experience with this type of programming has been that it is exceedingly easy to
combine two independently developed modules. To our own surprise no integratory
debugging was necessary!

The most complicated device that was “maintained” with the combined main-
tenance reasoner/graphics interface has been a six-channel PCM board. In Figure 8
a screen dump from a GIGI terminal is shown. The PCM board does analog/digital

+ Based on a VAX 11/780 and a GIGI graphics terminal.

PROPOSITIONAL REPRESENTATION FOR GRAPHICAL KNOWLEDGE 125

X | v, SN SE—

FiGure 8. A screen dump of the PCM board.

coding and decoding, and its main components are inverters, transformers, and one
PCM chip per channel. The large number of components and the limited quality of

the involved hardware (printer), unfortunately resulted in a somewhat fuzzy
diagram.

5. Intelligent machine drafting

In this section we will briefly present a more specialized application of the GDK
theory that has grown out of our work on circuit boards. The problem to be solved
is the modeling of the behavior of a draftsman. This problem was introduced by
Shapiro and Geller (1986} and also discussed by Geller and Shapiro (1987) and
named the “Intelligent Machine Drafting (IMD) Problem”.

Before the advent of sophisticated CAD equipment it was the normal way of life

126 J. GELLER

in an engineering company to have developers create (sometimes awful) hand-
drawings of the circuits they wanted built. These diagrams then went to the
draftsmen who created nicely laid-out wire plans following a few professional
conventions. The draftsman does not have to understand the functioning of the
device he is laying out! It is notable that the job of a draftsman has been considered
a low intelligence job, so one should think that AI would have a ready made
explanation for “how to do it”.

On the other hand over 30 years of Al history have shown that the seemingly
easiest problems, such as recognizing a face, are often the most difficult problems,
and while highly developed medical advisors, e.g. members of the MYCIN family
(Davis, Buchanan & Shortliffe, 1985) have been built, we still have no comprehen-
sive theory of solving many so-called casy problems. It seems to us that it is
precisely a “simple” job, such as the job of a draftsman, which requires a lot of
perceptual intelligence and is therefore difficult for a program to perform.

It has been a part of this project to model the abilities of a draftsman in creating
circuit board diagrams. The problem setting considered is slightly different from one
a real draftsman is confronted with, because he, as mentioned before, usually bases
his work on a hand drawing. In this research the IMD program receives the
knowledge base equivalent of a part list, plus complete connectivity information,
including the correct inports and outports of every component instead.

At this point the question naturally arises as to whether there is any formal theory
of how to draw such circuit board diagrams. A look at textbooks for drafting yields a -
disappointment (Renton, 1971). One finds only a few conventions and vague
explanations. Biesel (1984), whose work concentrates on circuit board diagrams, has
collected other evidence for the vagueness of the state of the art in drafting.

IMD is an application of our theory of GDK, because all that is needed for laying
out (a class of artificially simple) circuit boards are part, class, form, attribute and
inheritability assertions as introduced before. What is omitted from GDK for IMD
are position assertions, they are replaced by non-GDK structures that describe ports
and connections.

It is important to assert that IMD differs from Computer Aided Design (CAD) in
that it deals with functional representations as opposed to structural representations
and that the goal of solving a layout and routing problem is to create a “readable”
and ideally even “appealing” functional design, as opposed to an optimized
structural design. : L

In Geller (1988) we describe a small class of devices for which we have
implemented an IMD module. A report on this work will be published in a later

paper.

6. Open problems

Clearly, this work represents only the beginning of a larger effort and does not
address a number of important problems. One question to be asked is whether our
approach is viable at all. Looking at context effects might raise some doubt about
this question. Graphical representations naturally express context effects, while

T We thank one of our reviewers for pointing out these difficulties.

PROPOSITIONAL REPRESENTATION FOR GRAPHICAL KNOWLEDGE 127

propositional representations have marked difficulties with them. The work pre-
sented here does not attack context problems, but the topic is challenging even
without them, and we have decided to work on the aspects of the problem which are
accessible to propositional reasoning.

Another seemingly unjustified limitation of our theory is the assumption that
there are only two possible views, top and front. What about side views? What
about general views? The major focus of our representational theory is two-
dimensional diagrammatic representations. Still it captures the most important
three-dimensional cognitive distinction, namely the one between a view parallel to
the axis of gravitation versus a view orthogonal to the axis of gravitation. Arguments
for this major distinction would go beyond the scope of this paper. The treatment of
other views and a deeper treatment of three dimensional phenomena will have to be
dealt with in future work.

