
Journal of Systems Integration, 3, 133-161 (1993)
 9 1993 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Structural Integration: Concepts and Case Study

J. GELLER*
geller@hertz.njit.edu
Y. PERL*
perl@vienna.njit.edu
Institute for Integ. Systems, CIS Department, and Center for Manufacturing Systems, New Jersey Institute of
Technology, Newark, NJ 07102

P. CANNATA AND A. SHETH
amit@ctt.bellcore.com
Bellcore, 444 Hoes Lane, Piscataway, NJ 08854

E. NEUHOLD
neuhold@darmstadt,gmd.de
GMD-1PSI, Dolivostr. 15, D-6100 Darmstadt, Germany

(Received March 12, 1992; Revised February 1, 1993)

Abstract. When integrating the views of a large telecommunications application database at Bellcore, it was found
that some pairs of view objects had significant structural similarities but differed semantically. + This observa-
tion motivated the design of the structural integration methodology, described in this article. Currently existing
view and schema integration methodologies are based on semantic considerations. They allow integration only
if two objects agree in their semantic and structural aspects. Structural integration permits the integration of ob-
jects even if they differ semantically. This article introduces structural integration for the case of full structural
correspondence. We further develop an important special case, namely structural integration for classes with
attribute partial correspondence. We use a subschema of the telecommunications application to demonstrate the
applicability of structural integration to situations involving the complexities of real-world databases and applica-
tions. Algorithms for checking full structural correspondence of classes and databases are presented. Structural
integration has several advantages, including the identification of shared common structures that are important
for sharing of data and methods.

Key Words: Database and schema integration, structural integration, reusability, dual model, ER model, object-
oriented model, structure and semantics.

1. Introduction

In the p rocess of creat ing a da tabase for a large appl ica t ion , v iews are def ined that desc r ibe
subsets of the data. E a c h view suppor t s the da ta r e q u i r e m e n t s of a g r o u p of users or a
logical ly i n d e p e n d e n t subse t of appl ica t ions . O n c e the d i f fe ren t v iews have b e e n c rea ted ,
one needs to in tegra te t h e m into a s ingle s c h e m a that desc r ibes all the data used by the
appl icat ion. This is ca l led view integrat ion. T he p rocess of c rea t ing a s c h e m a of a da tabase
sha red by mul t ip le app l ica t ions also involves v i ew in tegra t ion . T h e p roce s s of in t eg ra t ing

*This research has been supported partially by grants from the Center for Manufacturing Systems at New Jersey
Institute of Technology and from Bellcore.
+No implication may be made about whether Bellcore develops or supports this particular application or the
corresponding database.

134 GELLER, PERL, CANNATA, SHETH AND NEUHOLD

schemas from different databases (which may already exist) is called schema integration.
The techniques applied to integrating views and schemas are quite similar [2, 25]. Many
methodologies and techniques have been suggested for view and schema integration--Batini
et al. [2] compare 12 of them; several others are discussed by Sheth and Larson [25].

Based on the distinction between structural and semantic representations in a data model
presented below, all earlier view and schema integration techniques can be classified as
semantic. These techniques determine what can be integrated based on the semantics of
the application, but the integration is possible only if structural aspects match as well. In
this article, we introduce a technique called structural integration, and provide algorithms
for applying it. We also discuss its use with a large realistic application, and point out
its advantages. As we will see, structural integration complements semantic integration.
Different models assign different meanings to the terms structure and semantics. ~ A formal
definition of our distinction appears in Section 3.1 and is further explored in [10].

Generalization is a useful technique for integrating view/schema objects [5]. Typically,
when two entities are similar but not identical, i.e., they are identical in some properties
and different in others, one can create a superentity that contains the common properties
of the original entities. The properties in which the two original entities differ are described
by two new subentities of the superentity which inherit its properties. The two new sub-
entities, together with the superentity, contain the same information as the original two
entities (see Figure 1). By creating the superentity, we save space in the description of the
common properties which are now specified only in the superentity rather than in each
of the two original entities. The process of generalization described above is common to
both the extended entity-relationship (ER) models that support generalization and to many
object-oriented models. For object-oriented models an additional advantage is code reusabil-
ity, which is achieved by describing the common methods once in the superentity rather
than twice in the original entities. The generalization process can be applied recursively,
creating a hierarchy of entities. Properties of a superentity are inherited by its subentities
through all levels of the hierarchy.

In the current methodologies, integration by generalization can be used when one can
identify two entities that are similar in both structure and semantics. While studying the
schemas of a large telecommunications application database, it was discovered that several
subschemas had the same or very similar structures, but different semantics. That is, there
were pairs of corresponding classes with comparable numbers and types of attributes and
relationships, but no intuitively correct common superclasses for the pairs.

Unfortunately, integration by generalization cannot be applied to semantically dissimilar
classes, even if structural similarities "invite" it. This problem exists for extended ER models
and for the known object-oriented models. The desire to integrate subschemas of the telecom-
munications database which were similar in structure but different in semantics motivated
the development of structural integration.

Structural similarities can only be exploited for integration if the data model supports
a clear distinction between structure and semantics. The object-oriented Dual Model [20,
21, 22] is just such a model. Structural integration does not replace integration by general-
ization, but supplements it where the latter is not applicable.

Structural integration provides the following advantages. It allows sharing of the specifica-
tion of properties including methods. Sharing of definitions of an object type by several

STRUCTURAL INTEGRATION: CONCEPTS AND CASE STUDY 135

property1 - propertyl
property2 -- property2

propertyj = propertyj
property/+1 r propertyj+l

propertyn r propertyn
propertyn+l
propertyn+2

propertym

super-entity [. . . propertyj
!

(property1)

[sub-entityl [propertyj+l r propertyj+l I sub-entitY2 I

propertyn r property,,
property~+l
propertyn+~

propertym

Figure 1. Generalizing two entities with common properties.

object classes results in a savings of specification (as with IS-A inheritance). This savings
would be impossible in a methodology that does not support the distinction between struc-
ture and semantics.

Another advantage is cognitive in nature. Structural integration results in a structural
schema that is smaller than the union of the classes of the two or more schemas that it
integrates. This makes it easier for a human to get a quick understanding of the database
by first studying the integrated (structural) schema and then applying this understanding
to the two or more original schemas.

The Dual Model and structural integration can be said to support and exploit a novel
form of semantic relativism. Semantic relativism was defined as "the ability to view and
manipulate data in the way most appropriate for the viewer" [3]. Two forms of semantic
relativism discussed in the literature are: (a) The ability to interpret a data model structure
differently (e.g., a relation can be viewed as an entity or a relationship) [3]; and (b) the
definition of multiple views (external schemas) over a database schema (conceptual schema

136 GELLER, PERL, CANNATA, SHETH AND NEUHOLD

or federated schema) to support different users' needs for viewing and using data differently
[3, 23]. The Dual Model supports a novel form of semantic relativism where structural
aspects are represented as types and semantic aspects are represented as classes. By mapp-
ing multiple classes onto a single type, multiple semantics (uses and meanings of data)
are supported by a single structure. Structural integration allows us to exploit this form
of semantic relativism in the context of integrating multiple views or schemas.

