Kyoto, December 78, 1989

Separating Structural and Semantic
Elements in Object Oriented Knowledge
Bases

Erich J. Neuhold+

James Geller*

Yehoshuna Perl*
Volker Turau-+

+GMD-IPSI Integrated Publication and Information Systems Institute
Dolivostr. 15, D-6100 Darmstadt, FRG

*Institute for Integrated Systems, Department of Computer Science
New Jersey Institute of Technology, Newark, New Jersey 07102

Abstract

In ihis paper we present an object-oriented data-model with
types. We separate in the definition of the object class the struc-
tural paris ftom those parts describing the semantics of the ob-
Jject class in the real world. In order to express that all instances
of a cluss have the same structure and behavior we consider them
ta be of the same abstract data type. This type containing the '
structural parts of the object class is called the object type of
that object class. Object types are organized in a hierarchy en-
abling inheritance. Different object classes may have the same
object type. By separating these two parts of the specification a
better abstracting mechanism i$ achieved. The semantics of the
objects in the context of an application is described in the defini-
tion of the object classes by determining their semantic refatjons
with other object classes, regardless of their object types,

1 Introduction.

In order to store and retrieve the information for an application of a
certain enterprise from a database, a suitable representation of the ap-
plication’s environment is required. Snuch a representation is called a
conceptual model. It is an abstract representation that contains the
properties of the environment relevant to the application. In the past
years numerous models with the aim of representing semantic struc-
tures beyond the capabilities of the first-normal-form relational model
- were presented [PMB8E]. The representation mechanisms are all based

on a collection of abstraction techniques. The most significant tech-

nique is to collect the objects of the domain of interest into classes.

The class concept has been introduced in Simula [DN66] and reimple-
. mented by Smalltalk [GR83].] . i

A. class can be regarded as a container for objects which are sim-
ilar in their siructure and their semantics in the enterprise. Further-
more, the objects have a similar behavior from the uger’s point of view.
Therefore, a class can be regarded as a description of the structure and
behavior of objects.

Following [W87], the characteristics of object-oriented languages
are the notions of ohjects, classes, and inheritance. The description of
an object class contains both structural parts and parts that describe
the semantics the classes have in the application. In many systems e.g.
[CM89, KNS88, F87, GR83, SR86), the structural and semantic parts
are mingled together. This causes some difficulties when we have to
distinguish whether an object part is structural or containg semantic
information,

To provide reusability, classes are organized in a class hierarchy.
Subclasses inherit the properties of their super classes. In many sys-
tems as 02 [LR88] and Vbase [AMB7] the subclass hierarchy is used
for two purposes at the same time:

a) o factorize common structure and behavior of classes and

b) to express additional semantie relationships between classes.

This leads to a situation that two classes modeling semantically related
objects could only be dealt with, if the objects in question are struc-
turally related as well. The use of a single hierarchy for two concep-
tually digtinet connections among specifications resulted in inadequate
conceptual models. Therefore, we decided to separate these two parts
of the specification. .

In our model we separaie in the definition of the object class the
structural parts from those parts describing the semantics of the class
in the real world. In order to express that all instances of a class have
a commeoen structure and behavior we consider them to be of the same
abstract data type. The type is called the object type of that class.

Hence, we associate with each object class an object type. Regard-
less of their corresponding object type, object classes can be related
according to their relations in the application. These are called se-
mantic relations and can be formulated independently of the object
types.

For example it may be desirable to represent the same object in
different confexts of the application, or to deal with an object in differ-
ent levels of detail. All the semantic constraints are now. expressible in
the model, regardless of the structural relations between the relevant
classes. :

Some object-oriented programming languages use the concept of
abstract classes [GR83,MSOP86], which are classes which cannot be
instantiated. Their only purpose is to define useful attributes, relation-
shipas, and methods that can be inherited by concrete subclasses, We
achieve the same result by defining object types which include these at-
tributes, relationships, and methods and then utilize type ‘inheritance.
In this way the anomalous concept of abstract classes iz avoided.

Thus, our specification allows on one side a structural hierarchy
(an acyclic directed graph) of object types, and on the other a net-
work of classes. In making this distinction we hope to athieve a better
abstraction mechanism, giving a more accurate representation of the
application.

Section 2 formally introduces the notion of object type which pro-
vides the structural description of an object class. Section 3 deals
with the semantic description of object classes, Qur conclusions are
summarized in Section 4. For an extended version of this paper see
[NPGTSY].

