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Abstract. When integrating the views of a large telecommunications application database at Bellcore, it was found 
that some pairs of view objects had significant structural similarities but differed semantically. + This observa- 
tion motivated the design of the structural integration methodology, described in this article. Currently existing 
view and schema integration methodologies are based on semantic considerations. They allow integration only 
if two objects agree in their semantic and structural aspects. Structural integration permits the integration of ob- 
jects even if they differ semantically. This article introduces structural integration for the case of full structural 
correspondence. We further develop an important special case, namely structural integration for classes with 
attribute partial correspondence. We use a subschema of the telecommunications application to demonstrate the 
applicability of structural integration to situations involving the complexities of real-world databases and applica- 
tions. Algorithms for checking full structural correspondence of classes and databases are presented. Structural 
integration has several advantages, including the identification of shared common structures that are important 
for sharing of data and methods. 

Key Words: Database and schema integration, structural integration, reusability, dual model, ER model, object- 
oriented model, structure and semantics. 

1. Introduction 

In the  p rocess  of  creat ing a da tabase  for  a large appl ica t ion ,  v iews are def ined that  desc r ibe  
subsets  of  the  data.  E a c h  view suppor t s  the  da ta  r e q u i r e m e n t s  of  a g r o u p  of  users  or  a 
logical ly  i n d e p e n d e n t  subse t  of  appl ica t ions .  O n c e  the  d i f fe ren t  v iews have  b e e n  c rea ted ,  
one  needs  to in tegra te  t h e m  into a s ingle  s c h e m a  that  desc r ibes  all  the  data  used  by  the  
appl icat ion.  This  is ca l led  view integrat ion.  T he  p rocess  of  c rea t ing  a s c h e m a  of  a da tabase  
sha red  by mul t ip le  app l ica t ions  also involves  v i ew  in tegra t ion .  T h e  p roce s s  of  in t eg ra t ing  

*This research has been supported partially by grants from the Center for Manufacturing Systems at New Jersey 
Institute of Technology and from Bellcore. 
+No implication may be made about whether Bellcore develops or supports this particular application or the 
corresponding database. 
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schemas from different databases (which may already exist) is called schema integration. 
The techniques applied to integrating views and schemas are quite similar [2, 25]. Many 
methodologies and techniques have been suggested for view and schema integration--Batini 
et al. [2] compare 12 of them; several others are discussed by Sheth and Larson [25]. 

Based on the distinction between structural and semantic representations in a data model 
presented below, all earlier view and schema integration techniques can be classified as 
semantic. These techniques determine what can be integrated based on the semantics of 
the application, but the integration is possible only if structural aspects match as well. In 
this article, we introduce a technique called structural integration, and provide algorithms 
for applying it. We also discuss its use with a large realistic application, and point out 
its advantages. As we will see, structural integration complements semantic integration. 
Different models assign different meanings to the terms structure and semantics. ~ A formal 
definition of our distinction appears in Section 3.1 and is further explored in [10]. 

Generalization is a useful technique for integrating view/schema objects [5]. Typically, 
when two entities are similar but not identical, i.e., they are identical in some properties 
and different in others, one can create a superentity that contains the common properties 
of the original entities. The properties in which the two original entities differ are described 
by two new subentities of the superentity which inherit its properties. The two new sub- 
entities, together with the superentity, contain the same information as the original two 
entities (see Figure 1). By creating the superentity, we save space in the description of the 
common properties which are now specified only in the superentity rather than in each 
of the two original entities. The process of generalization described above is common to 
both the extended entity-relationship (ER) models that support generalization and to many 
object-oriented models. For object-oriented models an additional advantage is code reusabil- 
ity, which is achieved by describing the common methods once in the superentity rather 
than twice in the original entities. The generalization process can be applied recursively, 
creating a hierarchy of entities. Properties of a superentity are inherited by its subentities 
through all levels of the hierarchy. 

In the current methodologies, integration by generalization can be used when one can 
identify two entities that are similar in both structure and semantics. While studying the 
schemas of a large telecommunications application database, it was discovered that several 
subschemas had the same or very similar structures, but different semantics. That is, there 
were pairs of corresponding classes with comparable numbers and types of attributes and 
relationships, but no intuitively correct common superclasses for the pairs. 

Unfortunately, integration by generalization cannot be applied to semantically dissimilar 
classes, even if structural similarities "invite" it. This problem exists for extended ER models 
and for the known object-oriented models. The desire to integrate subschemas of the telecom- 
munications database which were similar in structure but different in semantics motivated 
the development of structural integration. 

Structural similarities can only be exploited for integration if the data model supports 
a clear distinction between structure and semantics. The object-oriented Dual Model [20, 
21, 22] is just such a model. Structural integration does not replace integration by general- 
ization, but supplements it where the latter is not applicable. 

Structural integration provides the following advantages. It allows sharing of the specifica- 
tion of properties including methods. Sharing of definitions of an object type by several 
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property1 - propertyl  
property2 -- property2 

propertyj = propertyj  
property/+1 r propertyj+l  

propertyn r propertyn 
propertyn+l 
propertyn+2 

propertym 

super-entity [ . . .  propertyj  
! 

(property1 ) 

[sub-entityl [ propertyj+l  r propertyj+l  I sub-entitY2 I 

propertyn r property,, 
property~+l 
propertyn+~ 

propertym 

Figure 1. Generalizing two entities with common properties. 

object classes results in a savings of specification (as with IS-A inheritance). This savings 
would be impossible in a methodology that does not support the distinction between struc- 
ture and semantics. 

Another advantage is cognitive in nature. Structural integration results in a structural 
schema that is smaller than the union of the classes of the two or more schemas that it 
integrates. This makes it easier for a human to get a quick understanding of the database 
by first studying the integrated (structural) schema and then applying this understanding 
to the two or more original schemas. 

The Dual Model and structural integration can be said to support and exploit a novel 
form of semantic relativism. Semantic relativism was defined as "the ability to view and 
manipulate data in the way most appropriate for the viewer" [3]. Two forms of semantic 
relativism discussed in the literature are: (a) The ability to interpret a data model structure 
differently (e.g., a relation can be viewed as an entity or a relationship) [3]; and (b) the 
definition of multiple views (external schemas) over a database schema (conceptual schema 



136 GELLER, PERL, CANNATA, SHETH AND NEUHOLD 

or federated schema) to support different users' needs for viewing and using data differently 
[3, 23]. The Dual Model supports a novel form of semantic relativism where structural 
aspects are represented as types and semantic aspects are represented as classes. By mapp- 
ing multiple classes onto a single type, multiple semantics (uses and meanings of data) 
are supported by a single structure. Structural integration allows us to exploit this form 
of semantic relativism in the context of integrating multiple views or schemas. 

While many techniques relevant to view and schema integration have been proposed (e.g., 
see [24]), we are unaware of a published document that discusses the validity and usability 
of the proposed techniques by applying them to complex and large views and schemas found 
in real industrial applications and databases. We believe that it is important to test our work 
in complex real-world situations. This was done in the context of a large telecommunica- 
tions application. In this paper, the structural integration is demonstrated using portions 
of the schema for this application's database, rather than using several simpler pedantic 
examples. 