A similar problem is the limited range of permitted graphical transformations. We
are fully aware that a number of interesting phenomena have not been mentioned at
all, ¢.g. shading. Again, we emphasize the limited domain of this work and defer
treatment of these problems to a later project.

7. Future work

One direction into which we wish to extend our approach is towards the work of
Kosslyn (1981b) and to permit “readback’ from the generated diagrams to be used
for question answering. Specifically we are interested in explaining the examples
given by Waltz (1980) that engender surprise in a listener. A preliminary analysis
shows that only close interaction between propositional and analog representations
can cope with this problem.

Qur second main objective is to develop this research towards a knowledge—based
user interface management system (KBUIMS). So far it is not possible in our system
to define a menu by a combination of natural language and mouse movements, and
to link the menu choices to procedures that should be executed on buttoning one of
them. However, it is clearly in the range of our paradigm to achieve this effect. The
basic goal and unique characteristic of this approach is the complete integration of
the language used to interact with the user interface and the language used to
interact with the user interface management system.

The current implementation invites improvements in a number of directions. It is
not possible to capture dynamic phenomena; for instance one cannot move icons on
the screen. The three-dimensional abilities of the program are very limited. The
language interface is not general enough, and the program as a whole is not very
robust. Pragmatic issues of graphical representations (Geller, 1988; Marks & Reiter,
1990) need to be implemented.

8. Conclusion

The purpose of this paper has been to analyse the knowledge necessary for the
aspects of multi-media interfaces that can be captured by the theory of Natural
Language Graphics. The notion of Graphical Deep Knowledge has been introduced
and used as the leading theme throughout. Graphical Deep Knowledge has been

128 J. GELLER

defined as declarative knowledge that is projectively adequate as well as deductively
adequate.

The presented constructs of Graphical Deep Knowledge have been introduced in
a frame-tike notation for SNePS semantic networks. For many constructs the syntax
was given in this case frame format, and a descriptive semantics was applied. In
addition procedural effects of introduced structures have been explained informally.
The constructs of GDK will now be summarized.

Form descriptions are based on primitive forms (icons) which themselves consist
of graphic primitives from a LISP graphics package. They are linked to objects by
appropriate case frames, or inherited by objects from classes with an associated
form. If no form can be derived this way for an object, exemplar inheritance (a.k.a.
up-and-down inheritance} is attempted. We have argued that the latter is a viable
technique based on the exemplar view of categorization that should be used if no
summary description is available for a class of objects.

A wide range of different position specifications is possible which are all based on
one common composed case-frame. Concrete (numerical) as well as fuzzy positions
can be represented. Reference objects of position specifications can be given
explicitly or deduced from a part hierarchy. Positions can be inherited along the
class hierarchy. Different coordinate systems can be defined, and projections
explicitly selected. Natural language utterances in reference to objects on the screen
can express a view referring to a third dimension. Such utterances are correctly
interpreted.

Case frames for relative and absolute attributes have been introduced. Knowledge
structures have been introduced that permit the mapping of object attributes into
picture attributes. The actual mapping mechanism of an abstract graphics machine is
hereby explicated as a function that transforms form-comprising functions into new
form-comprising functions with an incorporated attribute.

Part hierarchies, as used in many Al systems, have been replaced by three
different part-like hierarchies, namely real parts, assemblies, and clusters. Inherit-
ance of attributes is possible along the part hierarchy of the system. The
inheritability of a specific attribute can be expressed declaratively.

SNePS based reasoning in the spatial domain has been discussed. The reasoning
facility used in our implementation is called “path-based inference” and permits the
description of paths of arcs to derive necessary information about objects. All
knowledge retrieval for graphics generation as well as question answering is based
on such paths.

In the domain of maintenance systems the use of TINA, our graphics program, was
shown as a graphics interface to the VMES (Versatile Maintenance Expert System).
A second CAD-like interface based on the same theory was also introduced, which
however differs from a CAD system in trying to optimize the “readability” of a
pictorial representation. With this interface the completely new field of Intelligent
Machine Drafting was defined.