While many techniques relevant to view and schema integration have been proposed (e.g.,
see [24]), we are unaware of a published document that discusses the validity and usability
of the proposed techniques by applying them to complex and large views and schemas found
in real industrial applications and databases. We believe that it is important to test our work
in complex real-world situations. This was done in the context of a large telecommunica-
tions application. In this paper, the structural integration is demonstrated using portions
of the schema for this application's database, rather than using several simpler pedantic
examples.

This article is the first in a two-part series. It introduces the notion of structural integra-
tion as well as the actual application for which structural integration was developed. The
theory of structural integration is advanced in this article to the level that is necessary for
the application. In a follow-up article, the theory of structural integration is further extended
to deal with more difficult and general integration problems [11]. A short version of this
article appeared as [9].

The article is organized as follows. In Section 2, we present an extended ER schema
used to describe a telecommunications application database. In this description we identify
two pairs of subschemas that are similar in their structures but are semantically different.
It is necessary to represent structure and semantics separtely to afford structural integra-
tion. The object-oriented Dual Model [22] that supports this separation is described in
Section 3. In Section 4 we present the Dual Model semantic representation of the
telecommunications application schema described in Section 2. In Section 5, we present
algorithms for performing structural integration. We define full structural correspondence
and attribute partial correspondence for subschemas and discuss structural integration for
these two cases. Section 6 presents the conclusions.

2. An Entity-Relationship Schema of a Telecommunications Application Database

In this section we discuss the ER schema of a telecommunications application database,
We show structurally similar subschemas that cannot be integrated because of different
semantics. This provides the motivation for the introduction of structural integration.

The ER model is popular in the telecommunications industry. Many application databases
are described in various versions of the ER model. A particular extended ER model sup-
ports two abstractions. One is subtypeofor IS-A, graphically represented using a triangle
labeled S and connected by a bold line to a parent entity type. The second is roleof, graph-
ically represented with a triangle labeled R. 2

Figure 2 shows a portion of the schema of a large telecommunications application data-
base which is related to the SWITCH system of Bellcore? For simplicity, attributes are not
shown; however, as discussed in Section 5, they are considered when deciding structural

CI
RC

UI
T

SE
RV

IC
E

~U
BS

CH
EM

A
SU

BS
CH

EM
A

I
o~

1
1:!

Ck
t_l

n ~r
m

/
a~

t
\

wc

i
iii

 ~
i

i=

o:1

/ /

Fi
gu

re
2.

ER
 s

ch
em

a
of

 th
e

te
le

co
m

m
un

ic
at

io
ns

 a
pp

lic
at

io
n.

.~

138 GELLER, PERL, CANNATA, SHETH AND NEUHOLD

correspondences between schema objects. The figure contains two pairs of structurally sim-
ilar subschemas (shown by four shaded regions in Figure 2): (SERVICE, CIRCUIT) and
(ISDN, NON_ISDN).

The SERVICE subschema describes a request (by a customer) for a service (or a set of
services) and the creation of a corresponding work order for the required service(s). A
SERVICE_ORDER entity can be one of the following kinds, which are represented as its
subentities: ADD SVC_ORDER, DISC_SVC ORDER and CHNG_SVC_ORDER. An-
other entity is SERVICE, describing a service offered by a telephone company to customers.
A service can either be in effect or pending. Typically when a service is installed, it is
marked pending, and the customer is told when it will become effective. These services are
represented as subentities of SERVICE, namely INEFF_SERV and PEND_SERV. The
relationship Add svc_so connects the ADD_SVC_ORDER to the new PEND SERV
(pending service) created by the order. The relationship Disc_svc_so connects the
DISC_SVC_ORDER to SERVICE. DISC_SVC_ORDER represents an order to discon-
tinue a set (possibly singleton) of services that are either in effect or pending. The relationship
Chng_svc_so connects the CHNG_SRV ORDER to SERVICE. CHNG_SRV_ORDER
represents an order to change a set (possibly singleton) of current services, either in effect
or pending, to a new set of pending services.

The CIRCUITsubschema describes connections among work orders and circuits. These
connections are similar to those in the SERVICE subschema. The difference between the
two subschemas is that CIRCUIT has more "external" connections than SERVICE. The
CIRCUITand SERVICE subschemas have similar structures while their semantics are dif-
ferent. The structural similarity can be seen in the duplication of relationships and abstrac-
tions between pairs of corresponding entities. The sets of attributes of corresponding entities
will in general be similar but not equal. The ISDN and NON_ISDN subschemas are struc-
turally similar as well.

In view of the structural similarity of these two subschemas, one would like to integrate
them. However, the only available tool in the extended ER model is generalization which
can be applied only where similarity exists in both structure and semantics. The same prob-
lem occurs in all existing object-oriented database systems. The dual model overcomes
this difficulty.

3. The Object-Oriented Dual Model

3.1. Separation of the Structure and Semantics of a Class

The Dual Model has been introduced in a number of previous publications [10, 20, 21, 22]
and has been contrasted with other object-oriented approaches such as [7, 13, 18, 19]. Based
on the Dual Model theory, the VML (Vodak Modeling Language) object-oriented database
system has been developed [17]. In this paper we will limit ourselves to an informal review
of the features that are absolutely necessary for understanding structural integration.

The Dual Model is an object-oriented model which uses attributes, relationships, methods,
and generic relations to describe classes. Due to the widely differing terminology in the
field, we find it necessary to state our use of these terms to establish common ground with
the reader.

STRUCTURAL INTEGRATION: CONCEPTS AND CASE STUDY 139

An attribute specifies printable values and does not relate to any other class. A relation-
ship describes a user-defined connection to another class. A method is a program segment
attached to the class. A generic relation is a commonly used (system-defined) connection
from one class to another. All specialization relations are generic relations. A Dual Model
schema consists of two levels, a structural schema and a semantic schema. Both these
schemas make use of attributes, relationships, methods, and generic relations.

In Section 5.2, we will discuss the connections that exist between a structural schema
and its corresponding semantic schema. In this section we will concentrate on the distinc-
tions between these two schemas. To stress these distinctions, the building blocks of the
structural schema are called object types and the building blocks of the semantic schema
are called object classes (or just classes).

The following two definintions which were introduced in [10] capture formally our under-
standing of structure and semantics. The terms aspect will be used for attributes, relation-
ships, methods, generic relations, and constraints.