This article is the first in a two-part series. It introduces the notion of structural integra- 
tion as well as the actual application for which structural integration was developed. The 
theory of structural integration is advanced in this article to the level that is necessary for 
the application. In a follow-up article, the theory of structural integration is further extended 
to deal with more difficult and general integration problems [11]. A short version of this 
article appeared as [9]. 

The article is organized as follows. In Section 2, we present an extended ER schema 
used to describe a telecommunications application database. In this description we identify 
two pairs of subschemas that are similar in their structures but are semantically different. 
It is necessary to represent structure and semantics separtely to afford structural integra- 
tion. The object-oriented Dual Model [22] that supports this separation is described in 
Section 3. In Section 4 we present the Dual Model semantic representation of the 
telecommunications application schema described in Section 2. In Section 5, we present 
algorithms for performing structural integration. We define full structural correspondence 
and attribute partial correspondence for subschemas and discuss structural integration for 
these two cases. Section 6 presents the conclusions. 

2. An Entity-Relationship Schema of a Telecommunications Application Database 

In this section we discuss the ER schema of a telecommunications application database, 
We show structurally similar subschemas that cannot be integrated because of different 
semantics. This provides the motivation for the introduction of structural integration. 

The ER model is popular in the telecommunications industry. Many application databases 
are described in various versions of the ER model. A particular extended ER model sup- 
ports two abstractions. One is subtypeofor IS-A, graphically represented using a triangle 
labeled S and connected by a bold line to a parent entity type. The second is roleof, graph- 
ically represented with a triangle labeled R. 2 

Figure 2 shows a portion of the schema of a large telecommunications application data- 
base which is related to the SWITCH system of Bellcore? For simplicity, attributes are not 
shown; however, as discussed in Section 5, they are considered when deciding structural 
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correspondences between schema objects. The figure contains two pairs of structurally sim- 
ilar subschemas (shown by four shaded regions in Figure 2): (SERVICE, CIRCUIT) and 
(ISDN, NON_ISDN). 

The SERVICE subschema describes a request (by a customer) for a service (or a set of 
services) and the creation of a corresponding work order for the required service(s). A 
SERVICE_ORDER entity can be one of the following kinds, which are represented as its 
subentities: ADD SVC_ORDER, DISC_SVC ORDER and CHNG_SVC_ORDER. An- 
other entity is SERVICE, describing a service offered by a telephone company to customers. 
A service can either be in effect or pending. Typically when a service is installed, it is 
marked pending, and the customer is told when it will become effective. These services are 
represented as subentities of SERVICE, namely INEFF_SERV and PEND_SERV. The 
relationship Add svc_so connects the ADD_SVC_ORDER to the new PEND SERV 
(pending service) created by the order. The relationship Disc_svc_so connects the 
DISC_SVC_ORDER to SERVICE. DISC_SVC_ORDER represents an order to discon- 
tinue a set (possibly singleton) of services that are either in effect or pending. The relationship 
Chng_svc_so connects the CHNG_SRV ORDER to SERVICE. CHNG_SRV_ORDER 
represents an order to change a set (possibly singleton) of current services, either in effect 
or pending, to a new set of pending services. 

The CIRCUITsubschema describes connections among work orders and circuits. These 
connections are similar to those in the SERVICE subschema. The difference between the 
two subschemas is that CIRCUIT has more "external" connections than SERVICE. The 
CIRCUITand SERVICE subschemas have similar structures while their semantics are dif- 
ferent. The structural similarity can be seen in the duplication of relationships and abstrac- 
tions between pairs of corresponding entities. The sets of attributes of corresponding entities 
will in general be similar but not equal. The ISDN and NON_ISDN subschemas are struc- 
turally similar as well. 

In view of the structural similarity of these two subschemas, one would like to integrate 
them. However, the only available tool in the extended ER model is generalization which 
can be applied only where similarity exists in both structure and semantics. The same prob- 
lem occurs in all existing object-oriented database systems. The dual model overcomes 
this difficulty. 

3. The Object-Oriented Dual Model 

3.1. Separation of the Structure and Semantics of a Class 

The Dual Model has been introduced in a number of previous publications [10, 20, 21, 22] 
and has been contrasted with other object-oriented approaches such as [7, 13, 18, 19]. Based 
on the Dual Model theory, the VML (Vodak Modeling Language) object-oriented database 
system has been developed [17]. In this paper we will limit ourselves to an informal review 
of the features that are absolutely necessary for understanding structural integration. 

The Dual Model is an object-oriented model which uses attributes, relationships, methods, 
and generic relations to describe classes. Due to the widely differing terminology in the 
field, we find it necessary to state our use of these terms to establish common ground with 
the reader. 
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An attribute specifies printable values and does not relate to any other class. A relation- 
ship describes a user-defined connection to another class. A method is a program segment 
attached to the class. A generic relation is a commonly used (system-defined) connection 
from one class to another. All specialization relations are generic relations. A Dual Model 
schema consists of two levels, a structural schema and a semantic schema. Both these 
schemas make use of attributes, relationships, methods, and generic relations. 

In Section 5.2, we will discuss the connections that exist between a structural schema 
and its corresponding semantic schema. In this section we will concentrate on the distinc- 
tions between these two schemas. To stress these distinctions, the building blocks of the 
structural schema are called object types and the building blocks of the semantic schema 
are called object classes (or just classes). 

The following two definintions which were introduced in [10] capture formally our under- 
standing of structure and semantics. The terms aspect will be used for attributes, relation- 
ships, methods, generic relations, and constraints. 

Definition 1. As aspect of a specification is considered structural if either (1) It is com- 
posed of names, types, and logical or arithmetic operations; or (2) it is decidable whether 
this aspect is consistent with the mathematical representation of the class(es) it connects to. 

Note that the name of a property is considered semantic in other models (e.g., ER model) 
but is not considered semantic in the Dual Model. 

Definition 2. An aspect of a specification is considered semantic if either (1) It refers 
to actual instances of objects in the application; or (2) it is not decidable just based on 
the mathematical representation of the class(es) it connects to, whether this aspect describes 
properly the connection between the corresponding real-world objects and their features. 

The relationships defined in an object type refer only to other object types, i.e., they 
stay strictly in the structural schema. The same applies to generic relations. The relation- 
ships defined in an object class refer only to other object classes, i.e., they stay strictly 
in the semantic schema. The same applies, again, to generic relations. Similarly, a method 
definition has both structural and semantic components, which are associated with an object 
type and an object class, respectively. 

It is important not to confuse the notion of object type with data type. Data types can 
also be called attribute types. Typical examples of data types are INTEGER and REAL. 
Their values are stored directly with the object where they are defined. Relationships and 
generic relations refer to object types (or classes) but not to data types. Object types may 
contain relationships, which is not true for data types. Object types may be organized in 
a subtype hierarchy, which is also not true for data types. 

Every object class must have a single associated object type, but one object type may 
have several associated object classes. Every instance in the database is an instance of one 
object class, and is therefore indirectly an instance of one object type. The object type 
contributes a description of the structural features of the instance. For example, it contrib- 
utes the data types of the attributes. 

The object class contributes different items of additional semantic information to an in- 
stance. It might establish that an instance of a class is a specialization of another class, 
whether or not those two classes look similar in their properties. For example, an object 
class s t u d e n t  might be asserted to be a specialization of an object class pe r son ,  even 
if the properties of s t u d e n t  are not a superset of the properties of pe r son .  
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One advantage of  object, oriented databases over the ER model is that a class may have 
methods as properties. In the Dual Model, a method can be either a computational method 
or a path method. A path method is a chain composed of  relationships and generic rela- 
tions. It is used to ~'etrieve an item of information I that is relevant to an instance of a class 
a, but I is stored with an instance of  a class b. Typically, there is no direct connection 
between a and b, i.e., the shortest connection from a to b includes several other classes. 
The path method is then a path through the schema that starts at a and ends at b. A path 
method may be terminated by an attribute. A linear form of  the graphical representation 
of a path method is now given. The term Connection stands for a relationship or a generic 
relation. 

Connection I Connection 2 ConnectiOnn_ 1 Attribute 
class 1 ~ class2 ~ . . .  ~ class n ~ result 

In the path from c l a s s  1 tO c lassn ,  the connection Connectionk is said to be at position k. 
For a more complete definition of path methods see [22]. 

3.2. Graphical Description o f  Dual Model Schemas 

The graphical description of a Dual Model schema consists of two figures, one providing 
the structural representation, and the other the semantic representation. In the following 
description, the building blocks of our graphical language [14] are introduced. 

 9 A class or an object type is represented by a rectangle. Class names are written in lower- 
case letters. Object type names are written in capital letters. (There is no confusion possi- 
ble, since classes and object types do not appear in the same diagram.) 

 9 A composite class, such as a set class or tuple class, is represented as a rectangle with 
special borders. A set class is a class of set objects. A set class and a set object type 
are described using a bold line rectangle. A tuple class is a class of tuple objects. Both 
are denoted as a double-line rectangle. 

 9 A specialization relation between classes (i.e., roleofor categoryof) or object types (i.e., 
subtypeof) is represented as a bold arrow. These terms will be defined in Section 3.3. 

 9 The setofand memberofrelations between a class (or object type) and its set class (or 
set object type) are represented by drawing the corresponding rectangles touching at one 
corner. 

 9 Relationships are drawn as labeled arrows. A relationship name is written with its first 
letter as capital. 

 9 Attributes and methods are not shown in this article. 

Figure 3 shows the semantic aspects of the telecommunications schema in the Dual Model. 
Figure 4 shows both the semantic CIRCUIT and SERVICE subschemas, and the structural 
OFFERING subschema that corresponds to both. Figure 5 shows the semantic ISDN sub- 
schema and the semantic NON_ISDN subschema and their corresponding structural sub- 
schema I-CIRCUIT. 
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3.3. Generic Relations 

3ome generic relations, such as subtypeof setof and memberof, are structural and are defined 
between object types. A subtypeofgeneric relation connects a refined object type to a more 
general object type, enabling inheritance of the properties of the general type by the refined 
type. In the lower part of Figure 4, ADD_ORDER and CHNG ORDER are subtypes of 
ORDER. The subtypeofgeneric relation specifies that the set of properties of the supertype 
is a subset of the set of properties of the subtype. 

Whenever we need a relationship to refer to a set of objects, we can define an object 
type to represent this set. The connection of the set object type to the base object type 
is expressed with the structural setof and memberof generic relations. The object type 
CIRCUIT_ELEMENTS represents a setofCIRCUIT__ELEMENT (Figure 5), which is in 
turn a memberofthe former. The Dual Model also supports semantic setofand memberof 
generic relations between classes. 

The Dual Model contains two kinds of specialization generic relations, both of which 
are semantic. The first is categoryof, which relates the specialized class to the more general 
class when both are in the same context. The second is the roleofgeneric relation, which 
relates the specialized class to the more general class when the two are in different con- 
texts, In the example, swpt_ds I (digital switchport) is a categoryofswpt (switchport) and 
a roleof i sdn_component (Figure 3, bottom left). 

Since structural generic relations induce a structural hierarchy, and semantic generic rela- 
tions induce a semantic hierarchy, we also have two kinds of inheritance mechanisms: struc- 
tural inheritance and semantic inheritance [22]. Many researchers (e.g., [4, 15]) assume 
that object-oriented databases are convenient for integration and code reusability due to 
their generalization capabilities expressed by the subclass hierarchy. The Dual Model refines 
the capability of specialization by using two hierarchies. Furthermore, the Dual Model 
offers the unique new technique for integration described in this paper, because it permits 
the assignment of one object type to several classes that are semantically different but share 
the same structure. 

4. The Dual Model Semantic Representation of the Telecommunications Database 

In this section we will comment in more detail on Figure 3, which shows the semantic 
representation of the Dual Model schema of the telecommunications application database 
corresponding to the ER schema shown in Figure 2. The Dual Model approach for dealing 
with ER-like relationships will be discussed. Finally, this section shows examples of the 
Dual Model treatment of methods. 

In the ER model, a relationship is defined between two or more entities. In our object- 
oriented model, a relationship is one of the properties of a class and is represented graphically 
as an arrow directed from it to another class. If  both directions of an ER relationship are 
relevant, then two relationships are represented in the object-oriented model, and two arrows 
pointing in opposite directions are drawn. 

In the case of a one-to-many relationship, e.g., between add_svc_orde  r and pendi ng_ 
se rv i ce, we use a set class to represent sets of pending services, and the relationship 
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Added_Services points from add_s vc_o rde r  to pend i ng_se rv i  ces  (shown under the 
SERVICE subschema of Figure 3). The other direction of the relationship, Adding_Order, 
points from each p e n d i n g _ s e r v i c e  to add_s vc_o rde r .  The case of a many-to-many 
relationship is demonstrated between the digital switchport swpt_dst  and o r o t o c o  I_ 
hand I e r (shown in the NON_ISDN subschema in Figure 3). Each of these two classes 
has a relationship to the set class of the other class, that is, to p ro toco  I _hand I e rs and 
to swpt_dsl  s, respectively. 

The ER model allows relationships among more than two entities. For example, the rep- 
resentation in Figure 2 contains several ternary relationships. To model a ternary or, in 
general, n-ary relationship, we create a tuple class which is composed of a sequence of 
several classes. Several tuple classes appear in Figure 3 to represent the ternary relation- 
ships of the ER schema. For instance, in Figure 3, in the SERVICE subschema, the tuple 
class chng_svc_wo represents the ternary relationship between s e r v i  ces ,  pendi ng_ 
s e r v i c e s  and chng_svc_order .  As expected, the structurally similar subschemas of the 
ER schema in Figure 2 have corresponding similar subschemas in the object-oriented rep- 
resentation in Figure 3. Structural integration allows us to exploit this similarity. 

Figure 3 also demonstrates the use of path methods. Consider, for example, that a tech- 
nician of a telephone company wants to install a circuit for a customer. He needs to know 
when this circuit should go into effect; however, this information is stored as attribute Date 
of the class add_svc_o rde r that corresponds to this circuit. This information could be 
retrieved by adding a path method Service_Order~Date to the class pend i ng_c i rcu i t .  
This path method would use a chain of relationships, terminated by an attribute, which 
graphically looks like: 

I pending_circuit Pending~ervice[ pending service I Adding-~Order 

~d { Date d svc order ~ DATETYPE. 

The final attribute Date is not shown in Figure 3. This path method is a "frozen" and reusable 
record of a navigation through the schema. It is expressed entirely at the schema level. 

If  a customer calls to complain that a service does not work, then the customer-service 
representative might want to check the date of the work order for the corresponding circuit. 
To retrieve this information, it is necessary to write another method, which we will call 
CircuiLOrde~Date.  A graphical representation of this method would look like: 

I pending service 1 Pending_Cireuit Addin~Order pending_circuit 

I Date add_work__order ~ DATETYPE. 

Later on, we will use these two methods to show how structural integration can be applied 
to methods. 
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5. Structural Integration 

Consider two sets of classes Cl = {al, a2,  9  9  an} and C2 = {bl, bE, . . . ,  bn} of equal 
cardinality. For example, the SERVICE and the CIRCUIT subschemas in Figure 3 are such 
a pair. The essence of structural integration of two classes is to construct an object type 
that can be mapped into both classes. Structural integration of two sets of classes C1 and 
C2 requires therefore that pairs of classes (a, b) such that a ~ C1 and b ~ C2 can be found, 
for which it is possible to construct a common object type. If  it is possible to construct such 
an object type for two classes a, b, then we say that they stand in structural correspondence. 

There are two cases of  structural correspondence, full structural correspondence and 
partial structural correspondence. Full structural correspondence is described in Section 
5.1. Algorithms for checking full structural correspondence of two classes and two databases 
are presented in Section 5.3. The special case of attribute partial correspondence is presented 
in Section 5.4. Additional algorithms and further details of partial structural correspondence 
can be found in [8, 11]. 

5.1. Integration of Classes with Full Correspondence 

For two corresponding classes a and b to have the same object type, there must exist a 
full structural correspondence between these two classes, i.e., between their sets of proper- 
ties. Full correspondence for a pair of attributes means that their data types are identical. 
Full correspondence for relationships means that the referent classes have to be of the same 
object type. For both attributes and relationships, the selectors may be different. Fully cor- 
responding generic relations must be of identical kind and point to classes of the same 
object type. The only exception to this is that we allow correspondence between roleof 
and categoryof, which we define to correspond. 

Note that no explicit object type specification exists when the process of structural inte- 
gration is attempted. Conditions must hold only between pairs of object classes. 

Attributes, relationships, and generic relations can be written as ordered pairs, consisting 
of a selector and a data type (or object type, or class). For instance, in Figure 3 (right 
side) the relationship Discontinuing_order points to the class d i s c _ s v c _ o r d e r .  It can 
be viewed as the pair (Discontinuing_order, disc_svc_order). We will use the LISP con- 
vention to extract the first element from a pair with the operation CAR, and the second 
element with the operation CDR [26]. Then we can define a number of useful operators 
as follows. 

SELECTOR ~ CAR 

For simplicity, we will omit the inner pair of parentheses. For example, 

SELECroR((Discontinuing_order, disc_svc_order)) = 
SELECTOR(Discontinuing_order, disc_svc order) = Discontinuing_order. 
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The function DATATYPE expects as its argument a pair  that describes an attribute. It is unde- 
fined for any other kind of argument. 

DATATYPE ~ C D R  

The function CLASS expects as its argument a pair that describes a relationship or generic 
relation defined for a class. It is undefined for any other kind of argument. 

CLASS ~ C D R  

The function OBJECTTYPE expects as its argument a pair that describes a relationship or 
generic relation defined for an object type. Again, it is undefined for any other kind of 
argument. 

OBJECTTYPE ~ CDR 

The function RELATIONNAME expects as its argument a pair that describes a generic rela- 
tion. It is undefined for any other kind of argument. 

RELATIONNAME ---~ CAR 

Formally, let the class a (b) have a set {xi } ({ Yi }) of attributes, a set {rj } ({sj }) of rela- 
tionships, a set {mk} ({nk }) of methods, and a set { gt } ({hi }) of generic relations to other 
classes. The classes a and b have fu l l  s tructural  correspondence if: 

I. There exists a one-to-one correspondence between the sets of attributes {xi} and {Yi} 
such that xi corresponds to Yi if iSATATVPE(Xi) = OATATePE(yi). 

2. There exists a one-to-one correspondence between the sets of relationships {rj } and 
{sj } such that it must be possible to construct a common object type for CLASS(rj) and 
CLASS(S j ) .  

3. There exists a one-to-one correspondence between the sets of methods {mk} and {nk} 
such that when mk is a path method that defines a path going through the sequence al ,  
a2,  9  as of classes, and nk defines a similar path through b 1, b2, .  9  bt, then the 
following conditions hold: (1) s = t; and (2) it is possible to construct a common object 
type for a i and bi, 1 <_ i <- s. 

4. There is one-to-one correspondence between the sets of generic relations {gt} and {hi} 
such that either RELATIONNAME(g/) = RELATIONNAME(h/) or both relation names are 
members of the set {roleof, ca tegoryof} .  In both cases, it must be possible to construct 
a common object type for CLASS(g/) and CLAss(h/). 

In Figure 3, subschema SERVICE describes service orders and services. Subschema 
CIRCUIT describes work orders and circuits. Pairs of classes with structural correspondence 
and the names of their corresponding object types are listed in Table 1. The name of the 
object type was derived by extracting the common parts of  the names of the two correspond- 
ing classes, the exception being service and circuit  whose object type is OFFERING.  
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Table 1. 

SERVICE CIRCUIT 
Subschema Class Subschema Class Object Type 

service order work~order ORDER 
add svc_order add work_order ADD ORDER 
disc_svc_order disc_work_order DISC_ORDER 
chng_svc_order chng work_order CHNG_ORDER 
service circuit OFFERING 
services circuits OFFERINGS 
ineffechservice ineffect_circuit INEFFECT OFFERING 
pending_service pending_circuit PENDING OFFERING 
pending_services pending_circuits PENDING_OFFERINGS 

Figure 4 shows the structural integration of the SERVICE and CIRCUIT semantic sub- 
schemas of Figure 3 by presenting the OFFERING structural subschema. For each pair 
of corresponding classes in these two subschemas, the OFFERING subschema contains 
a common object type, as shown in Table 1. Each occurrence of the semantic categoryof 
relation in Figure 3 is replaced in Figure 4 by the subtypeofstrnctural relation in the struc- 
tural OFFERING subschema. 