I would like to thank all the many people that have in some way or the other contributed to
this work. The list of them in Geller (1988) is almost three pages fong. I especiaily thank
Stuart C. Shapiro, my advisor, and Janet Bodner, who corrected my English grammar. Also
thanks to my reviewers for pointing out a number of important problems.

PROPOSITIONAL REPRESENTATION FOR GRAPHICAL KNOWLEDGE 129

References

AgprerT, G. & BurstEmn, M. H. (1987). The KREME knowledge editing environment.
International Journal of Man-Machine Studies, 27, 103-126.

Apornt, G., D1 Manzo, M. & GruncHiGLIA, F. (1984a). Natural language driven image
generation. In Proceedings of COLING® 8§4. Stanford University.

Aporni, G., D1 Manzo, M. & GrunchiGLia, F. (1984b). From description to images: what
reasoning in between. In European Conference on Artificial Intelligence, Pisa.

ARENs, Y., MiLLer, L. & SonpHEmMER, N. (1988). Presentation planning using an
integrated knowledge base. In Monterey Workshop on Architectures for Intelligent
Interfaces: Elements and Prototypes.

Bates, M. (1978). The theory and practice of augmented transition network grammars. In L.
Borc, Ed. Natural Language Communication with Computers. Lecture Notes in
Computer Science. pp. 191-259. New York: Springer Verlag.

BieperMan, 1. {1987). Recognition-by-components: a theory of human image understanding.
Psychological Review, 94, 115-147.

BieseL, H. D. (1984). On Encoding Functional and Schematic Descriptions of Complex
Systems. PhD thesis. Ann Arbor, MI: University Microfilms International.

Borning, A. (1986). Graphically defining new building blocks in ThingLab. Human--
Computer Interaction, 2, 269-295.

Bracuman, R. J. (1979). On the epistemological status of semantic networks. In N. V.
FinpLEr, Ed. Associative Networks: Representation and Use of Knowledge by
Computers, pp. 3-50. New York: Academic Press.

Bracuman, R. J., Fikes, R. E. & Levesque, H. J. (1983). KRYPTON: A functional
approach to knowledge representation. Computter, 16, 67-73.

Bracuman, R. J. & Scumorze, J. (1985). An overview of the KL-ONE knowledge
representation system. Cognitive Science, 9, 171-216.

BracaMaN, R, 1., Fikes, R. E. & Levesous, H. J. {1985). Krypton: A functional approach
to knowledge representation. In R. J. BrRacuman & H. J. LeEvesoue, Eds. Readings in
Knowledge Representation, pp. 411-439. Los Altos, CA: Morgan Kaufmann.

Brown, D. C. & Kwasny, S. C. (1977). A Natural Language Graphics System. Technical
report OSU-CISRC-TR-77-8, Department of Computer and Information Science, The
Ohio State University.

Brown, D. C. & CuanDRrRASEKARAN, B. (1981). Design consideration for picture production
in a natural language graphics system. Computer Graphics, 15, 174-207.

Burton, R. R. & Brown, J. S, (1979). Toward a natural language capability for
computer-assisted instruction. In H. O’NenL, Ed. Procedures for Instructional System
Development, pp. 273-313. New York: Academic Press.

Dawvis, R., BucHanaN, B. & SuortLiFrg, E. (1985). Production rules as a representation
for a knowledge-based consultation program. In R. I. BrRaciman & H. J. LEVEsQUE,
Eds. Readings in Knowledge Representation, pp. 371-387. Los Altos, CA: Morgan
Kaufmann.

D1 Manzo, M., GiuncaiGLia, F. & Pwvo, E. (1984). Space representation and object
positioning in natural language driven image generation. In International Conference on
Al Methodology—Systems—Applications, AIMSA Varna, Bulgaria,

Fanimann, S. E. (1979). NETL: A System for Representing and Using Real-World
Knowledge. Cambridge, MA: MIT Press.

Fruumore, C. J. (1968). The case for case. In E. Bacu & R. T. Harwms, Eds. Universals in
Linguistic Theory, pp. 1-88. New York: Holt, Rinehart and Winston.

FriEpELL, M. (1984). Automatic synthesis of graphical object descriptions. Computer
Graphics, 18, 53-62.

GELLER, J. & Suariro, S. C. (1987). Graphical deep knowledge for intelligent machine
drafting. In Proceedings of the Tenth International Joint Conference on Artificial
Intelligence, pp. 545-551. Los Altos, CA: Morgan Kaufmann,

GELLER, J., Talg, M. R_, SHAPIRO, S. C. & SmiHari, $. N, (1987). Device representation
and graphics interfaces of VMES. In D. Sriram & R. Apey, Eds. Knowledge-based

130 1. GELLER

Expert Systems for Engineering: Classification, Education and Control, pp. 15-28.
Southampton, UK: Computational Mechanics Publications.

GEeLLER, J. (1988). A Knowledge Representation Theory for Natural Language Graphics.
PiD thesis, published as report #88-15. SUNY at Buffalo, Department of Computer
Science.

Guistint, R. D., Leving, M. D. & Marowany, A. S. (1978). Picture generation using
semantic nets. Computer Graphics and Image Processing, T, 1-29.

Havens, W. & MackworTH, A. (1987). Representing and using knowledge of the visual
world. In N. Cercone & G. McCavLra Eds. The Knowledge Frontier, pp. 429-450, New
York: Springer Verlag.

Havyes, P. J. (1977). In defence of logic. In Proceedings of the Fifth International Joint
Conference on Artificial Intelligence, pp. 559-565. Los Altos, CA: William Kaufman.
Horran, J., MiLLER, I., Rich, E. & Wi~er, W. (1988). Knowledge Bases and Tools for
Building Integrated Multimedia Intelligent Interfaces. In J. W. SuLLivan & S. W,
TyLER, Eds. Monterey Workshop on Architectures for Intelligent Interfaces: Elements and

Prototypes.

KossLyn, 8. M. & Suwartz, S. P. (1977). A simulation of visual imagery. Cogniitive Science,
1, 265-295.

KossLyn, S. M. (1980). Image and Mind. Cambridge, MA: Harvard University Press.

KossLyn, S. M. (1981a). Research on mental imagery: some goals and directions. Cognition,
10, 173.

KossLyn, §. M. (19816). The medium and the message in mental imagery: a theory.
Psychological Review, 88, 46—66.

KossLyw, S. M. (1985). Stacking the mental image. Psychology Today, May, 23-28.

Kumar, D. (1989). An integrated model of acting and inference. Current Trends in
SNePS—Semantic Network Processing System, pp. 55-65. New York: Springer-Verlag.

Levron, M. (1986). A theory of information structure II: A theory of perceptual
organization. Journal of Mathematical Psychology, 30, 257-305. _

Lvons, I. (1977). Semantics. New York: Cambridge University Press.

Maccrecor, R. & Bates, R. (1987). The LOOM Knowledge Representation Language.
Report ISI/RS-87-188. UUSC/Information Sciences Institute.

Marks, J. & Rerrer, E. (1990). Avoiding unwanted conversational implicature in text and
graphics. In Proceedings of the Eighth National Conference on Artificial Intelligence, pp.
450-456. Cambridge, MA.: The MIT Press.

McDermott, D. (1981). Artificial intelligence meets natural stupidity. In J. HAUGELAND,
Eds. Mind Design, pp. 143-160. Cambridge, MA.: The MIT Press.

NEear, J. G. & Suapiro, S. C. (1987). Using declarative knowledge for anderstanding natural
language. In L. Borc, Ed. Natural Language Parsing Systems, pp. 49-92. New York:
Springer Verlag. .

NEaL, J. G. & Suapiro, 8. C. (1988). Intelligent multi-media interface technology. In J. W.
SviLivan & 8. W. TvyLER, Eds. Monterey Workshop on Architectures for Intelligent
Interfaces: Elements and Prototypes.

Necues, R. & Kaczmarek, T. (1986). AAAI-86 Workshop on Intelligence in Interfaces,
Philadelphia.

PapaLaskaris, M. A, & ScHueert, L. (1981). Parts inference: closed and semi-closed
partitioning graphs. In Proceedings of the Seventh International Joint Conference on
Artificial Intelligence. pp. 304-309. Los Altos, CA: Morgan Kaufmann.

Pogaro, A., Garcia Luna Aceves, 1. 1., CraiguiLL, E. J., Moran, D., AGUILAR, L.,

" WortmingToN, D. & Hieur, J. (1985). CCWS: A computer-based, multimedia
information system. Computer, 18, 92-102,

Renton, B. A, (1971). Electrical and Electronics Drafting. New York: Hayden Book
Company.

RBQU[CHK, 1{ A. G. (1980). Representation for rigid solids: theory, methods, and systems.
Computing Surveys, 12, 437-464.

ReywoLps, 1. K., PostEL, I. B., Katz, A. R., Finn, G. G. & DescHon, A. L. (1985). The
DARPA experimental multi media mail system. Computer, 18, 82-91.

PROPOSITIONAL REPRESENTATION FOR GRAPHICAL KNOWLEDGE 131

Rorins, G. (1986). The NIKL Manual. Marina Del Rey, CA: University of Southern
California, Information Sciences Institute.

RoscH, E. (1978). Principles of categorization. In E. Rosch & B. Lrovyp, Eds. Cognition
and Categorization, pp. 27-48. Hillsdale, NJ: Lawrence Erlbaum.

Samap, T. (1986). A Natural Language Interface for Computer-Aided Design. Boston:
Kluwer Academic.

Suariro, 8. C. (1979). The SNePS semantic network processing system. In N. V. FINDLER,
Eds. Associative Networks: The Representation and use of Knowledge by Computers, pp.
179-203. New York: Academic Press.

SHAPIRO, 5. C. (1982). Generalized augmented transition network grammars for generation
from semantic networks. The American Journal of Computational Linguistics, 8, 12-25.

Suarro, S. C. & THE Sneps IMPLEMENTATION GRrour, (1983). SNePS User’s Manual,
SNeRG Bibliography #31. SUNY at Buffalo.

SuarIro, S. C. & GELLER, I. (1986). Artificial intelligence and automated design. In A. C.
Harrvann, Y. E. KaLay, B. R. Makowskr & L. M. SwerpLorr, Eds. 1986 SUNY
Buffalo Symposium on CAD, The Computability of Design, SUNY at Buffalo.

Suarro, S. C., SriHARL, S, N, Taig, M. R. & GeLLER, J. (1986). VMES: a network based
versatile maintenance expert system. In Proceedings of the First International Conference
on Applications of AI to Engineering Problems, pp. 925-936. New York: Springer
Verlag.

Suapiro, S. C. & Rapaport, W. J. (1986). SNePS considered as a fully intensional
propositional semantic network. In Proceedings of the Fifth National Conference on
Avrtificial Intelligence, pp. 278-283. Los Altos, CA: Morgan Kaufmann.

SmitH, E. E. & Mepin, D. L. (1981). Categories and Concepts. Cambridge, MA: Harvard
University Press. -
Smita, R. G. (1983). STROBE: Support for Structured Object Knowledge Representation.
In Proceedings of the Eighth International Joint Conference on Artificial Intelligence, pp.

855-858. Los Altos, CA: Morgan Kaufmann.

SonpHEIMER, N. K. (1976). Spatial reference and natural-language machine control.
International Journal of Man—Machine Studies, 8, 329-336.

Surrivan, J. W. & TyLer, S. W. (1988). Architectures for intelligent interfaces: elements
and prototypes. In Monterey Workshop: ACM/SIGCHI.

Tale, M. R. (1987). Representation of Device Knowledge For Versatile Fault Diagnosis.
PhD thesis, published as report #87-07. SUNY at Buffalo, Department of Computer
Science.

Taie, M. R., GELLER, J., Srigarr, S. N. & Suarro, S. C. (1987). Knowledge based
modeling of circuit boards. In Proceedings of the Annual Reliability and Maintainability
Symposium, pp. 422-427.

Tranowskr, (1988). A knowledge acquisition environment for scene analysis. International
Journal of Man—Machine Studies, 29, 197-213.

WaLtz, . L. (1980). Understanding scene descriptions as event simulations. In The
Proceedings of ACL, pp. 7-11.

WinsTon, M. E., Cnarrin, R. & Herrmann, D. (1987). A taxonomy of part-whole
relations. Cognitive Science, 11, 417-444.

Woobps, W. A. (1970). Transition network grammars for natural language analysis.
Communications of the ACM, 10, 591-606.

ZpYBEL, F., GreenreLD, N. R., Yonke, M. D. & Gieeons, J. (1981). An information
tepresentation system. In The Proceedings of the Seventh International Joint Conference
on Artificial Intelligence, pp. 978-984. Los Altos, CA: Morgan Kaufmann.

el |