Definition 1. As aspect of a specification is considered structural if either (1) It is com-
posed of names, types, and logical or arithmetic operations; or (2) it is decidable whether
this aspect is consistent with the mathematical representation of the class(es) it connects to.

Note that the name of a property is considered semantic in other models (e.g., ER model)
but is not considered semantic in the Dual Model.

Definition 2. An aspect of a specification is considered semantic if either (1) It refers
to actual instances of objects in the application; or (2) it is not decidable just based on
the mathematical representation of the class(es) it connects to, whether this aspect describes
properly the connection between the corresponding real-world objects and their features.

The relationships defined in an object type refer only to other object types, i.e., they
stay strictly in the structural schema. The same applies to generic relations. The relation-
ships defined in an object class refer only to other object classes, i.e., they stay strictly
in the semantic schema. The same applies, again, to generic relations. Similarly, a method
definition has both structural and semantic components, which are associated with an object
type and an object class, respectively.

It is important not to confuse the notion of object type with data type. Data types can
also be called attribute types. Typical examples of data types are INTEGER and REAL.
Their values are stored directly with the object where they are defined. Relationships and
generic relations refer to object types (or classes) but not to data types. Object types may
contain relationships, which is not true for data types. Object types may be organized in
a subtype hierarchy, which is also not true for data types.

Every object class must have a single associated object type, but one object type may
have several associated object classes. Every instance in the database is an instance of one
object class, and is therefore indirectly an instance of one object type. The object type
contributes a description of the structural features of the instance. For example, it contrib-
utes the data types of the attributes.

The object class contributes different items of additional semantic information to an in-
stance. It might establish that an instance of a class is a specialization of another class,
whether or not those two classes look similar in their properties. For example, an object
class s t u d e n t might be asserted to be a specialization of an object class pe r son , even
if the properties of s t u d e n t are not a superset of the properties of pe r son .

140 GELLER, PERL, CANNATA, SHETH AND NEUHOLD

One advantage of object, oriented databases over the ER model is that a class may have
methods as properties. In the Dual Model, a method can be either a computational method
or a path method. A path method is a chain composed of relationships and generic rela-
tions. It is used to ~'etrieve an item of information I that is relevant to an instance of a class
a, but I is stored with an instance of a class b. Typically, there is no direct connection
between a and b, i.e., the shortest connection from a to b includes several other classes.
The path method is then a path through the schema that starts at a and ends at b. A path
method may be terminated by an attribute. A linear form of the graphical representation
of a path method is now given. The term Connection stands for a relationship or a generic
relation.

Connection I Connection 2 ConnectiOnn_ 1 Attribute
class 1 ~ class2 ~ . . . ~ class n ~ result

In the path from c l a s s 1 tO c lassn , the connection Connectionk is said to be at position k.
For a more complete definition of path methods see [22].

3.2. Graphical Description o f Dual Model Schemas

The graphical description of a Dual Model schema consists of two figures, one providing
the structural representation, and the other the semantic representation. In the following
description, the building blocks of our graphical language [14] are introduced.

 9 A class or an object type is represented by a rectangle. Class names are written in lower-
case letters. Object type names are written in capital letters. (There is no confusion possi-
ble, since classes and object types do not appear in the same diagram.)

 9 A composite class, such as a set class or tuple class, is represented as a rectangle with
special borders. A set class is a class of set objects. A set class and a set object type
are described using a bold line rectangle. A tuple class is a class of tuple objects. Both
are denoted as a double-line rectangle.

 9 A specialization relation between classes (i.e., roleofor categoryof) or object types (i.e.,
subtypeof) is represented as a bold arrow. These terms will be defined in Section 3.3.

 9 The setofand memberofrelations between a class (or object type) and its set class (or
set object type) are represented by drawing the corresponding rectangles touching at one
corner.

 9 Relationships are drawn as labeled arrows. A relationship name is written with its first
letter as capital.

 9 Attributes and methods are not shown in this article.

Figure 3 shows the semantic aspects of the telecommunications schema in the Dual Model.
Figure 4 shows both the semantic CIRCUIT and SERVICE subschemas, and the structural
OFFERING subschema that corresponds to both. Figure 5 shows the semantic ISDN sub-
schema and the semantic NON_ISDN subschema and their corresponding structural sub-
schema I-CIRCUIT.

IS
DN

ca

ts 1

;U
BS

Ct
lE

M
A Isd

n
~

c~c
uit

Co
nn

ec
ti

vi
ty

. ~

~I
RC

UI
T S

UB
SC

HE
M

A
/ /

NO
N

IS
DN

;U

BS
(~H

EM
 A

:o
nn

ec
ti

vi
ty

[
;E

RV
IC

E S
UB

SC
HE

M
A

.o
i[~

of

ote

on
tro

~le
d n

etw
ork

 un
it

ff

"cr
mm

al
Tn

f'
ns

Ce
nt

re
x

,f
sw

pt_
dsl

pro
t~x

.c4
 _ b2

m d
lcr

 s
J

Sw
pt c

k~
ls

)ro
toc

ol
ha

nd
ler

7ig
ur

e
3.

Se
m

an
tic

 d
es

cr
ip

tio
n

of
 th

e
Du

al
 M

od
el

 s
ch

em
a.

142 GELLER, PERL, CANNATA, SHETH AND NEUHOLD

f tD

ili!i

+

trc
uit

tio
n

Ci
rcu

i~

:lern
ents

CtrC
Ult I

elem

cnt
circ

uit

l
OF

FE
RI

NG

-C
IR

CU
IT

;U

BS
Cl

tE
M

A
Of

f~
ing

11

.
'1

iti
on

~B
BR

EV
IA

TI
ON

S:

-T
r1
62

Nu
mb

er

;w
F

r
-S
wi
tc
h
po
rt

;W
Pr

DS
L

- D
ig
iu
d

S
w

itc
h

P
or

t

3L

-B
rid

ge
 Li

f~
r

IR
E

-T
rm

'xs
m~

ion

.-'P

- C
ab

le p
air

-

I~
'a

 -O
~

.e
 F

~I
~

~q
;~

 9
 Ca
lg

ar
y
of

.] 11

.] 5 11

0 11

-]

~i
gu

re
 5

.
Se

m
an

tic
 1

SD
N

an
d

N
O

N
_I

SD
N

 s
ub

sc
he

m
as

 a
nd

 t
he

 s
tr

uc
tu

ra
l

I-
CI

RC
U

IT
 s

ub
sc

he
m

a.

144 GELLER, PERL, CANNATA, SHETH AND NEUHOLD

3.3. Generic Relations

3ome generic relations, such as subtypeof setof and memberof, are structural and are defined
between object types. A subtypeofgeneric relation connects a refined object type to a more
general object type, enabling inheritance of the properties of the general type by the refined
type. In the lower part of Figure 4, ADD_ORDER and CHNG ORDER are subtypes of
ORDER. The subtypeofgeneric relation specifies that the set of properties of the supertype
is a subset of the set of properties of the subtype.

Whenever we need a relationship to refer to a set of objects, we can define an object
type to represent this set. The connection of the set object type to the base object type
is expressed with the structural setof and memberof generic relations. The object type
CIRCUIT_ELEMENTS represents a setofCIRCUIT__ELEMENT (Figure 5), which is in
turn a memberofthe former. The Dual Model also supports semantic setofand memberof
generic relations between classes.

The Dual Model contains two kinds of specialization generic relations, both of which
are semantic. The first is categoryof, which relates the specialized class to the more general
class when both are in the same context. The second is the roleofgeneric relation, which
relates the specialized class to the more general class when the two are in different con-
texts, In the example, swpt_ds I (digital switchport) is a categoryofswpt (switchport) and
a roleof i sdn_component (Figure 3, bottom left).

Since structural generic relations induce a structural hierarchy, and semantic generic rela-
tions induce a semantic hierarchy, we also have two kinds of inheritance mechanisms: struc-
tural inheritance and semantic inheritance [22]. Many researchers (e.g., [4, 15]) assume
that object-oriented databases are convenient for integration and code reusability due to
their generalization capabilities expressed by the subclass hierarchy. The Dual Model refines
the capability of specialization by using two hierarchies. Furthermore, the Dual Model
offers the unique new technique for integration described in this paper, because it permits
the assignment of one object type to several classes that are semantically different but share
the same structure.

4. The Dual Model Semantic Representation of the Telecommunications Database

In this section we will comment in more detail on Figure 3, which shows the semantic
representation of the Dual Model schema of the telecommunications application database
corresponding to the ER schema shown in Figure 2. The Dual Model approach for dealing
with ER-like relationships will be discussed. Finally, this section shows examples of the
Dual Model treatment of methods.

In the ER model, a relationship is defined between two or more entities. In our object-
oriented model, a relationship is one of the properties of a class and is represented graphically
as an arrow directed from it to another class. If both directions of an ER relationship are
relevant, then two relationships are represented in the object-oriented model, and two arrows
pointing in opposite directions are drawn.

In the case of a one-to-many relationship, e.g., between add_svc_orde r and pendi ng_
se rv i ce, we use a set class to represent sets of pending services, and the relationship

STRUCTURAL INTEGRATION: CONCEPTS AND CASE STUDY 145

Added_Services points from add_s vc_o rde r to pend i ng_se rv i ces (shown under the
SERVICE subschema of Figure 3). The other direction of the relationship, Adding_Order,
points from each p e n d i n g _ s e r v i c e to add_s vc_o rde r . The case of a many-to-many
relationship is demonstrated between the digital switchport swpt_dst and o r o t o c o I_
hand I e r (shown in the NON_ISDN subschema in Figure 3). Each of these two classes
has a relationship to the set class of the other class, that is, to p ro toco I _hand I e rs and
to swpt_dsl s, respectively.

The ER model allows relationships among more than two entities. For example, the rep-
resentation in Figure 2 contains several ternary relationships. To model a ternary or, in
general, n-ary relationship, we create a tuple class which is composed of a sequence of
several classes. Several tuple classes appear in Figure 3 to represent the ternary relation-
ships of the ER schema. For instance, in Figure 3, in the SERVICE subschema, the tuple
class chng_svc_wo represents the ternary relationship between s e r v i ces , pendi ng_
s e r v i c e s and chng_svc_order . As expected, the structurally similar subschemas of the
ER schema in Figure 2 have corresponding similar subschemas in the object-oriented rep-
resentation in Figure 3. Structural integration allows us to exploit this similarity.

Figure 3 also demonstrates the use of path methods. Consider, for example, that a tech-
nician of a telephone company wants to install a circuit for a customer. He needs to know
when this circuit should go into effect; however, this information is stored as attribute Date
of the class add_svc_o rde r that corresponds to this circuit. This information could be
retrieved by adding a path method Service_Order~Date to the class pend i ng_c i rcu i t .
This path method would use a chain of relationships, terminated by an attribute, which
graphically looks like:

I pending_circuit Pending~ervice[pending service I Adding-~Order

~d { Date d svc order ~ DATETYPE.

The final attribute Date is not shown in Figure 3. This path method is a "frozen" and reusable
record of a navigation through the schema. It is expressed entirely at the schema level.

If a customer calls to complain that a service does not work, then the customer-service
representative might want to check the date of the work order for the corresponding circuit.
To retrieve this information, it is necessary to write another method, which we will call
CircuiLOrde~Date. A graphical representation of this method would look like:

I pending service 1 Pending_Cireuit Addin~Order pending_circuit

I Date add_work__order ~ DATETYPE.

Later on, we will use these two methods to show how structural integration can be applied
to methods.

146 GELLER, PERL, CANNATA, SHETH AND NEUHOLD

5. Structural Integration

Consider two sets of classes Cl = {al, a2, 9 9 an} and C2 = {bl, bE, . . . , bn} of equal
cardinality. For example, the SERVICE and the CIRCUIT subschemas in Figure 3 are such
a pair. The essence of structural integration of two classes is to construct an object type
that can be mapped into both classes. Structural integration of two sets of classes C1 and
C2 requires therefore that pairs of classes (a, b) such that a ~ C1 and b ~ C2 can be found,
for which it is possible to construct a common object type. If it is possible to construct such
an object type for two classes a, b, then we say that they stand in structural correspondence.

There are two cases of structural correspondence, full structural correspondence and
partial structural correspondence. Full structural correspondence is described in Section
5.1. Algorithms for checking full structural correspondence of two classes and two databases
are presented in Section 5.3. The special case of attribute partial correspondence is presented
in Section 5.4. Additional algorithms and further details of partial structural correspondence
can be found in [8, 11].

5.1. Integration of Classes with Full Correspondence

For two corresponding classes a and b to have the same object type, there must exist a
full structural correspondence between these two classes, i.e., between their sets of proper-
ties. Full correspondence for a pair of attributes means that their data types are identical.
Full correspondence for relationships means that the referent classes have to be of the same
object type. For both attributes and relationships, the selectors may be different. Fully cor-
responding generic relations must be of identical kind and point to classes of the same
object type. The only exception to this is that we allow correspondence between roleof
and categoryof, which we define to correspond.

Note that no explicit object type specification exists when the process of structural inte-
gration is attempted. Conditions must hold only between pairs of object classes.

Attributes, relationships, and generic relations can be written as ordered pairs, consisting
of a selector and a data type (or object type, or class). For instance, in Figure 3 (right
side) the relationship Discontinuing_order points to the class d i s c _ s v c _ o r d e r . It can
be viewed as the pair (Discontinuing_order, disc_svc_order). We will use the LISP con-
vention to extract the first element from a pair with the operation CAR, and the second
element with the operation CDR [26]. Then we can define a number of useful operators
as follows.

SELECTOR ~ CAR

For simplicity, we will omit the inner pair of parentheses. For example,

SELECroR((Discontinuing_order, disc_svc_order)) =
SELECTOR(Discontinuing_order, disc_svc order) = Discontinuing_order.

STRUCTURAL INTEGRATION: CONCEPTS AND CASE STUDY 147

The function DATATYPE expects as its argument a pair that describes an attribute. It is unde-
fined for any other kind of argument.

DATATYPE ~ C D R

The function CLASS expects as its argument a pair that describes a relationship or generic
relation defined for a class. It is undefined for any other kind of argument.

CLASS ~ C D R

The function OBJECTTYPE expects as its argument a pair that describes a relationship or
generic relation defined for an object type. Again, it is undefined for any other kind of
argument.

OBJECTTYPE ~ CDR

The function RELATIONNAME expects as its argument a pair that describes a generic rela-
tion. It is undefined for any other kind of argument.

RELATIONNAME ---~ CAR

Formally, let the class a (b) have a set {xi } ({ Yi }) of attributes, a set {rj } ({sj }) of rela-
tionships, a set {mk} ({nk }) of methods, and a set { gt } ({hi }) of generic relations to other
classes. The classes a and b have fu l l s tructural correspondence if:

I. There exists a one-to-one correspondence between the sets of attributes {xi} and {Yi}
such that xi corresponds to Yi if iSATATVPE(Xi) = OATATePE(yi).

2. There exists a one-to-one correspondence between the sets of relationships {rj } and
{sj } such that it must be possible to construct a common object type for CLASS(rj) and
CLASS(S j) .

3. There exists a one-to-one correspondence between the sets of methods {mk} and {nk}
such that when mk is a path method that defines a path going through the sequence al ,
a2, 9 as of classes, and nk defines a similar path through b 1, b2, . 9 bt, then the
following conditions hold: (1) s = t; and (2) it is possible to construct a common object
type for a i and bi, 1 <_ i <- s.

4. There is one-to-one correspondence between the sets of generic relations {gt} and {hi}
such that either RELATIONNAME(g/) = RELATIONNAME(h/) or both relation names are
members of the set {roleof, ca tegoryof} . In both cases, it must be possible to construct
a common object type for CLASS(g/) and CLAss(h/).

In Figure 3, subschema SERVICE describes service orders and services. Subschema
CIRCUIT describes work orders and circuits. Pairs of classes with structural correspondence
and the names of their corresponding object types are listed in Table 1. The name of the
object type was derived by extracting the common parts of the names of the two correspond-
ing classes, the exception being service and circuit whose object type is OFFERING.

148 GELLER, PERL, CANNATA, SHETH AND NEUHOLD

Table 1.

SERVICE CIRCUIT
Subschema Class Subschema Class Object Type

service order work~order ORDER
add svc_order add work_order ADD ORDER
disc_svc_order disc_work_order DISC_ORDER
chng_svc_order chng work_order CHNG_ORDER
service circuit OFFERING
services circuits OFFERINGS
ineffechservice ineffect_circuit INEFFECT OFFERING
pending_service pending_circuit PENDING OFFERING
pending_services pending_circuits PENDING_OFFERINGS

Figure 4 shows the structural integration of the SERVICE and CIRCUIT semantic sub-
schemas of Figure 3 by presenting the OFFERING structural subschema. For each pair
of corresponding classes in these two subschemas, the OFFERING subschema contains
a common object type, as shown in Table 1. Each occurrence of the semantic categoryof
relation in Figure 3 is replaced in Figure 4 by the subtypeofstrnctural relation in the struc-
tural OFFERING subschema.

Using Table 1 and Figure 4 it is easy to see that there is an almost full correspondence of
the relationships and generic relations between the corresponding classes of the two sub-
schemas. In addition there are two relationships, Pending_Service and Pending_Circuit,
between the classes in the different subschemas. The two relationships were used in the
two previously introduced methods Service Order_Date of the class pend i ng_c i rcu i t
and CircuiLOrdeLDate of the class p e n d i n g _ s e r v i c e which correspond to one an-
other. The two methods can be integrated by a structural path method which we will call
Offering_Order Date. This method needs to be defined in the object type PENDING_
OFFERING and will now be shown graphically.

Addin~ Order IPENDING__OFFERtNGIPen inu-~
} Date

ADD_ORDER ~ DATETYPE.

This is an interesting path method, as it contains a connection from an object type to itself.
We call such a path method reflexive. There are several incoming external connections that
appear only for the CIRCUIT subschema, but they do not disturb the process of structural
integration, as they are defined for classes that are not integrated. There is one outgoing
external connection that appears only for the CIRCUIT subschema, namely Composition.
This one relationship stands in the way of a full structural correspondence and cannot be
handled with the techniques developed in this article. We will show the treatment of Com-
position, without discussing the formal techniques necessary for partial structural corre-
spondence. Those can be found in [11].

STRUCTURAL INTEGRATION: CONCEPTS AND CASE STUDY 149

5.2. The Mapping between Object Types and Classes

Object types and classes are not independent. The specification (i.e., the code) of a class
contains the name of the object type that summarizes its structure, prefixed by the keyword
objecttype. The details of the dependency are expressed by a mapping M from the set P
of properties of the object type to the set Q of properties of the class. This one-to-one
mapping from P onto Q [16] identifies for each p E P the corresponding q E Q. I f an object
type (A) has only one class (a) associated, then the specification of the class a is sufficient
and the object type A can be defined by an algorithm (see [22]).

A categoryofgeneric relation always has a corresponding subtypeofrelation [22]. A roleof
generic relation may or may not have a corresponding subtypeof relation. If a roleof has
a corresponding subtypeof then the roleofis annotated by subtypeofin the class description.

Only roleof generic relations with corresponding subtypeof are relevant for structural
integration, because structural integration is realized by sharing of object types by classes
and subtypeofis the only specialization relation defined for object types. Structural integra-
tion allows a correspondence of roleofand categoryof as both are represented in the struc-
tural schema by a subtypeofrelation. A roleofgeneric relation without an associated sub-
typeofis ignored in the process of structural integration. The two object types correspond-
ing to the two classes connected by the roleof are not connected at all. In our example
all roleofrelations happen to lie outside the subschemas that are used for structural integra-
tion, and therefore these concerns are not applicable to it.

5.2.1. Conditions for Mapping from an Object Type to One Class. Following are the con-
ditions for a mapping M that must be satisfied when an object type A has one object class
a associated with it.

Selector: The corresponding properties of the object type and the class have the same selec-
tor. For example, an attribute in the structural description has a corresponding attribute
with the same name in the semantic description. The same is true for all other properties.

Attributes: Corresponding attributes have the same data type.

Relationships: For every relationship r from an object type A to an object type B, there
is a relationship r ' of the class a that refers to a class b having an object type B.

Generic specialization relations: For every subtype generic relation g from an object type
A to an object type B, the class a may have either a categoryof or a roleof relation to a
class b having an object type B, but there might be no connection at all.

Generic set relations: For every memberof(setof) generic relation g from an object type
A to an object type B, the corresponding generic relation g ' is a memberof (setof) relation
from the class a to a class b having the object type B.

Path methods: For methods we will limit ourselves to "path methods" The formal condi-
tion for a mapping is then as follows: For every path method m from an object type A1

150 GELLER, PERL, CANNATA, SHETH AND NEUHOLD

referring to a sequence of object types A2, A3, 9 9 An, the path method m ' of the class
al refers to a sequence of classes a2, a3, 9 9 an such that the class ai, 1 <_ i <_ n, has
the object type hi , 1 <_ i < n. Furthermore, let Pi be the relationship or generic relation
o f A i such t h a t p i (a i) = Ai+I, 1 _< i _< n, and let qi be the relationship or generic relation
such that qi(ai) = ai+l, 1 < i < n; then the mapping from A i to a i must satisfy a mapping
M '(Pi) = qi.

(Note: This mapping M ' is identical to M only for the first step of the path, because
this first step is a relationship or generic relation defined in the class for which we define
M. For all other relationships or generic relations of the path, M ' depends on the classes
in which the relationships are defined.)

As an example for a Relationship, consider Figures 3 and 6. The class swpt_ds I has a
relationship Protocol_Handlers to the class 0 ro t oco I_ha nd I e r s (Figure 3, bottom left).
In Figure 6 (bottom left) there is a relationship of the same name (ProtocoL_Handlers)
referring to the object type PROTOCOL_HANDLERS. PROTOCOL~-IANDLERS is the
object type that is associated with the class 0 r o t o c o I _h a n d I e r s.

An example for a Generic Set Relation can be seen in the same figures. The setofrela-
tion from swpt_ds I s to swpt_ds I (Figure 3) corresponds to the setofrelation to the object
type SWPT_DSL, which is the object type associated with the object class swpt_Os I.
The setof relation is shown by the shared corners of the two classes.

5.2.2. Conditions f o r Mappings f rom an Object l~pe to Several Classes. Consider now
the case where two classes al and a2 have the same object type A. 4 For this case we have
to relax some of the previous conditions. Let P be the set of properties of A. Let Q1 and
Q2 be the sets of properties of al and a2, respectively. In such a case we have the mappings
MI: P ~ Q1 and M2: P ~ Q2 satisfying the following conditions. Let M~(p) = ql and
Mz(p) = q2, w h e r e p ~ P, ql ~ Q1 and q2 ~ Q2.

Proper ty kind: The properties p, ql, and q2 should be of the same kind, i.e., they all
should be attributes, or they all should be relationships, or they all should be methods,
or they all should be generic relations.

Selectors: The selectors of the properties p, ql, and q: are not necessarily identical.

Attributes: Let p, ql, and q2 be attributes in pair notation. Then DATATYPE(p) =
DATATYPE (ql) = DATATYPE(q2)"

Relationships: Let p be a relationship from A to an object type B, ql be a relationship
from a~ to a class bl, and q2 be a relationship from a2 to a class be. Then ba and b2 should
have the same object type B.

Generic specialization relations: Let p be a subtypeofrelation from A to an object type
B. Then each of the relations ql and q2 is either a categoryof or a roleof relation to the
classes bl and b2, respectively, such that b I and b2 have the object type B; alternatively
ql and q2 might be undefined (nonexistent).

M r~

~W
YI

lJ
3L

-
~J

ta
l

~w
lt

cn

~L

-B
ri

dg
e
Li

lY
e~

IR
E

-T
ra

e~
is

sl
c~

Eq

pc

.
Ca

bl
e

pa
h.

OF

-
Ia

m
~O

m
ce

 Fa
ci

li
~e

~

;F
FE

RI
NG

U

BS
CH

EM
A

Of
felr

iug
s]

~ig
ur

e
6.

St
ru

ct
ur

al
 d

es
cr

ip
tio

n
of

 th
e

du
al

 m
od

el
 s

ch
em

a.

TY
PE

~

SV
B

n'
~

[
~

SE

T
O

EI
I~

T
TY

PE

t_

R~
I.A

TI
O

N
S~

P

~[
/P

IA
g O

~r
l~

T
TY

PE

J1

152 GELLER, PERL, CANNATA, SHETH AND NEUHOLD

Generic set relations: Let p be a memberofor a setof relation from A to an object type
B. Then the relations ql and q2 are memberofor setofrelations to bl and b2, respectively,
such that bl and b 2 have the object type B.

Path methods: Le tp be any relationship or generic relation at position k in a path method
from A1 to an object type An, so that p connects two object types A k and Ak+l. Then qt
connects two classes a k and ak+l, and q2 connects two classes bk and bk+ 1 such that ak and
b k have the object type A k and ak+ 1 and bk+ 1 have the object type Ak+l, and both ql and
q2 are at position k in their respective path methods.

A Generic set relation is demonstrated in Figure 4. A setofrelation points to the object
type PENDING OFFERING in the structural OFFERING subschema. Therefore, there
exist setofrelations from pendi ng_c i rcu i t s to pendi ng.__c i rcu i t in the CIRCU1Tsub-
schema and from pend i ng__serv i c e s to pend i ng_se rv i ce in the SERVICE subschema.
The classes pend i ng_c i rcu i t and pend i ng_se rv ice have the common object type
PENDING_OFFERING.

The interface between object types in the structural subschema OFFERING and the
classes in the subschemas SERVICE and CIRCUIT is given by the respective mappings.
For example, the object type PENDING_OFFERING has two corresponding classes,
pend i ng_se rv ice and pendi ng_c i rcu i t . Let P, Q1 and Q2 be the sets of properties
of PENDING_OFFERING, pend i n g _ s e r v i ce and pendi ng_c i rcu i t , respectively.
We show parts of the mappings MI: P --" Q1 and M2: P ~ Q2 in Tables 2 and 3, for rela-
tionships and relations, respectively.

The graphic representation is a powerful presentation and learning tool. However, for
practical database use, code is specified by assigning to every class in the object-oriented
database its relationships, attributes, methods, and generic relations. In the Dual Model,
this description is split into a structural description of the object type and a semantic descrip-
tion of the class. These two parts are shown in Table 4, The semantic information is written
in the right column, and the object type information is in the left column. The attributes
in the object type PENDING_OFFERING are only hinted at by "attr l ; ' "attr2," etc.

The mappings from the object type PENDING_OFFERING to the two object classes
pond i ng_se rv ice and pond i ng_c i r cu i t were given in Table 2. In this example, the

Table 2.

MI: (Adding Order, ADD ORDER) -~ (Adding_Order, add__svc_order)
M2: (Adding-Order, ADD ORDER) ~ (Adding_Order, add work_order)
M1: (Pending_Offering, PENDING OFFERING) -~ (Pending_Circuit, pending_circuit)
M2: (Pending Offering, PENDING OFFERING) -~ (Pending_Service, pending~service)

Table 3.

MI: (subtype, OFFERING) ~ (categoryof, service)
M2: (subtype, OFFERING) ~ (categoryof, circuit)
MI: (memberof, PENDING_OFFERINGS) ~ (memberof, pending services)
M2: (memberof, PENDING_OFFERINGS) ~ (memberof, pending_circuits)

STRUCTURAL INTEGRATION: CONCEPTS AND CASE STUDY 153

Table 4.

Object Type Description Semantic Class Description

objecttype PENDING_OFFERING
subtypeof: OFFERING
memberof: PENDING OFFERINGS
attributes

attr 1
attr 2

attr.
relationships:

Adding_Order: ADD_ORDER
Pending_Offering: PENDING_OFFERING

class pending_service
objeettype: PENDING_OFFERING
eategoryof: service
memberof: pending_services

relationships:
Adding_Order: add~vc order
Pending_Circuit: pending_circuit

class pending_circuit
objecttype: PENDING OFFERING
categoryof: circuit
memberof: pending_circuits
relationships:

Adding_Order: add_work_order
Pending_Service: pending_service

attributes are specified only once in the object type, but are known to both classes. This
is comparable to generalization, where attributes are specified with a single class and known
to all of its subclasses.

Structural integration of the ISDN and NON-ISDN subschemas is similar to that of the
CIRCUIT and SERVICE subschemas, and is shown in Table 5 and Figure 5.

The ISDN subschema models the i sdn circuit as a graph with components as nodes and
wires as edges connecting nodes. An i s d n _ c i r c u i t is a categoryofc i r c u i t since it is
a special kind of circuit. It has a relationship Isdn__connectivity to the set i s d n _ e d g e s
of the circuit. This set in turn has the reverse relationship Circuit to the i sdn_c i r c u i t
and a setof generic relation to the tuple class i s d n_edge . The latter is a tuple class since
it is composed of two i s d n _ c o m p o n e n t s as the two end nodes of the edge. This is an
interesting case of a tuple class since the same class i s d n _ c o m p o n e n t s appears twice in
it. Finally, an i s d n _ c o m p o n e n t is categoryofan assemb I y_c ompone n t . The structure
of the NON_ISDN subschema is a mirror image of the ISDN subschema. Their structural
integration is expressed in the structural 1-CIRCUIT subschema (Figure 5).

Figure 6 shows a complete diagram for the structural representation of the Dual Model
for the telecommunications database from Figure 3. For each class in Figure 3, there is

Table 5.

ISDN NON-ISDN
Subschema Class Subschema Class Object Type

isdn_circuit non_isdn_circuit L_CIRCUIT
isdn_component non_isdn_component LCOMPONENT
isdn_edge non_isdn_edge EDGE
isdn_edges non_isdn_edges EDGES

154 GELLER, PERL, CANNATA, SHETH AND NEUHOLD

an object type in Figure 6 with the same name, except for the pairs of structurally similar
classes (i.e., classes with correspondence) where one object type replaces both similar
classes (as indicated in Tables 1 and 5). The generic relations in Figure 6 are structural
and not semantic, thus we do not show roleofor categoryof, but we show subtypofbetween
object types. As noted before, if class a is a categoryof class b, then the corresponding
object type A must be a subtypeofthe corresponding object type B. For the roleofgeneric
relation, this may or may not be the case. It is the case if we want the specialized type
to inherit all the properties of the general type. This does not occur in our example. Exam-
pies for both possibilities are given in [22]. Note that the structural representation does
not replace the semantic representation; rather it shows the structural aspects of the data-
base. The approach used in the Dual Model is to give the user both representations. The
integration is represented by the structural schema of object types and two mappings to
the schemas of classes.

5.3. Algorithms for Checking Full Structural Correspondence of Classes and Databases

We start this section with an algorithm to check whether two given classes satisfy full struc-
tural correspondence. This algorithm implements a test whether the conditions of Section
5.1 are met.

PROCEDURE CORRESPONDENCE(a, b: class)
1. IF the number of attributes in a and b is not equal

THEN exit(a, b)
/* All exits in this algorith are failure exits. */

IF the number of attributes of any given data type in a and b is not equal
THEN exit(a, b)

2. Consider the categoryof and roleof generic relations of a and b.
2.a IF their numbers are not equal THEN exit(a, b).
2.b IF a and b both have one such relation to classes a 1 and bl respectively,

AND a 1 and bl do not have identical object types
THEN exit(a, b)

/* This is the case of Single Inheritance. */
2.c ELSE
/* This the case of Multiple Inheritance. a has many specialization relations which may
be either categoryofor roleofrelations to al, a 2 , am, and b has many specialization
relations which also can be either categoryofor roleofrelafions to b 1, b2 bin. In
this step we look for a one-to-one matching between al, a2, . 9 am and bl, b2 bin.
Note that in structural integration a categoryof may match a roleof! */

F O R k : = 1 T O m D O
match[k] := 0 /* The array match is used to record the correspondence. */

F O R i : = 1 T O m D O
{flag := FALSE /* flag is used to indicate whether a i is matched. */
k : = l

STRUCTURAL INTEGRATION: CONCEPTS AND CASE STUDY 155

WHILE k _< m AND NOT flag DO
{IF match[k] = 0 THEN /* b k is free for matching. */

IF a i and b k have a common object type THEN
{match[k] := i /* So, bk cannot match a second aj. */
flag := TRUE}

E L S E k : = k + 1}
IF NOT flag THEN exit(a, b)}

/* No full correspondence possible since ai was not matched. */

OUTPUT match[1., m]. /* This is the success case of full correspondence. */
/* If the array contains at u the number v that means that bu corresponds to av. */

3. Consider the setof relations of a and b (there exists, at most, one).
The treatment is the same as in step 2 (a and b only).

4. Consider the memberof relations of a and b (there may be more than one).
The treatment is the same as in step 2.

5. Consider the relationships of a and b.
The treatment is the same as in step 2.

The complexity of the CORRESPONDENCE(a, b) algorithm is O(C 2) where

c = maximum(#relationships, #categoryof + #roleof relations, #memberof relations).

The # operator returns the number of connections of the given kind, i.e., #roleof returns
the number of roleof connnections of the class a. If CORRESPONDENCE(a, b) com-
pletes successfully, then we can apply the algorithm STRUCTURAL~INTEGRATION(a,
b, A) (presented in [8, 11]), which creates a common object type A for the fully correspond-
ing classes a and b, using the output of the "match" array for the correpsondence between
the relations and relationships of the two classes.

We can use the algorithm CORRESPONDENCE(a, b) to find pairs of corresponding
classes from both given databases. However, the order of processing the classes may have
an impact. Suppose for example, that class al (b0 has a categoryof relation to class a2
(b2). Suppose further that none of these classes has more connections to other classes and
that the attributes of al and bl (a2 and b2) have full structural correspondence. Then if we
apply CORRESPONDENCE(a1, bl), the matching will fail due to the categoryofrelation
since a2 and b 2 do not yet have a common object type [see step 2 in procedure CORRE-
SPONDENCE(a, b)]. However, if we start with CORRESPONDENCE(a2, b2) followed
by CORRESPONDENCE(a1, bl), then both applications of CORRESPONDENCE will
be successful since while applying CORRESPONDENCE(a1, bl) the classes a2 and b 2
are already of the same object type A 2. Thus, al and bl have the same object type A 1.
As a matter of fact, A~ will have a subtype relation to A2.

If al (az) and bl (b2) have cyclic connections, i.e., there is a directed path from al (a2)
to bl (b2) and vice versa, then no order of processing will help. That is, al and a2 may
potentially have the same object type A1, and bl and bz may potentially have the same ob-
ject type A2, but due to the cyclic nature of the connections of the classes it is impossible

156 GELLER, PERL, CANNATA, SHETH AND NEUHOLD

to recognize this fact with the CORRESPONDENCE procedure applied in any order. For
an algorithm for structural integration of cyclic schemas see [8, 11].

In order to process the classes of each database Da which do not participate in cyclic
subschemas and gain the possible results from applying the CORRESPONDENCE algo-
rithm, we need to reorder the classes in each database as follows.

PROCEDURE REORDER (Da)
The REORDER procedure applies topological sort
to the acyclic portion of the database.

Topological sort [1] is a well-known technique which does not need to be repeated here.
Now we can present an algorithm DB_INTEGRATE for finding and creating common
object types for classes with full correspondence of two databases Da and Db. Let Da
have m classes al, a2 , a m and Db have n classes bl, b2 , b n. Let DA be the set
of the explicitly defined object types Ak for the integrated database.

PROCEDURE DB_/NTEGRATE (I)a, Db, DA)
REORDER(Da) /* Call to the previous Procedure */
REORDER(Db)
k : = 0
F O R i : = 1 T O m D O

FOR j : = 1 T O n D O
{CORRESPONDENCE(a/, bj)
IF CORRESPONDENCE(ai, bj) returns successfully
THEN {k := k + 1; STRUCTURAL__INTEGRATION(a/, bj, Ak)}}

For the classes which were not matched, their object types are still defined implicitly
in the integrated database as they were in Da and Db prior to the structural integration.
The complexity of this algorithm is O(mnc 2) where c is defined as before.

5.4. Structural Integration of Classes with Attribute Partial Correspondence

Full structural correspondence is a good basis for developing a general theory of corre-
spondence and also a good vehicle for introducing the concept to the reader. However,
it is not a practical case for real databases. Surprisingly enough, it was possible to solve
most of the problems of the telecommunications database schema from Figure 2 by a for-
realism which is intermediate in complexity between full structural correspondence and
the completely general case. This case is referred to as attribute partial correspondence
and will be formalized in this section.

Attribute partial correspondence implies that there is a full correspondence in the rela-
tionships and generic relations. Because relationships and generic relations always involve
two schema elements, they appear more important for structural integration than attributes
which affect only one schema element. Therefore one would probably attempt structural
integration of two classes standing in attribute partial correspondence, even if there are

STRUCTURAL INTEGRATION: CONCEPTS AND CASE STUDY 157

quite a few differences between the sets of attributes. However, this decision is up to the
designer of the database and requires some understanding of the application.

To develop the notion of attribute partial correspondence, we first need to define partial
structural correspondence between two classes a and b. Let Qa and Qb be the sets of prop-
erties of a and b. Let 2 a C Qa and 2b C Qb be the sets of properties for which there is
a one-to-one correspondence, as defined for full structural correspondence. Then the classes
a and b are defined to stand in partial structural correspondence if ~a ;~ 0 and 2 b ;~ ~.
Another way of looking at this definition is to assume a superclass a0 of a with the set
2 a of properties and a superclass b0 of b with the set 2 b of properties, such that the classes
a0 and b0 have a full structural correspondence.

One should not attempt to integrate a and b, unless I Qal ~ I Qal and I 2al ~ I Qbl. If
the sets of properties Qa - 2a and Qb - ~b include attributes only, we talk about attri-
bute partial correspondence. I f they include relationships only, we talk about relationship
partial correspondence. To summarize, attribute partial correspondence means that some
attributes do not correspond but everything else does. We concentrate here on attribute
partial correspondence, which describes our application (almost) perfectly.

In the telecommunications database examples of Figure 3 there exists attribute partial
correspondence for each pair of corresponding classes in similar subschemas except for
s e r v i c e and c i r c u i t , which differ in that c i r c u i t has one extra relationship called
Composition. The extra generic relations or tuple-type relations which refer to c i rcui t
do not matter for this purpose because they point to c i rcu i t and not away from it. For
each other pair of classes there exists full correspondence of relationships and generic rela-
tions. On the other hand, there are differences in the sets of attributes for most pairs of
classes in the subschemas.

The difference in the Composition relationship can be solved by techniques defined in
[11] which extend those introduced in this article. Returning to attributes, consider the
corresponding classes c i r c u i t _o r d e r and s e r v i c e_o r d e r in the diagram of Figure 3.
Each one has 30 attributes, and 18 of them are common to both classes. Now how do we
define the attributes for the object type ORDER, which is the object type of both classes?
In general, suppose we are given two classes, a and b, which exhibit attribute partial cor-
respondence. Let X, be the set of m attributes of a, and let X b be the set of n attributes
of b. Let C C Xa and D C Xb be the subsets of the attributes for which there exists a
one-to-one correspondence. (We are not using "c_" because we are dealing with partial
correspondence. As a matter of fact, any one of the two " C " operators may be a '~ c , "
but not both at the same time.) The definition of the properties of an object type A that
integrates two classes a and b requires only the specification of XA, the attributes of A,
since a and b stand in attribute partial correspondence. In other words, relationships, generic
relations, and methods already exhibit full structural correspondence. The set of attributes
is defined as follows:

X A = