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Abstract

Capturing the semantics of concepts in a terminology has been an important problem in AI. A two-level
approach has been proposed where concepts are classified into high-level semantic types, with these types
constituting a portion of the concepts! semantics. We present an algorithmic methodology for refining such
two-level terminologic networks. A new network is produced consisting of ‘‘pure’’ semantic types and
intersection types. Concepts are uniquely re-assigned to these new types. Overall, these types form a better
conceptual abstraction, with each exhibiting uniform semantics. Using them, it becomes easier to detect
classification errors. The methodology is applied to the UMLS.
! 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Defining the semantics of natural language is one of the holy grails of Artificial Intelligence.
When semantic networks were initially conceived of, their intention was to capture the semantics
of natural language terms and concepts. Indeed, Quillian!s father of all semantic networks [30]
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was really a dictionary in which terms had been crosslinked. As semantic networks continued to
be developed, opinions split on what the actual semantics of a concept is. On one hand was the
opinion that the semantics of a concept is defined by ‘‘everything the concept is connected to’’ [30].
On the other hand was the more radical opinion, expressed by McDermott [26], that semantic
networks are not semantic at all.

Unfortunately, it is impossible to precisely express the semantics of natural language by any
metalanguage because this leads to an infinite regression about how to specify the semantics of the
metalanguage. Having realized this fact, many researchers started to pursue other issues in se-
mantics. One problem is exactly how to represent the meaning of complicated English sentences
involving difficulties such as nested quantifier disambiguation [28]. Such complicated sentences are
in some approaches represented as (propositional) semantic networks [32,33]. The meanings of the
elementary terms that are composed into a larger logical structure are typically not addressed.
Some attempts have been made to capture term meanings by lexical semantics [18].

In contrast to propositional semantic networks, research on inheritance networks of the KL-
ONE family [42] turned away from the problems of semantics towards a number of other issues,
such as the trade-off between expressive power and computational complexity in an inheritance
network [5], and the relationship between networks and logics, which resulted in the development
of description logics [4]. To deal with computational efficiency problems, description logics have
been combined with special techniques such as parallel processing [3].

Inheritance networks have a hierarchical (tree-based) or directed acyclic graph (DAG) struc-
ture. In a series of papers, Wille [40,41] has developed an alternative method of knowledge rep-
resentation based on lattices. In his Formal Concept Analysis, concepts and attributes are
integrated into a single lattice structure. Recently, there has been great interest in applications of
Formal Concept Analysis [17] and in the integration of Formal Concept Analysis with other
formalisms of knowledge representation, such as Conceptual Graphs [33,34].

Some researchers completely abandoned tree or graph-based semantic models and turned to
axiomatic semantics. However, axiomatic semantics has been used primarily in programming
languages [8]. Other researchers are satisfied with the Tarski-based [36] assignment of symbols to
objects, function symbols to functions, etc. Thus, they rely on the existence of an abstract
mapping to real-world entities. The problem here is that another kind of regression is introduced,
as it is often not possible to define the real-world entities with the necessary precision.

In the semantic network paradigm, the idea that the ‘‘meaning of a concept is defined by
everything it is connected to’’ also leads to an infinite (and often circular) regression. Some re-
searchers have tried to address this problem by symbol grounding [13]. Certain concepts have a
meaning that is defined immediately by grounding them to perceptual inputs or discernible mental
states (‘‘pain’’), and other concepts derive their meaning from those concepts.

Our approach to the semantics of a semantic network is that it is impossible to precisely define
the meaning of most concepts, except in well defined, abstract areas such as mathematics.
However, we accept the claim that the meaning of one concept is constrained by the other con-
cepts it is connected to. Thus, if a concept A has a parent B to which it is connected by an IS-A
link, then the meaning of A is constrained to be more specific than the meaning of B. Similarly, if a
concept A has a part-of relationship to a concept C, then A is constrained to be a part of C, which
typically means that A is smaller than C and often implies that A is physically connected to other
parts of C. In other words, we are not giving definitive expressions capturing the full semantics of
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such concepts, but we can express that all concepts that have, e.g., IS-A relationships to B and
part-of relationships to C have a great deal in common. Thus, for us the question is whether it is
possible to improve the mechanisms of semantic networks to further constrain the meanings of
concepts to smaller sets of concepts with useful similarities.

In this context, it is instructive to look at WordNet [27], which is the best-known large, hier-
archically organized source of word knowledge available on the Web. WordNet provides very
little semantics. As Barker et al. write [1], WordNet

provide[s] very shallow semantics. . . For each English word, these ontologies give its senses
along with their definitions, parts of speech, subclasses, superclasses and sibling classes. The
definitions are free text (of limited use to computer programs) and the encoded relations are
the only semantics.

To this, one has to add the fact that WordNet organizes terms into Synset (Sets of Synonyms).
While it is impossible to specify the exact meaning of any one Synset, all members of a Synset are
constrained in their semantics: their semantics is identical. We extend this minimal idea of se-
mantics by specifying sets of terms with semantic similarities that go beyond synonymy.

In this paper, we have developed a technique that allows us to create, based on a given clas-
sification, relatively small sets of terms with common (but not synonymous) meanings. 1 Our
methodology is based on the following observations: (1) When dividing a knowledge base into
microtheories, as it is done in CYC [19], it is extremely difficult to keep different parts of the
knowledge base semantically consistent with each other. (2) Even within the microtheory of a
single expert, there are likely to be inconsistencies, because human categories and biases tend to
shift over time [2].

Thus, there are fundamental differences between a small semantic network designed by one
knowledge engineer in a short period of time and a large semantic network designed over a long
time by several knowledge engineers. In a small, well designed semantic network one can rely on
the fact that every concept correctly generalizes all its descendants. In other words, "every concept
is an abstraction of all its descendants!. This is not always true in a large semantic network where
certain important concepts will be likely to occur simultaneously in the portions designed by
different knowledge engineers. This is a major deficiency which must be overcome by integration.
However, integrating the complete network from the individual pieces is very difficult. Similarly,
designing a consistent semantic network by intensive communication between all designers is close
to impossible, too. Furthermore, in some cases the task of semantic modeling suffers from more
than shifting biases and individual perspectives of a knowledge engineer. Due to its nature of
requiring high degrees of specialization and an excellent human memory, knowledge modeling is
often error prone.

In summary, it is difficult to design large semantic networks that have the property that every
concept is truly an abstraction of everything under it. Thus, it is desirable to introduce some
abstraction that recaptures this lost property. For this purpose, we introduce a new network of
high-level abstract concepts which we call semantic types. From now on, we will use the name
‘‘semantic network’’ only for this (inheritance) network of semantic types. Now we need a new

1 The precise meaning of ‘‘relatively small’’ will become clear later on.
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name for the pre-existing semantic network. We will call the preexisting semantic network the
thesaurus.

Next, we need to assign every concept in the thesaurus to at least one semantic type. The re-
sulting structure, consisting of (1) thesaurus, (2) semantic network, and (3) assignments of concepts
from the thesaurus to semantic types in the semantic network, recaptures the desirable property that
certain high-level abstractions are assigned to all concepts that this abstraction generalizes.

We will refer to a structure that consists of a thesaurus, a semantic network, and appropriate
assignments as a Terminological Knowledge Base. At first, it might appear that this new repre-
sentation format does not gain any additional semantic insights. However, as we will show in this
paper, it becomes possible to constrain the semantics of concepts in the thesaurus considerably, by
generating smaller groups of concepts which are uniform in the sense that they are assigned to a
unique semantic type or to a unique combination of semantic types.

1.1. An outline of our semantic refinement methodology

We will now summarize our semantic refinement methodology, which consists of a series of six
steps. The details will be supplied in the balance of this paper.

In Step 1, the concepts of a domain are collected, in the same way as one operates when
building a more traditional knowledge base. This collection step can be performed by several
experts with very little interaction. As mentioned earlier, we will refer to the collection of concepts
obtained as the thesaurus. The significance of this name will become clear later on.

Then, in Step 2, a small set of original semantics types is defined. These are supposed to classify
all the collected concepts. In other words, every one of the concepts belongs to at least one
original semantic type. One may think of these original semantic types as higher level concepts.
IS-A relationships and other semantic relationships are also defined between these original
semantic types. Together, the original semantic types and the semantic relationships form what is
called (for historical and practical reasons) the semantic network. It is indeed a fairly traditional
semantic network [42], because the IS-A relationships form the backbone of this knowledge
structure.

The process of creating the semantic network requires the collaboration of knowledge engineers
and domain experts and is the only part of the methodology of this paper which demands the
cooperation of a larger group of experts. As the semantic network is typically several orders of
magnitude smaller than the thesaurus, this demand is deemed acceptable.

In Step 3, human experts assign concepts (presumably those that they originally contributed to
the thesaurus) to the most specific original semantic types. Every concept needs to be assigned to
at least one original semantic type. However, if a concept is assigned by one researcher to several
original semantic types, that is acceptable. Similarly, if a concept happens to occur in two or more
‘‘microtheories’’ of the thesaurus, each occurrence may be assigned independently (i.e., by several
domain experts) to several original semantic types. If different experts make differing assignments,
that is not considered a problem in our methodology.

Step 4 defines the core of our methodology. First, a set of additional semantic types is generated
algorithmically. We call these additional semantic types intersection types. Secondly, the original
semantic types are transformed into pure semantic types. The pure semantic types are identical to the
original semantic types both in name and semantic network location; however, the sets of concepts
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assigned to them are different. The term new semantic types refers to both pure semantic types and
intersection types. It stands in contrast to the term original semantic types. In symbols, we can say:

new semantic types ¼ pure semantic types [ intersection types:

The method of generating intersection types will be explained below in detail. However, the basic
idea is that any unique combination of original semantic types defines an intersection type if and
only if there is at least one concept belonging exactly to all original semantic types of this com-
bination. As a second result of this step, every concept is assigned to one unique new semantic
type. Thus, this classification of concepts by new semantic types is a disjoint classification.

Step 5 of our methodology is also an algorithmic step. IS-A links are inserted between pairs of
intersection types or between intersection types and pure semantic types. As a result, the original
semantic network is extended and transformed into the augmented semantic network (briefly:
augmented network).

In Step 6, domain experts review the results of the two previous algorithmic steps. Our expe-
rience shows that they will detect modeling deficiencies, i.e., true errors, as opposed to different
semantic perspectives. These kinds of errors include omissions, non-uniform classifications,
classification errors, ambiguities, redundant classifications, and independently listed synonyms.
Every one of these problems will be discussed in Section 4 in more detail.

The reasons why our methodology makes it easier to detect errors will now be summarized. As
should be clear by now, our approach does not lead to a complete semantic classification of
concepts. Rather, it takes as input fairly large sets of concepts that are classified by original
semantic types and returns as output smaller (and sometimes much smaller) disjoint sets of
concepts, where each concept is uniquely classified either by a pure semantic type or by an in-
tersection type. If an intersection type has a very small number of concepts assigned to it, it is
likely that a classification error has emerged. Thus, such an intersection type needs to be reviewed
by a domain expert to determine whether it is indeed incorrect, and the few concepts have truly
been misclassified. This step may be done by a single expert and does not require the involvement
of a committee of coordinated domain experts and knowledge engineers.

The methodology presented in this paper has the great advantage that it does not attempt the
impossible, namely try to avoid inconsistencies between knowledge engineers. Rather, it capi-
talizes on the inconsistencies to perform semantic refinement. This stands in considerable contrast
to the current methods of knowledge modeling and is a great strength of our approach, because it
allows domain experts to work fairly independently on their individual microtheories. The
method of semantic refinement presented in this paper highlights sets of complex concepts and
makes it easier for domain experts to detect errors during a later review stage.

Clearly, our methodology is very different from Formal Concept Analysis [40,41]. While
Formal Concept Analysis treats attributes as first-class citizens that are fully integrated into the
representation, our semantic refinement model completely ignores attributes. Supplying a com-
plete, correct, consistent set of attributes for every concept in a large semantic network is a very
difficult task which would require a high degree of communication between all the experts in-
volved in the analysis. We are using attributes (and relationships) in our semantic network.
However, as these are not integral to the refinement process, the need for a complete specification
of attributes is eliminated in our methodology. This reduces the difficulty of building the semantic
network in the first place.
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Having outlined our methodology of semantic refinement, the question remains: why would
anybody go through the major effort of assigning concepts to original semantic types? The reality
is that precisely this assignment was made at great expense in the Unified Medical Language
System (UMLS) [14,16,20,39] long before we developed the semantic refinement methodology,
and without any involvement of our team of researchers. The motivation of the National Library
of Medicine (NLM) in developing this classification was to create a high-level abstraction that
helps users to orient themselves to the knowledge base, which integrates several existing medical
terminologies. Such a high-level abstraction, taking the form of a semantic network, is thus
recommended for other knowledge bases as well. We note that our Step 5 results in a more
detailed high-level abstraction for the UMLS.

1.2. The unified medical language system

The UMLS [14,16,20,39], designed by the NLM, combines many well established medical in-
formatics terminologies in a unified knowledge representation system. It consists of three
knowledge sources of which we are interested in two, the Metathesaurus and the semantic net-
work [22–24]. The Metathesaurus is a unified collection of many different terminologies (over
100), and it is also the source of the name thesaurus used above in the summary of our meth-
odology.

The UMLS can be used by a wide variety of application programs to overcome the re-
trieval problems caused by differences in the way the same medical concept is expressed in dif-
ferent sources [15]. Such a resource is valuable to medical researchers and the healthcare industry.

The UMLS is large and complex. The scope and complexity of the UMLS pose serious
comprehension problems for users and even developers. The magnitude of presented knowledge is
overwhelming for human comprehension capabilities. It is difficult to maintain and use the UMLS
without understanding its structure. Designers, maintainers and users of the UMLS need tools to
help with their work. There are tools for retrieval and manipulation of the content of the UMLS
[6,31,35,37,38]. However, such tools are insufficient. Rather, tools should also help professionals
reach a level of comprehension essential to performing their tasks.

The semantic refinement methodology presented in this paper was developed to provide this
kind of help. Contrary to the development of tools, this methodology works by performing a
structural improvement of the UMLS. Thus, the methodology results in a better constrained
semantics for individual concepts. The work presented in this paper builds on our previous work
[21] in which we have attacked complex terminologies and vocabularies both by structural
techniques and by tool development. In [9], we described how our previous work on the medical
entities dictionary (MED) [7] helped its designer uncover and correct some errors and inconsis-
tencies in the MED!s original modeling and improve its contents.

To describe the UMLS in more detail, the Metathesaurus is a compilation of terms, concepts,
relationships, and associated information. In the 1998 release of the Metathesaurus, there are
1,051,901 term names mapped into 476,313 concepts.

In the following paragraph we are placing the word ‘‘original’’ in parentheses, as a reminder
that ‘‘original semantic type’’ is our terminology, and not UMLS terminology. In the UMLS these
semantic types are just called ‘‘semantic types.’’
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The semantic network of the UMLS contains (original) semantic types (e.g., Disease or Syn-
drome, Virus). The hierarchy of the semantic network consists of IS-A links. In addition there
are non-IS-A relationships among these (original) semantic types (e.g., Virus causes Disease or
Syndrome) [22–24]. 2 The 1998 release of the semantic network contains 132 (original) semantic
types, 130 IS-A relationships and 53 kinds of non-IS-A relationships. Entity and Event are the two
roots of the hierarchy.

Fig. 1 shows the subnetwork of the semantic network rooted at Event. A semantic type is drawn
as a rectangle with its name written inside; an IS-A link is a bold arrow directed from a child se-
mantic type to a parent semantic type. A non-hierarchical relationship is represented as a thin
labeled arrow. When a relationship is directed to an original semantic type in the Entity part of the
semantic network (not shown in the figure), then this semantic type is indicated by a circle with a
question mark inside. Due to space limitations, some relationship labels in the figure have been
replaced by numbers. The legend shows the correspondence between these numbers and the labels.

As will become clear in the context of this paper, we believe that the great investment made in
the UMLS by the NLM should be considered a guide to other areas of science and other domains
of knowledge. We hope to see the development of similarly ambitious projects in many areas,
especially in the different disciplines of engineering. Our methodology will then permit the se-
mantic refinement of those Terminological Knowledge Bases, resulting in better expressed se-
mantics for them.

A preliminary version of our ideas was published in [10]. The presentation in [10] is informal
and specific to the UMLS. It relies on very limited mathematical tools. In this paper, we
present a complete formal treatment of IS-A link introduction. Furthermore, this paper de-
scribes a complete methodology for the development and refinement of perfectly general Ter-
minological Knowledge Bases from scratch. It addresses the problem of terminological
knowledge from the perspectives of Artificial Intelligence, expert systems and knowledge en-
gineering. The analysis in [10] was of a specific existing system, namely, the UMLS. The re-
finement methodology was introduced ‘‘after the fact’’ for checking purposes only, and not as a
general methodology of building Terminological Knowledge Bases. Furthermore, the UMLS is
limited to use in medical informatics, while the methodology described in this paper is domain
independent. Examples in this paper, even though taken from the UMLS, do not require
medical knowledge, while the examples in [10] were geared towards readers with a medical
background.

In this paper, we are primarily interested in the algorithmic steps (Step 4 and Step 5) of our
methodology. Thus, the rest of this paper is organized as follows. Section 2 describes Step 4, the
algorithmic derivation of pure semantic types and intersection types from a set of original se-
mantic types. As our work was performed in the context of the UMLS, we will present examples
based on the UMLS semantic network and Metathesaurus. Section 3 presents Step 5, the algo-
rithmic approach of how to specify the IS-A relationships between new semantic types. Step 6 of
our methodology is covered in Section 4 in the context of describing the benefits of the augmented
semantic network. Section 5 contains our conclusions.

2 Typographical conventions: Semantic types always appear in bold. The first letters of concepts are always
capitalized. Concepts are written between double quotes only if there is a danger of confusion.
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Fig. 1. Event subnetwork of the semantic network.
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2. Semantic refinement by definition of pure and intersection types

2.1. Classification into original semantic types

Our model of semantic refinement requires that domain experts initially construct a knowledge
base that can be algorithmically refined. For this purpose, a model of the domain is constructed
which consists of a fairly small number of high-level concepts and of the relationships that connect
those concepts. As noted before, the high-level concepts are called original semantic types. The
classification of a thesaurus of concepts by the semantic types of a semantic network is defined to
be complete if every concept of the domain is assigned to at least one semantic type. The classifica-
tion is defined to be disjoint if every concept of the domain is assigned to at most one semantic type.

The gathering of concepts, the introduction of original semantic types, and the assignment of
concepts to original semantic types happen in Steps 1–3 of our methodology. These three steps
abstract the process that has gone into the development of the UMLS.

The connection between the semantic network and the (meta)thesaurus has been described in
[25] as follows: ‘‘The semantic network encompasses and provides a unifying structure for the
thesaurus constituent vocabularies.’’ As the semantic network is much smaller than the thesaurus,
the semantic network provides a high-level, compact abstract view of the thesaurus. The classi-
fication of the concepts of the thesaurus by the original semantic types of the semantic network is
complete but not disjoint.

2.2. Original semantic types do not classify uniform sets

Now, we need to describe the refinement algorithm of Step 4. This algorithm takes the as-
signment of concepts to original semantic types and changes it, creating in the process intersection
types while transforming the original semantic types into pure semantic types. As a result of this
reassignment of concepts, every concept will be assigned to one and only one semantic type. This
classification into new semantic types is both complete and disjoint.

A concept may belong to several original semantic types. Therefore, the set of concepts of one
original semantic type may be non-uniform. The notion of non-uniformity will first be elucidated by
an example. We shall show the non-uniformity of the original semantic type Environmental Effect
of Humans, which has 42 concepts. For an alphabetic list of the concepts of the original semantic
type Environmental Effect of Humans, see Table 1.

A few of the concepts assigned only to Environmental Effects of Humans are Greenhouse Effect,
Industrial Smog, Second hand cigarette smoke, and Water Pollution. The concept Fluoridation is
classified as both Environmental Effect of Humans and as Therapeutic or Preventive Procedure. The
concept Desertification is classified as Environmental Effect of Humans and as Phenomenon or
Process. The concept Environmental Air Flow is classified as Environmental Effect of Humans and
as Human-Caused Phenomenon or Process. The concepts Acid Rain, Radioactive Fallout, Ra-
dioactive Waste, and Smoke are classified as Environmental Effect of Humans and as Hazardous or
Poisonous Substance. The concept Industrial Waste is classified as three original semantic types,
Environmental Effect of Humans,Manufactured Object andHazardous or Poisonous Substance. All
these extra assignments of concepts that are also assigned to Environmental Effect of Humans are
not visible to a user who is looking at Table 1.
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It is difficult to comprehend and use the information contained in a non-uniform semantic type
such as Environmental Effect of Humans. This is the reason why coding systems, such as the Dewey
Classification of books or the DRG coding of medical diagnoses, use several levels of classifi-
cation. These levels may be expressed by a sequence of digits rather than by a single level of very

Table 1
All concepts assigned to the original semantic type Environmental Effect of Humans

Environmental Effect of Humans

Acid Rain
Air Pollution
Air Pollution, Indoor
Air Pollution, Radioactive
Bathing water pollution
Deforestation
Desertification
Drinking water pollution
Dust pollution
Environmental Pollution
Environmental air flow
Exhaust fumes
Fluoridation
Food Contamination, Radioactive
Garbage
Global Warming
Greenhouse Effect
Heating
Inappropriate temperature in local application and packing
Indoor Air Quality
Industrial Waste
Industrial Smog
Noise, Transportation
Oil spill
PBC airborne level
Pollution and pollution exposures
Pollution, NOS
Radioactive Fallout
Radioactive Waste
Second hand cigarette smoke
Sewage
Sludge
Smoke
Smoking, Passive
Soil degradation
Soil pollution
Suburbanization
Tobacco Smoke Pollution
Water Pollution
Water Pollution, Chemical
Water Pollution, Radioactive
Water Pollution, Thermal
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general classifications, which yields a more refined classification. The multilevel classification helps
user orientation to the codes, as codes with long identical prefixes represent closely related in-
formation. Furthermore, all items of information falling under any specific code tend to constitute
relatively uniform sets.

The problem we face is how to group concepts associated with multiple original semantic types
into uniform sets. For this purpose, we need to define the semantics of concepts of the thesaurus in
the context of their classification. A natural way to define the semantics of each concept of the
thesaurus is to derive it from the semantic network. Hence, the semantics of a concept are partially
provided by the original semantic types assigned to it. If a concept is assigned to only one original
semantic type, then it has simple semantics. Otherwise, if a concept is assigned to a set of origi-
nal semantic types, it has compound semantics, defined by the combination of its different original
semantic types. Thus, looking at the above example, the concepts of the semantic type Environ-
mental Effect of Humans do not share the same semantics.

For example, the concept Air Pollution has the simple semantics of Environmental Effect of
Humans, and the concept Fluoridation has the compound semantics of Environmental Effect of
Humans \ Therapeutic or Preventive Procedure. The symbol ‘‘\’’ indicates the intersection,
meaning that the concept Fluoridation is both an environmental effect of humans and a thera-
peutic or preventive procedure. Fig. 2 is a Venn diagram showing all intersections among six
original semantic types, Environmental Effect of Humans and the five original semantic types with
which it intersects. Each intersection contains concepts that belong to two or more original se-
mantic types. From Fig. 2, we see that all 42 concepts of Environmental Effect of Humans are
classified into six groups with different semantics. The concepts of one group have simple se-
mantics, while the other five groups express compound semantics.

Now that each concept has its own semantics defined, we can rephrase the vague statement ‘‘the
set of concepts of one original semantic type may be non-uniform.’’ A set of concepts is uniform, if
and only if all concepts of the set are assigned to exactly the same set of semantic types. Otherwise
it is called non-uniform. The concepts in a non-uniform set have differing semantics. A semantic
type is uniform if all the concepts assigned to it form a uniform set. If a semantic type is not
uniform, we call it non-uniform.

It is more difficult to comprehend and use a set of concepts of differing semantics. Hence, the
challenge is to create an alternative classification system of semantic types, each of which is as-
signed all and only concepts of the same semantics, either simple or compound. Concepts of
simple semantics are assigned to pure semantic types. Concepts of compound semantics are
assigned to intersection types.

2.3. Pure semantic types

As a reminder, each pure semantic type is one of the originally given semantic types; however,
the set of concepts assigned to it has been stripped down. Only those concepts that were not
assigned to any other semantic type are still assigned to it. We start by discussing the automatic
creation of pure semantic types. Every original semantic type is transformed into a pure semantic
type of the same name. Concepts are reassigned in the following way.

We define an operator S
OðCÞ which returns for every concept C the set of all original semantic

types that C is assigned to. Every operator x written as x is considered a set-valued operator.
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Thus, there is a scalar version of this operator also: SOðCÞ. The scalar version may be used
whenever the set-valued operator returns a singleton set. The operator S

NðCÞ returns the set of
new semantic types of C. The corresponding scalar operator SNðCÞ returns the new semantic type
of C. Finally, SPðSÞ returns the corresponding pure semantic type of the original semantic type S.
This operator is always used in the scalar form only.

It will be noted that jSNðCÞj ¼ 1 holds for any C. Also the following mapping condition applies.

8C½ðjSOðCÞj ¼ 1Þ ) SNðCÞ ¼ SPðSOðCÞÞ%

In words, if a concept is initially assigned to only one original semantic type, will it be assigned
to a pure semantic type of the same name after the refinement. For instance, in the UMLS, the
concept Air is uniquely assigned to the original semantic type Substance. After mapping, Air is
assigned to the pure semantic type Substance. There are 34 concepts classified by the pure se-
mantic type Environmental Effect of Humans. These are listed in Table 2. All 34 concepts have the
same semantics of Environmental Effect of Humans only. Thus, this set is semantically uniform. A
total of 357,804 concepts in the UMLS Metathesaurus are assigned to only one original semantic
type.

Rule: Artificial existence for pure semantic types: In the unlikely case that an original se-
mantic type exists that has no concept assigned to it and it alone, there will be no concepts
assigned to its corresponding pure semantic type. Nevertheless, the corresponding pure se-
mantic type will be generated to avoid a loss of hierarchical information in the semantic
network.

Fig. 2. Venn diagram of the semantic type Environmental Effect of Humans and its intersecting semantic types and
intersections among them. (Numbers denote cardinalities of intersections).
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Table 2
Concepts assigned to the pure semantic type Environmental Effect of Humans and to its intersection types

Environmental Effect of Humans

Air Pollution
Air Pollution, Indoor
Air Pollution, Radioactive
Bathing Water Pollution
Deforestation
Drinking water Pollution
Dust pollution
Environmental Pollution
Exhaust fumes
Food Contamination, Radioactive
Garbage
Global Warming
Greenhouse Effect
Heating
Inappropriate temperature in local application and packing
Indoor Air Quality
Industrial smog
Noise, Transportation
Oil spill
PBC airborne level
Pollution and pollution exposures
Pollution, NOS
Second hand cigarette smoke
Sewage
Sludge
Smoking, Passive
Soil Degradation
Soil pollution
Suburbanization
Tobacco Smoke Pollution
Water Pollution
Water Pollution, Chemical
Water Pollution, Radioactive
Water Pollution, Thermal

Environmental Effect of Humans \ Therapeutic or Preventive Procedure
Fluoridation

Environmental Effect of Humans \ Phenomenon or Process
Desertification

Environmental Effect of Humans \ Human-caused Phenomenon or Process
Environmental air flow

Environmental Effect of Humans \ Hazardous or Poisonous Substance
Acid rain
Radioactive fallout
Radioactive waste
Smoke

(continued on next page)
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For an example of an application of this rule, see the following subsection.

2.4. Intersection types

If a concept belongs to several original semantic types, it has compound semantics, as defined
above. In order to avoid a non-uniform semantics for the set of all the concepts belonging to a
semantic type, each concept that is assigned to several original semantic types needs to be reas-
signed as belonging to a unique new semantic type. Thus, an additional kind of semantic type is
needed.

In this paper, we call the set of concepts belonging to a semantic type S the extent of S and
denote it by EðSÞ. Consider now the reclassification of concepts with compound semantics. Let C
be a concept assigned to the k original semantic types Si1 ; Si2 ; . . . ; Sik out of all the n semantic types
S1; S2; . . . ; Sn of the domain. Obviously, the concept C is not assigned to any of the pure semantic
types SPðSi1Þ;S

PðSi2Þ; . . . ;S
PðSikÞ. Since the concept C is assigned to the original semantic types Sij ,

(1 & j & k), we write C 2 EðSijÞ, (1 & j & k), where EðSijÞ is the extent of the original semantic
type Sij . Since this is true for 1 & j & k, the concept C belongs to the intersection of the extentsTk

j¼1 EðSijÞ. Thus, it is natural to define a new kind of semantic type, called an intersection type,
which has this intersection as its extent.

For example, the concept C will be assigned to an intersection type SI which represents the
combination of all the original semantic types to which C was assigned, i.e., Si1 ; Si2 ; . . . ; Sik .
Furthermore, all the concepts which belong to the intersection of the extents

Tk
j¼1 EðSijÞ are as-

signed to the same intersection type. In this way, all the concepts assigned to the intersection type
SI share the same compound semantics:

EðSIÞ ¼
\k

j¼1

EðSijÞ

In order to create intersection types, all concepts with multiple original semantic types are
partitioned into groups such that each group contains all the concepts belonging to the same set of
original semantic types. That means the concepts in each group have the same compound se-
mantics (i.e., the set is uniform). After we obtain the groups from the partitioning process, exactly
one intersection type is created for each group. Furthermore, the concepts in each group are
assigned to the corresponding intersection type.

If S
OðC1Þ ¼ fS1; S2g, we use the notation SI ¼ S1 \ S2 for the resulting intersection type. Table 2

shows the extents of several intersection types of the original semantic type Environmental Effect
of Humans with other semantic types. The symbol ‘‘\’’ is used in naming the intersection types in
the table. It is easier to comprehend the set of concepts of the original semantic type Environ-
mental Effect of Humans in Table 2, where the set is divided into extents of semantic types of

Table 2 (continued)

Environmental Effect of Humans

Environmental Effect of Humans \ Manufactured objects \
Hazardous or Poisonous Substance
Industrial waste
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uniform semantics, rather than from Table 1, which contains a non-uniform set of concepts. Table
3 shows the extents of intersection types involving those original semantic types that intersect the
original semantic type Environmental Effect of Humans.

Regarding the naming of intersection types, the list of intersecting semantic types of each in-
tersection type should be reviewed by domain experts to identify simpler names whenever pos-
sible. For example, the intersection type Pharmacologic Substance \ Organic Chemical can be
renamed Organic Pharmacologic Substance. As another example, the intersection type Body Part,
Organ, or Organ Component \ Medical Device can be renamed Prosthesis. If, however, no ap-
propriate name is identified, the intersection symbol ‘‘\’’ is used to clarify the compound se-
mantics of the type. After the creation of the intersection types, all 476,314 concepts in the UMLS
Metathesaurus are assigned to a new semantic type. More precisely, each is assigned to one new
semantic type in the augmented semantic network. The whole augmented semantic network
consists of 1296 types. Of these, 1163 are intersection types.

As an abstract example, assume that the concepts ‘‘g’’ and ‘‘h’’ belong to the original se-
mantic type W (Fig. 3). The concepts ‘‘a,’’ ‘‘b,’’ ‘‘d,’’ ‘‘e,’’ ‘‘f’’ and ‘‘g’’ belong to the original
semantic type X, the concepts ‘‘b’’ and ‘‘g’’ belong to the original semantic type Y, and the
concepts ‘‘c,’’ ‘‘d,’’ ‘‘e’’ and ‘‘g’’ belong to the original semantic type Z. Then our algorithm will
transform W into a pure semantic type with one assigned concept ‘‘h.’’ X is transformed into a
pure semantic type with two assigned concepts ‘‘a’’ and ‘‘f.’’ Y has two concepts, ‘‘b’’ which is
shared with X, and ‘‘g,’’ which is shared with Z. Thus, there are no concepts left for the pure

Table 3
Concepts assigned to the intersection types between the semantic types intersecting the original semantic type Envi-
ronmental Effect of Humans

Intersections of the semantic types intersecting Environmental Effect of Humans

Therapeutic or Preventive Procedure \ Phenomenon or Process
Feedback
Vibration h1i

Therapeutic or Preventive Procedure \ Human-caused Phenomenon or Process
Decontamination
Employment, Supported

Phenomenon or Process \ Human-caused Phenomenon or Process
Nuclear Accidents
Nuclear Reactor Accidents
Accidents, Radiation

Human-Caused Phenomenon or Process \ Manufactured Object
Concentration Camps
Family Planning, Environment
Office Automation
Video Recording
Videodisc Recording
Videotape Recording

Manufactured Object \ Hazardous or Poisonous Substance
Hazardous waste
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semantic type Y. However, by the artificial existence rule, Y is nevertheless kept as a pure se-
mantic type with no concepts. Z will be transformed into a pure semantic type with one assigned
concept ‘‘c.’’

Next, our algorithm will construct three intersection types. The concept ‘‘g’’ belongs toW, X, Y
and Z. As such, it induces an intersection type W \ X \ Y \ Z. The concept ‘‘b’’ belongs to X and
Y and induces an intersection type X \ Y that has only the concept ‘‘b’’ assigned to it. Similarly,
‘‘d’’ and ‘‘e’’ induce an intersection type X \ Z. We note that there is no concept that belongs to
only Y and Z, thus there is no intersection type Y \ Z.

All the mappings described in this subsection and the previous subsection are easily imple-
mented, and indeed, they have been applied to the UMLS. Thus, we will now show corresponding
examples from the UMLS.

It may seem that with the intersection types, we lose access to the extents of the original se-
mantic types. However, in the next section, we will show that this information can easily be re-
constructed upon demand.

3. The IS-A relationships of the augmented semantic network

Having identified all the new semantic types, we need to connect them with appropriate IS-A
links. In [10], we discussed a method of IS-A link introduction which results in what we call the

 

Fig. 3. An example for the semantic refinement process.
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one-level extension network. In this method, an intersection type is connected to all the pure se-
mantic types that it is an intersection of. Thus, the intersection type will be one level lower in the
semantic network than its lowest pure semantic type parent. As a result, the original semantic
network is extended by one level, which explains the name of this network. For examples, see [10].

In the following discussion, we use the expressions ‘‘A IS-A B’’ and ‘‘A is a child of B’’ in-
terchangeably. The one-level extension network typically has more IS-A relationships than are
absolutely necessary. By using the transitivity of the IS-A relationship, it becomes possible to
reduce the average number of parents for intersection types with more than two parents. (Every
intersection type has at least two parents.) If an intersection type A with n > 2 parents exists, and
an intersection type B has the same n parents plus one additional parent, then B may point with
one IS-A link to A instead of pointing to all the n parents of A.

In the following example, we will use these abbreviations:

E ¼ Environmental Effect of Humans;

H ¼ Hazardous or Poisonous Substance;

and

M ¼ Manufactured Object:

For example, in Fig. 2, we see the intersection type E \M \H which, by the above method, is a
child of three pure semantic types E, M and H. Similarly, the intersection type E \H is a child of
E and H. If we compare these two intersection types, we see that the semantics of E \M \H is
more specific than the semantics of E \H. Similarly, the semantics of E \H is more specific than
the semantics of E. Hence, it is natural to have an IS-A relationship from the more specific
intersection type E \M \H to the more general intersection type E \H rather than to E and toH.

We will now explain why the resulting IS-A configuration is mathematically correct. Since we
are modeling E \M \H as child of E \H, and E \H is a child of E and of H, the transitivity of
the IS-A relationship implies that E \M \H is a child of E and of H. Thus, there is no need to
have an explicit IS-A relationship from E \M \H to E or to H.

In view of this example, we will discuss a method of IS-A link introduction which results in a
multi-level extension network (Fig. 4). The multi-level extension network is designed to capture
semantic relationships between intersection types which were not reflected by the one-level ex-
tension method. We allow an intersection type to be a child of another intersection type. As a
result, intersection types appear in multiple levels.

In order to systematically define the IS-A relationships of intersection types, we need a rule to
determine the parents of each intersection type. Before we describe such a rule, we first need to
give the definitions of (1) the maximal subsets of a set and (2) the minimal supertypes of an in-
tersection type.

Let U be a universal set of elements and let F be a given family of sets over U. That is, F is a set
of sets. Every set in F contains elements from U. In other words, F is a subset of the power set of U
(F ' 2U ).

As before, EðSÞ stands for the extent of a semantic type S. In the context of the UMLS, the
universal set U is the set of all concepts of the Metathesaurus, and the family F is the family of the
extents of all semantic types in the semantic network.
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F ¼ fEðS1Þ;EðS2Þ; . . . ;EðSnÞg;

n is the number of semantic types.In this section, whenever we refer to extents, these are extents
of semantic types. For a given family of extents G (G ¼ fEðSi1Þ;EðSi2Þ; . . . ;EðSikÞg; ðk < nÞ) which
is a subfamily of F, the family intersection IG is the intersection of all extents in G.
(IG ¼

T
1&j&k EðSijÞ.) The intersection type corresponding to the family intersection IG is denoted

by SIG .
When an intersection type is given, it is possible to identify all its potential parents for which

there may exist an implied IS-A relationship. E.g., for the intersection type SIG , each of the se-
mantic types Sij ð1 & j & k < nÞ is a potential parent of SIG . Furthermore, for each family D of
extents with a non-empty family intersection ID, such that D is a subfamily of G, the intersection
type SID is a potential parent of SIG .

Definition 1 (Maximal Subset): Let A and B be sets that are elements of F, such that A is a proper
subset of B. If there does not exist a set C in F such that A is a proper subset of C and C is a proper
subset of B, then we call A a maximal subset of B in F.

Fig. 4. A subnetwork of the UMLS augmented semantic network using the multi-level extension method.
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E.g., if fX ; Y ;Zg, fX ; Y g, and fXg are three sets in a family F, fX ; Y g is a maximal subset of
fX ; Y ; Zg. But fXg is not a maximal subset of fX ; Y ; Zg, since fXg ' fX ; Y g and
fX ; Y g ' fX ; Y ;Zg. So, fX ; Y g plays the role of an intermediate subset between fXg and
fX ; Y ; Zg.

Since a family is a set of sets, the definition of ‘‘maximal subset’’ can be modified appropriately
to define a maximal subfamily. Now we define the notion of minimal supertype of an intersection
type, corresponding to the above definition of a maximal subfamily of a family.

Definition 2 (Minimal Supertype): Let SIG be an intersection type corresponding to the family
intersection IG. If SID is a potential parent of SIG , then SID is a minimal supertype of SIG if and only if
the family D is a maximal subfamily of the family G.

Intuitively, a minimal supertype of an intersection type S is a parent that is most similar to S.
As such, it has the potential to maximize the number of semantic types to which S does not need a
direct IS-A link.

For example, the intersection types E \H and M \H are the only two existing minimal
supertypes of the intersection type E \M \H. There are no concepts that belong to the inter-
section type E \M, and thus such an intersection type does not exist.

Note that as a special case, D may be a family of the extent of only one semantic type, such as
Environmental Effect of Humans. Denote this semantic type by Si. In this case, SID degenerates to
an original semantic type Si rather than an intersection type. We have chosen to simplify the above
definition by not explicitly considering this special case. Assuming that Si is a degenerate inter-
section type, our definition is still applicable.

Rule: Multi-level extension: Let SI be an intersection type in the network. Then IS-A rela-
tionships are defined from SI to all its minimal supertypes in the network.

This rule is guaranteed to increase the depth of the network by transforming intersection types
of more than two semantic types into children of other intersection types. As McCray [25] notes, it
is considered desirable to increase the depth of the semantic network.

The multi-level extension network is semantically more accurate than the one-level extension
network, as it captures IS-A relationships between intersection types. Furthermore, it typically
reduces the number of IS-A links compared to the one-level extension network. As such, it reduces
the complexity of the network, while maintaining all necessary relationships among the new se-
mantic types. (We have formally defined the complexity of a network as the ratio of the number of
relationships to the number of concepts [11,12,29].)

Unfortunately, there is no guarantee that the multi-level extension network will always
contain fewer IS-A links than the one-level extension network. Nevertheless, in our experience,
the multi-level extension network typically has fewer IS-A links and deeper networks than the
one-level extension network. Both these phenomena are considered desirable. (For an example,
see [10].)

Table 4 shows some details of the level distribution of the new semantic types of the multi-level
extension network of the UMLS. We obtain a network with depth 14. To summarize, to create the
multi-level extension network, we created 1163 intersection types and added 2677 new IS-A re-
lationships. Each of the 476,314 concepts in the Metathesaurus is assigned to a unique new se-
mantic type. The network contains 1296 new semantic types.
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Fig. 4 is a subnetwork of the resulting multi-level extension for the UMLS, which shows the
semantic type Environmental Effect of Humans, its intersecting types, all their ancestors and all
their intersection types. It contains 16 pure semantic types and 10 intersection types distributed
over nine levels. A unique, artificial root Thing has been inserted in the figure as the parent of
Entity and Event.

In Section 2.4, we mentioned an apparent loss of information caused by our improved
modeling, regarding the extents of the original semantic types. To recover the extent of an
original semantic type, we combine the extent of the corresponding pure semantic type with the
extents of all its intersection type descendants (which are defined with regards to the IS-A re-
lationships).

4. Advantages of the augmented semantic network

4.1. Classification into uniform new semantic types

As we discussed before, the set of concepts belonging to an original semantic type of the UMLS
is not necessarily semantically uniform since some of the concepts may belong to additional
original semantic types. It is difficult for a user to comprehend and use the set of concepts of such
an original semantic type due to this lack of uniformity. Because all concepts in the thesaurus are
either assigned to a unique intersection type or to a unique pure semantic type, all extents of the
new semantic types are now semantically uniform and therefore easier to comprehend.

The contribution of semantic uniformity of the extents of semantic types to their compre-
hensibility will be demonstrated repeatedly in Section 4.3. There, we will expose various errors
which became easy to detect in the semantically uniform extents of Tables 2 and 3. Those errors
were much harder (or impossible) to detect in the original Table 1, because Table 1 shows the
semantically non-uniform extent of an original semantic type.

Table 4
Number of types in each level of the multi-level extension network of the UMLS

Level Number of pure semantic types Number of intersection types

1 1 0
2 2 0
3 4 0
4 20 0
5 41 56
6 23 203
7 23 163
8 17 186
9 2 234
10 0 212
11 0 89
12 0 16
13 0 3
14 0 1
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4.2. Reduced average extent size

In the UMLS, the sets of concepts of many original semantic types are very large and hard to
comprehend. In the 1998 version, on average, every original semantic type is assigned to about
5000 concepts, and some of them are assigned to many more.

Our semantic refinement algorithm reduces the average number of concepts per pure semantic
type to about 2700. The average number of concepts of an intersection type is about 100, which is
comparatively small. Having a semantic network with a reduced average number of assigned
concepts per new semantic type simplifies the comprehension of each such set.

4.3. Exposing problems in Terminological Knowledge Bases

Representing the intersection types and their assigned concepts enables researchers to study the
compound semantics of the concepts of such intersection types. Due to their compound seman-
tics, those concepts are more complex in their nature than concepts of simple semantics. Complex
concepts are also more error-prone due to their multiple classifications, most likely done by
different domain experts.

Thus, in reviewing the extents of intersection types, it is easier to identify modeling problems
than with original semantic types. Similarly, it is easier to identify modeling problems in reviewing
the extents of pure semantic types rather than the extents of original semantic types. This is due to
the uniform simple semantics of pure semantic types, which helps to highlight concepts that do
not fit this semantics. However, the frequency of problems in pure semantic types appears to be
lower than in intersection types.

One might think that the increase in the number of semantic types would make error checking
more difficult. However, the opposite is the case, as will be explained now. The issue is not how
many semantic types one has to review, but how many concepts need to be reviewed by a human
expert. Our methodology makes it easy to identify the most ‘‘suspicious’’ concepts, and it also
limits the number of concepts that are designated as suspicious. We consider it unrealistic to hope
that all concepts in a network of several hundred–thousand concepts can be reviewed with equal
effort (or at all). Our methodology indicates how to prioritize the efforts expended on checking
errors and problems.

To test our assumption that moderately sized sets of concepts, assigned to a single intersection
type, are less likely to indicate a problem than small sets, we performed the following experiment.
A domain expert analyzed the concepts of five randomly chosen intersection types, e.g. Finding \
Health Care Activity, each with twenty concepts. Out of these 100 concepts, only three were
judged by the domain expert to be classification errors.

We performed a statistical analysis of the frequencies of the concept sets assigned to inter-
section types of different sizes (Table 5). For example, there are 421 intersection types with only
one associated concept. If we consider all the intersection types with between one and five as-
sociated concepts suspicious, then we need to check only 1456 concepts. This is a very small
number of concepts compared to the size of the whole thesaurus.

All the concepts of an intersection type have the same semantics. This helps to detect concepts
which do not fit the uniform semantics and therefore may be errors. Thus, it is desired that a
human expert should check all concepts of one intersection type in one uninterrupted working
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session, capitalizing on the semantic uniformity, in order to build up his own mental context. We
note that this is typically possible. The average number of concepts per intersection type is 101.8.
Only 70 intersection types have more than 114 associated concepts. Only 41 intersection types
have 300 or more concepts. Thus, the process of checking concepts is also better modularized than
is the case for the original semantic types.

Finally, there are intersection types that have so many assigned concepts that it is impossible
to analyze all of them with a reasonable effort. We can still easily verify whether such inter-
section types make sense, since we know exactly for every intersection type what it is an in-
tersection of. For example, we found an intersection type (with a small extent) Human-Caused
Phenomenon or Process \ Manufactured Objects which we judged to be highly suspicious.
However, no suspicious intersection type with a large extent was found. All the large inter-
section types represent reasonable combinations. For example, the intersection of Organic
Chemical and Pharmacologic Substance is the intersection type with the largest number of
concepts, namely, 41,564.

In the following subsections, we will discuss several modeling problems. We stress that this is
not ‘‘pure theory.’’ We have identified actual modeling problems in our previous work [9] with the
MED [7] and our previous work [10] with the UMLS. Examples in this section will be drawn from
the UMLS.

4.3.1. Ambiguity
An intersection type may highlight a case of an overlooked homonym. Up to this point, we

have assumed that there are no homonyms in the initial specification of concepts. If a term indeed
is commonly used for two or more concepts, then domain experts have to create distinguishable
lexical items for each concept. For example, the UMLS distinguishes between two different senses
of a term T by different lexical items like T h1i and T h2i.

Table 5
Partial distribution of concepts over intersection types

Number of concepts in the intersection types Number of intersection types

1 421
2 147
3 102
4 65
5 35
6 41
7 32
8 15
9 13
. . . . . .
. . . . . .
3947 1
4582 1
6705 1
19349 1
41564 1
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However, the assumption that different senses of each term are recognized from the beginning,
and that different experts agree on which sense is represented by which lexical item, is overly
optimistic, given the great degree of autonomy which we allow each expert. Thus, terms used in
the assignment of concepts to original semantic types might really be ambiguous. Such ambiguous
concepts would tend to belong to pairs of very different original semantic types. As a result of this,
‘‘strange’’ intersection types would be generated.

A domain expert could recognize such a problem and disambiguate such concepts by using
different terms for the different senses. If all the concepts of an intersection type are disambiguated
in this way, then there is no more need for such an intersection type.

As an example, the intersection type Human-Caused Phenomenon or Process \ Manufactured
Objects contains the concepts Concentration Camps, ‘‘Family Planning, Environment,’’ Office
Automation, Video Recording, Videodisc Recording and Videotape Recording. This intersection
type exhibits an obvious contradiction. The distinction between a (manufactured) object and a
(human-caused) phenomenon or process is at a very high level. There are, in all likelihood, no
concepts that belong to two semantic types that are so different. Thus, ‘‘Video Recording’’ appears
to be an ambiguous term that really stands for two different concepts: Video Recording h1i is the
process of recording something on a video tape. Video Recording h2i is the recorded tape which
is an object manufactured as the result of the process of recording. Similarly, a Concentration
Camp h1i is a phenomenon relevant because of its medical and psychological impact on survivors
of a concentration camp. On the other hand, Concentration Camp h2i refers to a physical en-
vironment which is an object created by humans. All six concepts belonging to this intersection
type exhibit the same kind of ambiguity, thus all of them are homonyms. After correctly reas-
signing these (pairs of) homonyms, the intersection type Human-caused Phenomenon or Process \
Manufactured Objects will disappear. In [10], other examples of such ambiguities in the UMLS
are given.

4.3.2. Non-uniform classification
If a domain expert studies the intersection types in comparison with the corresponding pure

semantic types, he might find that some of them indicate a non-uniform classification. In non-
uniform classifications, some concepts are not assigned to the same original semantic types as
other concepts to which they are similar in nature. This is an unacceptable situation, which can be
fixed in two ways. Either we assign all the concepts of a similar nature to a relevant original
semantic type, or we do not assign any one of the concepts to it. Both these approaches would
lead to a uniform classification, as desired.

For example, in the UMLS the concepts Acid Rain, Radioactive Fallout, Radioactive Waste
and Smoke are assigned to the intersection type Environmental Effect of Humans \ Hazardous or
Poisonous Substance. Strangely enough, ‘‘Water Pollution, Radioactive,’’ ‘‘Food Contamination,
Radioactive’’ and ‘‘Air Pollution, Radioactive’’ are assigned to Environmental Effect of Humans
only. This is clearly a case where uniform criteria need to be applied during modeling. These three
concepts need to be reassigned to the intersection type Environmental Effect of Humans \ Haz-
ardous or Poisonous Substance.

The concept Desertification is the only concept in the intersection type Environmental Effect of
Humans \ Phenomenon or Process. This also appears to be a case of non-uniform classification.
Indeed, a review of the concepts classified only under Environmental Effect of Humans reveals the
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two concepts Deforestation and Suburbanization which rightfully should belong to this inter-
section type. Interestingly enough, we will see below (Section 4.3.5) that this intersection type itself
is redundant. Thus, all three concepts will be moved again.

Domain experts will typically encounter such cases while reviewing intersection type extents.
They will identify concepts which are in need of additional assignments to original semantic types.
Then a re-execution of the semantic refinement algorithm would correct the extents of such in-
tersection types.

The occurrence of non-uniformities is not surprising when considering that our semantic re-
finement methodology allows individual experts considerable autonomy. Especially for the
UMLS, many experts were involved in the assignment of concepts to semantic types. However,
our semantic refinement methodology makes it easier to discover such non-uniformities. Precise
information about these non-uniformities should be communicated back to the domain experts
who should try to change the original classifications to be more uniform.

4.3.3. Classification errors
Intersection types highlight some classification errors. Such errors may be exposed when the

extents of intersection types are reviewed by a domain expert. We did not find a classification
error in the example domain of this paper. However, in previous work on the UMLS [10], we
noticed that the concept Scotch Tape Mount was assigned to the intersection type Bacterium \
Laboratory Procedure. This is a strange intersection type, and Scotch Tape Mount should be
assigned to Laboratory Procedure only. Because Scotch Tape Mount was the only concept as-
signed to this intersection type, the intersection type itself may be eliminated. In [10], several other
examples of classification errors in the UMLS are presented.

As we see from the above example and the others in [10], it is especially beneficial to have
experts review very small intersection type extensions. The review may expose that the
few concepts were associated with the intersection type by mistake, due to an erroneous
classification as an original semantic type. In such a case, the limited effort of a reviewer, who
has to inspect only a few concepts, may result in the correction of the originally incorrect
classification and the elimination of an intersection type from the augmented semantic net-
work.

4.3.4. Omissions
The extents of intersection types will give the knowledge engineers in charge of the maintenance

of a large Terminological Knowledge Base a useful view to discover omissions on the concept level.
For example, in the UMLS augmented semantic network, there is an intersection type Human-
caused Phenomenon or Process \ Manufactured Object. This intersection type has six concepts
assigned to it: Concentration Camps, ‘‘Family Planning, Environment,’’ Office Automation, Video
Recording, Videodisc Recording and Videotape Recording. We recognize that a concept Audio-
tape Recording is omitted, while the concept Audiotape itself does exist in the Metathesaurus.
Hence, such a concept should be added to the Metathesaurus and to the intersection type.

A single concept may involve more than one problem. Once we have identified the missing
concept Audiotape Recording, it still needs to be disambiguated. As noted before with reference
to Videotape Recording, Audiotape Recording may refer to the process of recording as well as to
the result of the process.
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4.3.5. Redundant classifications
In all the problems discussed so far, a domain expert was needed to recognize a problem and to

make the final decision about which kind of problem it was and how to solve it. In this subsection,
we will discuss a problem which can be solved algorithmically.

Domain experts are assigning concepts to original semantic types without consulting each
other. In some cases, the same concept may be assigned to several original semantic types that are
standing in an ancestor–descendant relationship or in a parent–child relationship in the semantic
network. However, due to the transitivity of the IS-A relation, it is never necessary to assign
a concept to a semantic type A and a parent or ancestor of A. The second assignment is implicit in
the first assignment. Furthermore, as the parent or ancestor of A is less specific than A, the
semantic constraint achieved by the assignment to the ancestor is much weaker than the semantic
constraint achieved by the assignment to A. Thus, whenever such a redundant assignment exists
in a network, it needs to be removed. We call such a redundant assignment a redundant classi-
fication. Redundant classifications can be uncovered by algorithmic means.

For example, in Fig. 4 the intersection type Phenomenon or Process \ Human-caused Phe-
nomenon or Process has two parents Phenomenon or Process and Human-caused Phenomenon or
Process. However Human-caused Phenomenon or Process is itself a child of Phenomenon or Pro-
cess. Therefore, the intersection type Phenomenon or Process \ Human-caused Phenomenon or
Process may be removed from the semantic network without any loss of information. We have
identified several other examples of redundant classifications, e.g., Phenomenon or Process \
Environmental Effect of Humans and Environmental Effect of Humans \ Human-caused Phenom-
enon or Process. Fig. 5 shows the revised subnetwork.

We note that redundant classifications should not occur in the UMLS, even according to its
designers, as stated in [25]: ‘‘In all cases the most specific semantic type available in the hierarchy
is assigned to a term.’’ We analyzed the UMLS for redundant classifications and detected 8622
concepts that were assigned to several semantic types standing in ancestor–descendant (or parent–
child) relationships. These concepts were reported to the NLM. When all those redundant clas-
sifications are removed from the UMLS, 77 intersection types disappeared from the augmented
semantic network. Thus, the structure of the augmented semantic network became simpler,
without any loss of information.

4.3.6. Independently listed synonyms
While looking at Table 2, we could not avoid noticing that the three concepts (1) ‘‘Second

hand cigarette smoke,’’ (2) ‘‘Smoking, Passive’’ and (3) ‘‘Tobacco Smoke Pollution’’ appear to
be the same concept. Thus, one of the terms should be chosen as the primary concept, and the
other terms should be made its synonyms. For example, the two terms ‘‘Second hand cigarette
smoke’’ and ‘‘Smoking, Passive’’ are really synonyms for the concept ‘‘Tobacco Smoke Pollu-
tion.’’

4.4. Problems in a sample of intersection types

In [10], an arbitrary sample of 100 intersection types from the UMLS with only one assigned
concept per intersection type was analyzed by a domain expert. He found that for 11 intersection
types, the classification of conceptswas correct. For 55 intersection types, themultiple classifications
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were wrong. For 32 intersection types the classified concepts indicated non-uniform classifications.
Finally, two intersection types were redundant classification cases. The results of the analysis of this
sample show the potential for finding and correcting many errors and inconsistencies in a network
with a limited effort expended on screening intersection types with small extents.

4.5. Extent of the resulting semantic type ‘‘Environmental Effect of Humans’’

Introducing intersection types has helped us identify a number of errors concerning concepts
assigned to the semantic type Environmental Effect of Humans, which were discussed in detail in
the previous subsections. As a result, we now present the revised version of Table 2 as Table 6 and
the revised version of Table 3 as Table 7.

Seven concepts do not appear in Table 7 as they are not assigned to intersection types anymore.
Fig. 6 shows the correspondingly revised Venn diagram of Fig. 2. The number of intersection
types is down to six, from ten in Fig. 2. The changes in the tables and diagram demonstrate a

Fig. 5. The subnetwork corresponding to Fig. 4 after removing redundant classifications.
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Table 6
Concepts assigned to the pure semantic type Environmental Effect of Humans and to its intersection types after cor-
rection

Environmental Effect of Humans

Air pollution
Air pollution, Indoor
Bathing Water Pollution
Deforestation
Desertification
Drinking Water Pollution
Dust Pollution
Environmental Air Flow
Environmental Pollution
Exhaust fumes
Garbage
Global Warming
Greenhouse Effect
Heating
Inappropriate temperature in local application and packing
Indoor Air Quality
Industrial Smog
Noise, Transportation
Oil spill
PBC airborne level
Pollution and pollution exposures
Pollution, NOS
Second hand cigarette smoke, (Synonyms: ‘‘Tobacco Smoke Pollution,’’ ‘‘Smoking, Passive’’)
Sewage
Sludge
Soil Degradation
Soil pollution
Suburbanization
Water Pollution
Water Pollution, chemical
Water Pollution, thermal

Environmental Effect of Humans \ Therapeutic or Preventive Procedure
Fluoridation

Environmental Effect of Humans \ Hazardous or Poisonous Substance
Acid Rain
Air Pollution, Radioactive
Food Contamination, Radioactive
Radioactive Fallout
Radioactive Waste
Smoke
Water Pollution, Radioactive

Environmental Effect of Humans \ Manufactured objects \
Hazardous or Poisonous Substance
Industrial waste
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reduction in complexity due to the corrections of errors identified in the extent of the semantic
type Environmental Effect of Humans.

5. Conclusions

We have developed a methodology that allows us to refine the semantics of concepts in a
thesaurus, although it does not result in a unique semantics for each concept. The initial as-

Fig. 6. Revised Venn diagram of the semantic type Environmental Effect of Humans and its intersecting types and
intersections among them, after correction.

Table 7
Concepts assigned to the intersection types of the semantic types intersecting with the original semantic type Envi-
ronmental Effect of Humans, after correction

Intersections of the semantic types intersecting Environmental Effect of Humans

Therapeutic or Preventive Procedure \ Phenomenon or Process
Feedback
Vibration h1i

Therapeutic or Preventive Procedure \ Human-caused Phenomenon or Process
Decontamination
Employment, supported

Manufactured Object \ Hazardous or Poisonous Substance
Hazardous waste
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sumption of this methodology is that the semantics of a concept is expressed by assigning the
concept to one or more original semantic types. Then we apply an algorithm which, corre-
sponding to unique combinations of original semantic types, identifies intersection types, and
assigns concepts to them. All concepts that belong to only one of the original semantic types are
assigned to pure semantic types. We also define the augmented semantic network, using the multi-
level extension rule.

Our methodology results in unique assignments of concepts to new semantic types which have
smaller and semantically uniform extents compared to the original semantic types. Thus, the
augmented semantic network expresses a semantic refinement compared to the original semantic
network. The result of our methodology is then fed back to domain experts, who can recognize
various errors.

Thus, our methodology leads to better Terminological Knowledge Bases. End-users of termi-
nological knowledge have no direct contact with the methodology, but they benefit from its fruits
by encountering fewer errors when using a Terminological Knowledge Base. Experience with four
domain experts indicates that domain experts consider the task of selecting parts of the UMLS for
inspection, and then checking them, manageable. Using our methodology, a large number of
modeling errors were identified in the UMLS. We have submitted these errors to the NLM for
review. The process of selecting and checking is much more difficult for the UMLS without our
methodology. A formal study to quantify these differences is part of future work.

Our methodology has a number of advantages:

• Domain experts involved in building a Terminological Knowledge Base have a single, fairly
well defined task, namely, to assign concepts to high level semantic types. They do not have
to know about attributes, relationships, etc.

• The amount of time during which domain experts have to interact with knowledge engineers is
greatly reduced.

• Communication between domain experts is limited to a single step of the six-step methodology,
namely, the design of the semantic network and its original semantic types.

• The heart of the refinement methodology is algorithmic.
• The methodology makes it easier to identify errors in a large Terminological Knowledge Base.

The semantic refinement methodology encourages us to believe that the great investment made
in the UMLS by the NLM was worthwhile. Similar efforts should be made in other areas of
science and other domains of knowledge to build Terminological Knowledge Bases. Our meth-
odology will then allow the same steps of semantic refinement to be applied in these other areas.
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