Using Table 1 and Figure 4 it is easy to see that there is an almost full correspondence of 
the relationships and generic relations between the corresponding classes of the two sub- 
schemas. In addition there are two relationships, Pending_Service and Pending_Circuit, 
between the classes in the different subschemas. The two relationships were used in the 
two previously introduced methods Service Order_Date of the class pend i ng_c i rcu i t 
and CircuiLOrdeLDate of the class p e n d i n g _ s e r v i c e  which correspond to one an- 
other. The two methods can be integrated by a structural path method which we will call 
Offering_Order Date. This method needs to be defined in the object type PENDING_ 
OFFERING and will now be shown graphically. 

Addin~ Order IPENDING__OFFERtNGIPen inu-~ 
} Date 

ADD_ORDER ~ DATETYPE. 

This is an interesting path method, as it contains a connection from an object type to itself. 
We call such a path method reflexive. There are several incoming external connections that 
appear only for the CIRCUIT subschema, but they do not disturb the process of structural 
integration, as they are defined for classes that are not integrated. There is one outgoing 
external connection that appears only for the CIRCUIT subschema, namely Composition. 
This one relationship stands in the way of a full structural correspondence and cannot be 
handled with the techniques developed in this article. We will show the treatment of Com- 
position, without discussing the formal techniques necessary for partial structural corre- 
spondence. Those can be found in [11]. 
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5.2. The Mapping between Object Types and Classes 

Object types and classes are not independent. The specification (i.e., the code) of a class 
contains the name of the object type that summarizes its structure, prefixed by the keyword 
objecttype. The details of the dependency are expressed by a mapping M from the set P 
of properties of the object type to the set Q of properties of the class. This one-to-one 
mapping from P onto Q [16] identifies for each p E P the corresponding q E Q. I f  an object 
type (A) has only one class (a) associated, then the specification of the class a is sufficient 
and the object type A can be defined by an algorithm (see [22]). 

A categoryofgeneric relation always has a corresponding subtypeofrelation [22]. A roleof 
generic relation may or may not have a corresponding subtypeof relation. If a roleof has 
a corresponding subtypeof then the roleofis annotated by subtypeofin the class description. 

Only roleof generic relations with corresponding subtypeof are relevant for structural 
integration, because structural integration is realized by sharing of object types by classes 
and subtypeofis the only specialization relation defined for object types. Structural integra- 
tion allows a correspondence of roleofand categoryof as both are represented in the struc- 
tural schema by a subtypeofrelation. A roleofgeneric relation without an associated sub- 
typeofis ignored in the process of structural integration. The two object types correspond- 
ing to the two classes connected by the roleof are not connected at all. In our example 
all roleofrelations happen to lie outside the subschemas that are used for structural integra- 
tion, and therefore these concerns are not applicable to it. 

5.2.1. Conditions for Mapping from an Object Type to One Class. Following are the con- 
ditions for a mapping M that must be satisfied when an object type A has one object class 
a associated with it. 

Selector: The corresponding properties of the object type and the class have the same selec- 
tor. For example, an attribute in the structural description has a corresponding attribute 
with the same name in the semantic description. The same is true for all other properties. 

Attributes: Corresponding attributes have the same data type. 

Relationships: For every relationship r from an object type A to an object type B, there 
is a relationship r '  of the class a that refers to a class b having an object type B. 

Generic specialization relations: For every subtype generic relation g from an object type 
A to an object type B, the class a may have either a categoryof or a roleof relation to a 
class b having an object type B, but there might be no connection at all. 

Generic set relations: For every memberof(setof) generic relation g from an object type 
A to an object type B, the corresponding generic relation g '  is a memberof (setof) relation 
from the class a to a class b having the object type B. 

Path methods: For methods we will limit ourselves to "path methods" The formal condi- 
tion for a mapping is then as follows: For every path method m from an object type A1 
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referring to a sequence of object types A2, A3,  9  9  An, the path method m '  of the class 
al refers to a sequence of classes a2, a3,  9  9  an such that the class ai, 1 <_ i <_ n, has 
the object type hi ,  1 <_ i < n. Furthermore, let Pi be the relationship or  generic relation 
o f A  i such t h a t p i ( a i )  = Ai+I, 1 _< i _< n, and let qi be the relationship or generic relation 
such that qi(ai) = ai+l, 1 < i < n; then the mapping from A i to a i must satisfy a mapping 
M '(Pi) = qi. 

(Note: This mapping M '  is identical to M only for the first step of the path, because 
this first step is a relationship or generic relation defined in the class for which we define 
M. For all other relationships or generic relations of the path, M '  depends on the classes 
in which the relationships are defined.) 

As an example for a Relationship, consider Figures 3 and 6. The class swpt_ds  I has a 
relationship Protocol_Handlers to the class 0 ro t  oco I_ha nd I e r s (Figure 3, bottom left). 
In Figure 6 (bottom left) there is a relationship of the same name (ProtocoL_Handlers) 
referring to the object type PROTOCOL_HANDLERS. PROTOCOL~-IANDLERS is the 
object type that is associated with the class 0 r o t o c o I _h a n d I e r s. 

An example for a Generic Set Relation can be seen in the same figures. The setofrela- 
tion from swpt_ds I s to swpt_ds I (Figure 3) corresponds to the setofrelation to the object 
type SWPT_DSL,  which is the object type associated with the object class swpt_Os I. 
The setof relation is shown by the shared corners of the two classes. 

5.2.2. Conditions f o r  Mappings f rom an Object l~pe to Several Classes. Consider now 
the case where two classes al and a2 have the same object type A. 4 For this case we have 
to relax some of the previous conditions. Let P be the set of properties of A. Let Q1 and 
Q2 be the sets of properties of al and a2, respectively. In such a case we have the mappings 
MI: P ~ Q1 and M2: P ~ Q2 satisfying the following conditions. Let M~(p) = ql and 
Mz(p) = q2, w h e r e p  ~ P, ql ~ Q1 and q2 ~ Q2. 

Proper ty  kind: The properties p, ql, and q2 should be of the same kind, i.e., they all 
should be attributes, or they all should be relationships, or they all should be methods, 
or they all should be generic relations. 

Selectors: The selectors of the properties p, ql, and q: are not necessarily identical. 

Attributes: Let p, ql, and q2 be attributes in pair notation. Then DATATYPE(p) = 
DATATYPE (ql) = DATATYPE(q2)" 

Relationships: Let p be a relationship from A to an object type B, ql be a relationship 
from a~ to a class bl, and q2 be a relationship from a2 to a class be. Then ba and b2 should 
have the same object type B. 

Generic specialization relations: Let p be a subtypeofrelation from A to an object type 
B. Then each of the relations ql and q2 is either a categoryof or a roleof relation to the 
classes bl and b2, respectively, such that b I and b2 have the object type B; alternatively 
ql and q2 might be undefined (nonexistent). 
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Generic set relations: Let p be a memberofor a setof relation from A to an object type 
B. Then the relations ql and q2 are memberofor setofrelations to bl and b2, respectively, 
such that bl and b 2 have the object type B. 

Path methods:  Le tp  be any relationship or generic relation at position k in a path method 
from A1 to an object type An, so that p connects two object types A k and Ak+l. Then qt 
connects two classes a k and ak+l, and q2 connects two classes bk and bk+ 1 such that ak and 
b k have the object type A k and ak+ 1 and bk+ 1 have the object type Ak+l, and both ql and 
q2 are at position k in their respective path methods. 

A Generic set relation is demonstrated in Figure 4. A setofrelation points to the object 
type PENDING OFFERING in the structural OFFERING subschema. Therefore, there 
exist setofrelations from pendi ng_c i rcu i t s  to pendi ng.__c i rcu i t in the CIRCU1Tsub- 
schema and from pend i ng__serv i c e s  to pend i ng_se  rv i ce in the SERVICE subschema. 
The classes pend i ng_c i rcu i t and pend i ng_se  rv ice  have the common object type 
PENDING_OFFERING.  

The interface between object types in the structural subschema OFFERING and the 
classes in the subschemas SERVICE and CIRCUIT is given by the respective mappings. 
For example, the object type PENDING_OFFERING has two corresponding classes, 
pend i ng_se  rv ice  and pendi ng_c i rcu i t .  Let P, Q1 and Q2 be the sets of properties 
of  PENDING_OFFERING,  pend i n g _ s e r v i  ce and pendi ng_c i rcu i t ,  respectively. 
We show parts of the mappings MI: P --" Q1 and M2: P ~ Q2 in Tables 2 and 3, for rela- 
tionships and relations, respectively. 

The graphic representation is a powerful presentation and learning tool. However, for 
practical database use, code is specified by assigning to every class in the object-oriented 
database its relationships, attributes, methods, and generic relations. In the Dual Model, 
this description is split into a structural description of the object type and a semantic descrip- 
tion of the class. These two parts are shown in Table 4, The semantic information is written 
in the right column, and the object type information is in the left column. The attributes 
in the object type PENDING_OFFERING are only hinted at by "attr l ; '  "attr2," etc. 

The mappings from the object type PENDING_OFFERING to the two object classes 
pond i ng_se  rv ice  and pond i ng_c i r cu i t were given in Table 2. In this example, the 

Table 2. 

MI: (Adding Order, ADD ORDER) -~ (Adding_Order, add__svc_order) 
M2: (Adding-Order, ADD ORDER) ~ (Adding_Order, add work_order) 
M1: (Pending_Offering, PENDING OFFERING) -~ (Pending_Circuit, pending_circuit) 
M2: (Pending Offering, PENDING OFFERING) -~ (Pending_Service, pending~service) 

Table 3. 

MI: (subtype, OFFERING) ~ (categoryof, service) 
M2: (subtype, OFFERING) ~ (categoryof, circuit) 
MI: (memberof, PENDING_OFFERINGS) ~ (memberof, pending services) 
M2: (memberof, PENDING_OFFERINGS) ~ (memberof, pending_circuits) 
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Table 4. 

Object Type Description Semantic Class Description 

objecttype PENDING_OFFERING 
subtypeof: OFFERING 
memberof: PENDING OFFERINGS 
attributes 

attr 1 
attr 2 

attr. 
relationships: 

Adding_Order: ADD_ORDER 
Pending_Offering: PENDING_OFFERING 

class pending_service 
objeettype: PENDING_OFFERING 
eategoryof: service 
memberof: pending_services 

relationships: 
Adding_Order: add~vc order 
Pending_Circuit: pending_circuit 

class pending_circuit 
objecttype: PENDING OFFERING 
categoryof: circuit 
memberof: pending_circuits 
relationships: 

Adding_Order: add_work_order 
Pending_Service: pending_service 

attributes are specified only once in the object type, but  are known to both classes. This 
is comparable to generalization, where attributes are specified with a single class and known 
to all of its subclasses. 

Structural integration of the ISDN and NON-ISDN subschemas is similar to that of the 
CIRCUIT and SERVICE subschemas, and is shown in Table 5 and Figure 5. 

The ISDN subschema models the i sdn circuit as a graph with components as nodes and 
wires as edges connecting nodes. An i s d n _ c  i r c u i  t is a categoryofc i r c u  i t since it is 
a special kind of circuit. It has a relationship Isdn__connectivity to the set i s d n _ e d g e s  
of the circuit. This set in turn has the reverse relationship Circuit  to the i sdn_c  i r c u i t  
and a setof generic relation to the tuple class i s d n_edge .  The latter is a tuple class since 
it is composed of two i s d n _ c o m p o n e n t s  as the two end nodes of the edge. This is an 
interesting case of  a tuple class since the same class i s d n _ c o m p o n e n t s  appears twice in 
it. Finally, an i s d n _ c o m p o n e n t  is categoryofan assemb I y_c ompone n t .  The structure 
of the NON_ISDN subschema is a mirror image of the ISDN subschema. Their structural 
integration is expressed in the structural 1-CIRCUIT subschema (Figure 5). 

Figure 6 shows a complete diagram for the structural representation of the Dual Model 
for the telecommunications database from Figure 3. For each class in Figure 3, there is 

Table 5. 

ISDN NON-ISDN 
Subschema Class Subschema Class Object Type 

isdn_circuit non_isdn_circuit L_CIRCUIT 
isdn_component non_isdn_component LCOMPONENT 
isdn_edge non_isdn_edge EDGE 
isdn_edges non_isdn_edges EDGES 
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an object type in Figure 6 with the same name, except for the pairs of structurally similar 
classes (i.e., classes with correspondence) where one object type replaces both similar 
classes (as indicated in Tables 1 and 5). The generic relations in Figure 6 are structural 
and not semantic, thus we do not show roleofor categoryof, but we show subtypofbetween 
object types. As noted before, if class a is a categoryof class b, then the corresponding 
object type A must be a subtypeofthe corresponding object type B. For the roleofgeneric 
relation, this may or may not be the case. It is the case if we want the specialized type 
to inherit all the properties of the general type. This does not occur in our example. Exam- 
pies for both possibilities are given in [22]. Note that the structural representation does 
not replace the semantic representation; rather it shows the structural aspects of the data- 
base. The approach used in the Dual Model is to give the user both representations. The 
integration is represented by the structural schema of object types and two mappings to 
the schemas of classes. 

5.3. Algorithms for Checking Full Structural Correspondence of  Classes and Databases 

We start this section with an algorithm to check whether two given classes satisfy full struc- 
tural correspondence. This algorithm implements a test whether the conditions of Section 
5.1 are met. 

PROCEDURE CORRESPONDENCE(a, b: class) 
1. IF the number of attributes in a and b is not equal 

THEN exit(a, b) 
/* All exits in this algorith are failure exits. */ 

IF the number of attributes of any given data type in a and b is not equal 
THEN exit(a, b) 

2. Consider the categoryof and roleof generic relations of a and b. 
2.a IF their numbers are not equal THEN exit(a, b). 
2.b IF a and b both have one such relation to classes a 1 and bl respectively, 

AND a 1 and bl do not have identical object types 
THEN exit(a, b) 

/* This is the case of Single Inheritance. */ 
2.c ELSE 
/* This the case of Multiple Inheritance. a has many specialization relations which may 
be either categoryofor roleofrelations to al, a 2 . . . .  , am, and b has many specialization 
relations which also can be either categoryofor roleofrelafions to b 1, b2 . . . . .  bin. In 
this step we look for a one-to-one matching between al, a2, .  9  am and bl, b2 . . . . .  bin. 
Note that in structural integration a categoryof may match a roleof! */ 

F O R k : =  1 T O m D O  
match[k] := 0 /* The array match is used to record the correspondence. */ 

F O R i : =  1 T O m D O  
{flag := FALSE /* flag is used to indicate whether a i is matched. */ 
k : = l  
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WHILE k _< m AND NOT flag DO 
{IF match[k] = 0 THEN /* b k is free for matching. */ 

IF a i and b k have a common object type THEN 
{match[k] := i /* So, bk cannot match a second aj. */ 
flag := TRUE} 

E L S E k : =  k + 1} 
IF NOT flag THEN exit(a, b)} 

/* No full correspondence possible since ai was not matched. */ 

OUTPUT match[1., m]. /* This is the success case of full correspondence. */ 
/* If  the array contains at u the number v that means that bu corresponds to av. */ 

3. Consider the setof relations of a and b (there exists, at most, one). 
The treatment is the same as in step 2 (a and b only). 

4. Consider the memberof relations of a and b (there may be more than one). 
The treatment is the same as in step 2. 

5. Consider the relationships of a and b. 
The treatment is the same as in step 2. 

The complexity of the CORRESPONDENCE(a, b) algorithm is O(C 2) where 

c = maximum(#relationships, #categoryof + #roleof relations, #memberof relations). 

The # operator returns the number of connections of the given kind, i.e., #roleof returns 
the number of roleof connnections of the class a. If CORRESPONDENCE(a, b) com- 
pletes successfully, then we can apply the algorithm STRUCTURAL~INTEGRATION(a, 
b, A) (presented in [8, 11]), which creates a common object type A for the fully correspond- 
ing classes a and b, using the output of the "match" array for the correpsondence between 
the relations and relationships of the two classes. 

We can use the algorithm CORRESPONDENCE(a, b) to find pairs of corresponding 
classes from both given databases. However, the order of processing the classes may have 
an impact. Suppose for example, that class al (b0 has a categoryof relation to class a2 
(b2). Suppose further that none of these classes has more connections to other classes and 
that the attributes of al and bl (a2 and b2) have full structural correspondence. Then if we 
apply CORRESPONDENCE(a1, bl), the matching will fail due to the categoryofrelation 
since a2 and b 2 do not yet have a common object type [see step 2 in procedure CORRE- 
SPONDENCE(a, b)]. However, if we start with CORRESPONDENCE(a2, b2) followed 
by CORRESPONDENCE(a1, bl), then both applications of CORRESPONDENCE will 
be successful since while applying CORRESPONDENCE(a1, bl) the classes a2 and b 2 
are already of the same object type A 2. Thus, al and bl have the same object type A 1. 
As a matter of fact, A~ will have a subtype relation to A2. 

If  al (az) and bl (b2) have cyclic connections, i.e., there is a directed path from al (a2) 
to bl (b2) and vice versa, then no order of processing will help. That is, al and a2 may 
potentially have the same object type A1, and bl and bz may potentially have the same ob- 
ject type A2, but due to the cyclic nature of the connections of the classes it is impossible 
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to recognize this fact with the CORRESPONDENCE procedure applied in any order. For 
an algorithm for structural integration of cyclic schemas see [8, 11]. 

In order to process the classes of each database Da which do not participate in cyclic 
subschemas and gain the possible results from applying the CORRESPONDENCE algo- 
rithm, we need to reorder the classes in each database as follows. 

PROCEDURE REORDER (Da) 
The REORDER procedure applies topological sort 
to the acyclic portion of the database. 

Topological sort [1] is a well-known technique which does not need to be repeated here. 
Now we can present an algorithm DB_INTEGRATE for finding and creating common 
object types for classes with full correspondence of two databases Da and Db. Let Da 
have m classes al, a2 . . . .  , a m and Db have n classes bl, b2 . . . .  , b n. Let DA be the set 
of the explicitly defined object types Ak for the integrated database. 

PROCEDURE DB_/NTEGRATE (I)a, Db, DA) 
REORDER(Da) /* Call to the previous Procedure */ 
REORDER(Db) 
k : = 0  
F O R i : =  1 T O m D O  

FOR j : =  1 T O n D O  
{CORRESPONDENCE(a/, bj) 
IF CORRESPONDENCE(ai, bj) returns successfully 
THEN {k := k + 1; STRUCTURAL__INTEGRATION(a/, bj, Ak)}} 

For the classes which were not matched, their object types are still defined implicitly 
in the integrated database as they were in Da and Db prior to the structural integration. 
The complexity of this algorithm is O(mnc 2) where c is defined as before. 

5.4. Structural Integration of Classes with Attribute Partial Correspondence 

Full structural correspondence is a good basis for developing a general theory of corre- 
spondence and also a good vehicle for introducing the concept to the reader. However, 
it is not a practical case for real databases. Surprisingly enough, it was possible to solve 
most of the problems of the telecommunications database schema from Figure 2 by a for-  
realism which is intermediate in complexity between full structural correspondence and 
the completely general case. This case is referred to as attribute partial correspondence 
and will be formalized in this section. 

Attribute partial correspondence implies that there is a full correspondence in the rela- 
tionships and generic relations. Because relationships and generic relations always involve 
two schema elements, they appear more important for structural integration than attributes 
which affect only one schema element. Therefore one would probably attempt structural 
integration of two classes standing in attribute partial correspondence, even if there are 
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quite a few differences between the sets of attributes. However, this decision is up to the 
designer of the database and requires some understanding of  the application. 

To develop the notion of  attribute partial correspondence, we first need to define partial 
structural correspondence between two classes a and b. Let Qa and Qb be the sets of prop- 
erties of a and b. Let 2 a C Qa and 2b C Qb be the sets of  properties for which there is 
a one-to-one correspondence, as defined for full structural correspondence. Then the classes 
a and b are defined to stand in partial structural correspondence if ~a ;~ 0 and 2 b ;~ ~. 
Another way of looking at this definition is to assume a superclass a0 of  a with the set 
2 a of properties and a superclass b0 of b with the set 2 b of properties, such that the classes 
a0 and b0 have a full structural correspondence. 

One should not attempt to integrate a and b, unless I Qal ~ I Qal and I 2al ~ I Qbl. If  
the sets of  properties Qa - 2a and Qb - ~b include attributes only, we talk about attri- 
bute partial correspondence. I f  they include relationships only, we talk about relationship 
partial correspondence. To summarize, attribute partial correspondence means that some 
attributes do not correspond but everything else does. We concentrate here on attribute 
partial correspondence, which describes our application (almost) perfectly. 

In the telecommunications database examples of  Figure 3 there exists attribute partial 
correspondence for each pair of corresponding classes in similar subschemas except for 
s e r v i c e  and c i r c u i t ,  which differ in that c i r c u i t  has one extra relationship called 
Composition. The extra generic relations or tuple-type relations which refer to c i rcui  t 
do not matter for this purpose because they point to c i rcu i t and not away from it. For 
each other pair of classes there exists full correspondence of relationships and generic rela- 
tions. On the other hand, there are differences in the sets of  attributes for most pairs of 
classes in the subschemas. 

The difference in the Composition relationship can be solved by techniques defined in 
[11] which extend those introduced in this article. Returning to attributes, consider the 
corresponding classes c i r c u i t _o  r d e r and s e r v i c e_o r d e r in the diagram of Figure 3. 
Each one has 30 attributes, and 18 of  them are common to both classes. Now how do we 
define the attributes for the object type ORDER, which is the object type of both classes? 
In general, suppose we are given two classes, a and b, which exhibit attribute partial cor- 
respondence. Let X, be the set of m attributes of  a, and let X b be the set of n attributes 
of b. Let C C Xa and D C Xb be the subsets of  the attributes for which there exists a 
one-to-one correspondence. (We are not using "c_"  because we are dealing with partial 
correspondence. As a matter of fact, any one of the two " C "  operators may be a '~ c , "  
but not both at the same time.) The definition of the properties of an object type A that 
integrates two classes a and b requires only the specification of XA, the attributes of A, 
since a and b stand in attribute partial correspondence. In other words, relationships, generic 
relations, and methods already exhibit full structural correspondence. The set of attributes 
is defined as follows: 

X A = Xcommon U Y U Z, 

where the set Xcommon contains an attribute for each pair (x, y) of corresponding attributes 
x ~ C, y E D. Y and Z are defined as 

Y =  X a - C a n d Z  = Xb -- D. 
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I f  x ~ C and y E D are two corresponding attributes, then it must be the case that 
DATATVVE(X) = DATATVPE(y). The two attributes may or may not agree in their selectors. 
I f  they do agree, we will use the common selector for the attribute of  the object type. For- 
mally, if SELECTOR(X) = SELECTOR(y), then we define an attribute w ~ Xcommon such that 

W ----- (SELECTOR(X), DATATYPE(X)). 

I f  they disagree, i.e., if  SELECTOR(X) ;a~ SELECTOR(y), then we are free to define an attri- 
bute w E Xcommon. 

W = (SELECTOR(W), DATATYPE(X)) 

with no constraint, i.e., 

SELECTOR(W) = SELECTOR(x) or 

SELECTOR(W) = SELECTOR(y) or 

SELECTOR(W) ~ SELECTOR(X)and SELECTOR(W) ~ SELECTOR(y) 

This process has to be performed for each such pair of attributes (x, y) satisfying the 
above conditions. For each attribute w E (Xa - C),  we define for Y an attribute y = 
(SELECtOR(y), DATATYPE(y)). For each attribute w ~ (Xb -- D ) ,  we define for Z an attribute 
Z = (SELECTOR(Z), DATATYPE(Z)). 

Now we specify a mapping M1 from the set XA of attributes of A to the set Xa of attri- 
butes of  a, and a mapping ME from Xa to Xb. The cardinality of XA is 

IXAI = m + n - IcI. 

Thus, M 1 and M2 are both mappings from a larger set to a smaller set and are defined 
by specifying how they map the individual subsets of XA (i.e., Xcommon, Y and Z). 

For each attribute w E Xr let (x, y), x ~ Xa, y ~ Xb be the pair of  corresponding 
attributes used in defining the attribute w. Then 

MI: (SELECTOR(W), DATATYPE(W)) = (SELECTOR(X), DATATYPE(X)) 

M2: (SELECTOR(W), DATATYPE(W)) = (SELECTOR(y), DATATYPE(y)). 

For each attribute y ~ Y, the mappings are 

MI: (SELECTOR(y), DATATYPE(y)) = (SELECTOR(y), DATATYPE(y)) 

M2: (SELECTOR(y), DATATYPE(y)) = NULL. 

For each attribute z ~ Z, the mappings are 
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MI(SELECTOR(Z), DATATYPE(Z)) = NULL 

M2(SELECTOR(Z), DATATYPE(Z)) = (SELECTOR(Z), DATATYPE(Z)). 

In this way we obtain two mappings, M1, which is one-to-one from Xa onto Xa and ME, 
which is one-to-one from Xn onto X b. To summarize, our approach enables a mapping 
to both sets of attributes of the classes a and b by inserting the corresponding attributes 
of both a and b into the object type A. This technique should be used carefully since it 
can be abused by integrating two classes that have little in common. 

6. Conclus ions  

We discussed a technique that allows sharing of database structures (schema objects) even 
when they have different semantics. This leads to a better understanding of data and to 
sharing of data and methods. Throughout the article, we used the example of an existing 
large telecommunications application database to investigate the complexity and scalability 
of our technique. 

Structural integration would not be possible without the Dual Model, which permits a 
separation of the structure and semantics of an object-oriented database. A specification 
in the Dual Model consists of two schemas. The building blocks of the semantic specifica- 
tion are called classes, the building blocks of the structural specification are called object 
types. Every class must have exactly one corresponding object type, but one object type 
may have several corresponding classes. It is exactly that last characteristic of the Dual 
Model that is the basis for the theory of structural integration. 

The Dual Model can integrate two classes even if it is impossible to find a common 
superclass for them, because a single object type can correspond to several semantically 
different classes, as long as they are structurally similar. As such, structural integration 
makes use of a novel form of semantic relativism which is provided by the Dual Model, 
and permits integration in cases where other known methods fail. 

The simplest case of structural integration occurs when the two sets of properties of the 
two classes to be integrated correspond perfectly to each other in their numbers and kinds. 
This is referred to as full structural correspondence. However, even for full structural corre- 
spondence, the properties may differ in their selectors and order, and the classes to which 
relationships point may be different as long as these classes are associated with the same 
object type. Two classes are then integrated by defining a common object type and two 
mappings from the properties of this object type to the properties of the classes. The more 
complicated case of integration with partial correspondence has been defined. The special 
case of attribute partial correspondence, where there are only differences in attributes, has 
been discussed. 

Besides extending the range of cases where integration is possible, structural integration 
has the following additional advantages. The integration process allows sharing of attributes, 
relationships, and methods, thus contributing to compact representations and software reusa- 
bility. Especially for methods it is possible to achieve a considerable amount of savings 
in specification. 
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Notes 

1. Much work exists in various fields to describe what semantics is. Unfortunately, there is no consensus. We 
will limit our attention to the definitions that are relevant to our modeling needs. 

2. The definition of roleofis similar to that of categoryof [6]. 
3. SWITCH is a trademark of Bellcore. This schema should be seen as a realistic schema. No implication should 

be made about sufficiency or accuracy with respect to the real system. 
4. If there are k classes al, a2,  9  9  at that have the same object type A, then the same ideas apply, making 

use of k mappings. 
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