2 The Structural Description of Object
Classes

2.1 Types and Classes

In order to structure the set of objects in the domain of _t')ur interest
we collect objects into classes. An object class can be-regarded as
a container for objects which are similar in their structure and their
semantics in the real world. They have similar behavior from the user’s
point of view:

2.3.2 Relationships

A relationship property is represented by a name and an object type.
The name is again a selector for the property, The object type refer-
enced must be defined elsewhere. In a relationship we allow not only a
gingle object type but also 2 composite structure of object types using
the same set, tuple, and disjoint union constructors that we used in
defining composite data types. (However, note that we do not allow a
mixture of data types and object types in such a composite structure).

Let R be a relationship from an object type A to an object type
B. Let D{A} and D(B) be the domains of the object types A and B
respectively. (The definition of the domain of an object type is complex
and will be presented in Section 2.3.4). The relationship R is a relation
from the set D(A) to the set D(B), referring here to the ma.thema.tlcal
notation of relation as a subset of the Cartesian product

D(A)x D(B) = {(a,b) [a € D{A), b € D(B}}.

Hence, the relationship is a set of ordered pairs of objects. If the
relationship has a compesite object type B, and ifs domain is the com-
position of the individual domains of the object types, then the objects
will form a complex structure, e.g. a set of objects of the same object
type, or a tuple of objects of different object types, or elements from &
disjoint union type, or a further nesting of such types.

2.3.3 Methods

In the following we use the Smalitalk {GR83] terminology for meth-
ods but have redefined some of its meaning. A method is a program
segment with one required parameter of some object type, and any
number of optional parameters. We will assume that every method
also returns a value of an object type or data type. The méthod name
together with these oplional parameters is called the “message” which
is sent to the object identified by the required parameter.

If a program segment is needed that takes values of a data type as
arguments then it must be defined as an operation of this data type
rather than a method, and it will also return a value of a data type.

The signature of a method or of an operation defines the types of
its input parameters and the type of the return value. The definition
of an object type contains a signatiire for every method that is defined
for that object type as its required parameter.

In the following we will formalise methods that do not perform any
side effects in persistent memory, i.e. methods that perform only local
computations and that influence their environment only by their return
value. We will give a recursive definition of such a method.

A computational method is a program segment with one required pa-
rameter of some object type and aome optional parameters that makes
use of the functionality of the underlying programming language (e.g.
C++) but does not modify any stered values outside of its own local
memory and refurns a value of an object type.

A primitive method is either a relationship or a computational
method.

A method chain is either a primitive method or & primitive method
composed with a method chain.

A irensformer Is a program segment that takes as a required ‘ar-
gument a value of an object type and returns a value of a data type.
Other than that it behaves like a computational method.

A primitive transformer is either a transformer or an attribute.

An eperaiion chain is either an operation or an operation composed
with an eperalion chein. (Operations have been defined previously for
data types).

A iransformer chain is either a prmfutlve transformer or a primitive
transformer composed with an operation chain.

‘With all these terms in place we can now define a method formally.
A method is either a method chain or a transformer chain or a compo-
sition of the two, namely a method chain composed with a transformer
chain.

According to our definition relationships and attributes are just
special cases of methods. Nevertheless, they are conceptually impor-
tant special cases which warrant our three way dlstmctmn between
attributes, relationships, and methods.

Kyoto, December 7—8, 19889

We will refer to the set of all possible argument values of one pa-
rameter as the domain of this parameter. The domain of & method is
the cross product of the domains of all its parameters. We define the
range of @ method as the set of all results that this method can generate
given all possible values of its domain as inputs.

With the above assumptions one can view a method with no side
effects as a relation. This relation will be from the domain of the
method to its range.

R: Domain — Range
In case that the domain is a cross product this relation takes the fol-
lowing form. Let Dom; be the domain of the i-th argument of the
method.) _ .)

R: Domain{Object type) x Domy x Doms ... x Dom, — Range
This basic idea can be carried over easily to all elements that have been
‘used in the formal definition of a method. For an operation we get

R: Data type x Domy x Doma x Dom, — Data type.

For a transformer we get : ’

R: Domain{Object type) x Domy x Dom; ...
type
and for a computational method

R: Domain{Object type) x Dom; x Dom;

Domain{Object type).
Our definition of a method permits the chaining of the above defined
entities in the following pairs. (1) For method chains: computational
method - computational method, relationship - relationship, relation-
ship - computational method, computational method - relationship.
(2) For transformer chains: operation - operation, attribute - cpera-
tion, transformer - operation. (3) Chaining method chains with trans-
former chains creates the following additional possible pairs: computa-
tional method - operation, computational method - transformer, com-
putational method - attribute, relationship - operation, relationship -
transformer, and relationship - attribute.

It is obvious that with our restrictions all the mentioned composi-
tional pairs can be represented as the compositions of relations.

E.g. fR;: A — B is a relation from A to Band £3: B - Cisa
relation from B to C then we can define the composite relation B3: A
—C as

R:;:R10Rz

* Dom, - Data

x Ddom, — Range =

such that “o” defines relation composition in the usual sense:

RioRy = {(z, y)| zB1z & zRay}
Clearly our recursive definition covers composition chains of any length,
e.g. if a method R is defined by chaining relationships Ry, Ra, Bs to an
attribute 41, then R = (({R1 o R2) o R3) o A;). Thereforé, a method
chain, an operation chain, a transformer chain, and thus a method can
each be represented as a composition of relations.

2.3.4 The Domain of an Objeci Type

We need to define the domain of an object type. This domain should
reflect the attributes, relationships, and methods of the object type.
To facilitate the definition we use the selector Cariesian product which
is defined in Section 2.2.

In an object type the properties are identified by their selector,
rather than by a serial number. Thus we define the domain of an
object type as a mapping M from the fuple of the properties of the
object type to the Cartesian product of n sets as follows:

(PROPERTY1, PROPERTY?2, ...,PROPERTYn) —
ApropPERTY1 X APROPERTY2 % ... X APROPERTYn-
An element of - the selector Cartesian product s
a mapping (PROPERTY1, PROPERTY?, ..., PROPERTYn) —
(GPROPERTYh QPROPERTY?2)-++» G-PROPERTYn), where apropPERTY
€ Aproperryifor L <i<n.

‘We still have to define the Aproperryi. If PROPERTY i is an
attribute then Apgroperryi is the type defined for this atiribute in
the definition of the object type. If PROPERTY1 is a relationship
to another objecttype OT, then we define Aproprrry: to be the set
of all possible classes whose object type s OT. If PROPERTY i is
a method M then we define Aproperry: to be the method M it-
self. Thus the domain of the object type STUDENT in Section 3.2 iz

So far we have agsumed that any two object classes model different
objects of the real world. But if we want to model the same real world
object in two different contexts, in which the objects have different re-
alizations, we must introduce two different object classes. Each object
class has a different object type. To capture the semantic connection
between the two classes we use the roleof concept [SN88]. 1t is used
to express the fact, that two (or more) object classes model the same
real world object in different contexts (or equivalently the objects are
represented in different roles). This concept has cousequences regard-
ing message passing, because if a method is sent to an object and the
method is not contained in the interface of that object, then it may be
forwarded to one of ite roles. More details are given in Section 3.3.

Note that the roleof concepi is not symmetric i.e. the fact that A is
roleof B does not imply the converse relation. Therefore, an object can
only exist in the context described by the object class A if it already
exists in the context described by the object class B. The object types
of the classes A and B do not have to be sab- or supertype of each
other, The roleof concept reflects purely a semantic coustraint, which
is not reflected by their types.) .

The second modelling device for relating object classes is called
categoryof. In some way it is dual to the roleof construct. It is nsed
to model the same real world object with additional knowledge, but
still in the same context. So it is a refinement of the description with
respect to one aspect of its former description. Whereas in the case
of roleof the additional information was about the object in a different
context. So if more specialized information about the instances of an
object class is available, we can categorize the instances into different
object classes and relate these classes via the categoryof concept with
the original class. .

Note that if the object class A is categoryof object class B, then the
instances of the class A model the same real world objecis as the class
B. This has to be seen in contrast to two object classes not related
by. categoryof in which the corresponding object types are in a sub-
/supertype relation. Here the two object classes model objects which
are structurally closely related, but they may correspond to different
real world objects from dissimilar areas.

The set of object classes forms with respect to the roleof and cate-
goryof specifications a network. This network is defined independently
from the hierarchy of the object types. This has the advantage, that
the domains of two object classes modeling the same real world objects
need no longer be in a sub-supertype relation. Such a relation always
implied a structural similarity of the instances. As we shall see this is
the case in the situation of category specialization, but certainly not
in the case of role specialization. There, the same real world object
can have totally different structures in different roles, By separating
the semantic specification from the definition of the object types, our
moedel is eloser to the real world.

The network of object classes is used for message passing. The cor-
Tesponding concepis are described in Section 3.3. In the next subsection
we shall give an example illustrating the zbove deseribed concepts.

3.2 Example

In this subsection an example from a “university-database” is presented
(in Figure 1}, illustrating the use of ohject type and object clags defini-
tions, the structural subtype hierarchy and the semnantic roleof and cat-
egoryof relations. The database contains information about students,
former students, instructors, teaching assistants, research assistamts
and sectiona of courses. For all students, instructors and assistants
we want to store at least personal data details. To avoid defining the
personal data details several times, we introduce an object type PER-
SON with the attributes PersData and Address. The PERSON object
type is the supertype of the object types STUDENT, INSTRUCTOR,
and ASSISTANT. Thus, these object types inherit the attribute Pers-
Data. The object types INSTRUCTOR and ASSISTANT inherit also
the attribute Address. But for STUDENT an attribute Address is de-
fined (to contain his local address which may be different from his home
town address) and is overriding the attribute Address in PERSON. The
object types INSTRUCTOR and ASSISTANT have an attribute De-
part Addr which containg their work address. Thus a student which is

Kyoto, December T—8&, 1989

a teaching assistant may have three different addresses: o home town
address in PERSON which is inherited to TEACHING._ASSISTANT
through ASSISTANT. A local address in STUDENT and a work ad-
dress inherited from DepartAddr in ASSISTANT. Since we want to
distinguish between teaching assistants and research assistant, we de-
fine corresponding subtypes of the object type ASSISTANT. Note that
these object types inherit the attributes of PERSON and ASSISTANT.,

Some of the students may already be assistants. So there is infor-
maticn about persons in the context of being a student and of being
an assistant. To capture this sernantics a general object class person is
introduced. The classes studént and assistant will be defined as roleof
the class person. Furthermore, some of the assistants are teaching as-
sistants, some of them are research assistants and some are both, where
the attribute PosPercent specifies the appropriate percentage of the po-
sition. This implies that we need two object classes research-assistant
and teaching-assistant, which both are categories of the object class
assistant, .

The names of the object classes are spelled with small letters, the
names of the object types are printed with capital letters, names for
attributes and relationships have only the first letter capitalized and
keywords are in bold face. Seme composite data types are used. Their
exact definitions are omitted for lack of space and appear in [NPGT89].
However, their names give a vague idea of their contents. The two
columns describe object types (left) and classes (right). .

We omit relationships and methods from the class descriptions
whenever there exists only one class for a given object type, even though
it is in principle necessary to specify them. Thus we write the classes
only for object types which have multiple classes. In our example these
are the classes STUDENT, STUDENTS, and ORGANIZATION. Thus
the relationship Sections and the method NumStudents are omitted
in the class description. On the other hand the method MyStudents
appears in the class description of instructor since its access path con-
taing STUDENTS for which we need to specify students rather than
formerstudents. Similarly the relationship “Membership” is not omit-
ted in student and formerstudent as there are two classes, union and
alumniorganization, for the object type ORGANIZATION-

“MyStudents” is & method chain. ¥ it is sent to INSTRUCTOR
the messape handler will first follow the TeachingSections relationship
to retrieve a set SECTIONS of all sections taught by this instructor.
By using the structural relationship “setof” we obtain the set of SEC-
TION as {SECTION}. Following the Students relationship defined for
SECTION a set of STUDENTS will be derived. NumStudents is a
similar method, composed of a method chain and a transformer chain,
counting the number of students of an instructor. It uses an operation
Sum, which computes the sum of a set of NATURALS.

The objecttype TEACHING_ASSISTANT is a subtype of two ob-
Jecttypes, INSTRUCTOR and ASSISTANT. This is an example of
multiple inheritance and implies that attributes and relationships for
TEACHING_ASSISTANT are inherited via the subtype hierarchy from
both object types. .

The field name of the attribute PersData of the class person is
marked essential. Therefore the value of the field name has for ev-
ery -element of the extension of the class person a value different from
nil. The system will check the values of the essential attributes before
inserting an instance.

3.3 Inheritance via roleof or categoryof

So far in our model we have always made a sharp distinetion between
object types and object classes. We shall retain this dichotomy in our
discussion about inheritance. In section 2 we introduced object types
and the mechanism of subtyping. By subtyping new types are derived
from existing types. The subtypes inherit the properties of their su-
pertypes, as discussed in Section 2.4. On the other hand object classes
which are connected via roleof or categoryof have an inheritance mech-
anism which influences the message passing concepts used for methods.
So there are principally two different kinds of inheritance in our model.
The first one is via the subtype hierarchy and the second is based on
the network of object classes.

The message handling system identifies the implementation of a
method according to the precedence list. In the case the methoed is not
contained in the object’s interface and the object class is not related
via roleof or categoryof to other object classes, then the method can
not be executed and the object signals an error. If there are roleof
or categoryof specializatione of the class in question, a message pass-
ing mechanism will be applied. This mechanism is explained in -the
following.

* The inheritance mechanism between two classes A and B depends
on whether the corresponding object types are connected in the subtype
hierarchy or not. Therefore, we shall distinguish these two cases in the
following. For convenience we call the object type of class A the object
type A,

- Case 1: The object type Bis.a aubt.ype of the object type A.

Case 1.1: There is no semantic connection between the object
classes A and B.)

In this cage the inheritance mechanism consists solely of that given
by the connection of the types. This mieans that all methods defined
for object type A can alse be applied {o instances of the object class B
and that every attribute and every relationship defined for object type
A i3 also defined for object type B; but there is no connection between
the instances of class A and class B, i.e. there is no transfer of the
values of attributes or relationships from clzss A to class B.

Case 1.2: There is .a. semantlc connection between the ob}ect
classes A and B.

For the following the nature of the semantic reIa.tionship, ie. roleof
or categoryof is not relevant. In this case their inheritance behavior
coincides. First of all one part of the inheritance is via the subtype
hierarchy, i.e, methods of A can be applied to B and attributes and re-
lationships of A are defined in B, On top of that there is-an inheritance
of values of attributes and relationships. For every instance of the class

objecttype RESEARCH _ASSISTANT

subtypeof: = ASSISTANT
attributes:
Research: ~STRING . .
PosPercent: PERCENTTYPE

objecttype TEACHING_ASSISTANT

subtypeof: . INSTRUCTOR,
) ASSISTANT
attributes:
PosPercent: PERCENTTYPE

objecttype SECTION

memberof SECTIONS
attributes:
Department: STRING
SectionNo: NATURAL
NoOfStudents: NATURAL
Room: ROOMTYPE
Time: TIMETYPE
relationships:
Instructor: INSTRUCTOR
Students: STUDENTS

objecttype SECTIONS
setof: SECTION
attributes:

NoOfSections: NATURAL

Kyoto, December 7—8, 1989

B there exists a corresponding instance of the class A. Now let P be
an attribute or a relationship defined in the object class A. Then the
value of the property P for an instance b of the class B is determmed
as follows: if P has a value defined in b then this is the actual value
of P, but if P has no value defined in b then the value iz taken from
the corresponding instance of the object class A. This way there iz a
transfer of values between the object class A and the object class B,

Case 2: The object type B is not a subtype of the object type A

Case 2.1: There is no semantic connection between the two classes.
Then there is clearly no inheritance.

Case 2.2: Thete is a semantic relation between the two classes in
question.

As we shall explain now this must be a roleof connection. To see
this, note that by the definition of categoryof the object class B rep-
resents the same real world objects represented by the object class A
in' the same coptext but with some extra information describing the
refinement. However, in such a case the object type B must contain all
the properties of the object type A and some additional ones to reflect
the more refined information known in the object class B. But this is
precisely the case if the object type B is a subtype of the abject type
A. Hence, if the object class B is a categoryof an object class A, then
the corresponding objectiype B must be a subtype of the object type
A R . .

Ini surnmary, we only have to consider the case that the object class
B is a roleof the object class A. The attributes and relationships that
can get assigned a value in the object class B are only the attributes
and relationships that are defined in object class B. Moreover, if an
attribute or relationship defined for object class B has not been assigned
a value, then this attribute or relationship is undefined.

Now, suppose that a method is defined by the object class A and
is not defined by the object class B, then it is considered defined by

" elass research_assistant
objecttype: RESEARCH_ASSISTANT
categoryof: assistant

elass teaching. assistant
objecttype: TEACHING_ASSISTANT
eategoryof: instructor, assistant

class section
objecttype: SECTION
essential: SectionNo
relationships:
Students: students

class gections
objecttype: SECTIQN s

Figure 1: An Example, Second Part

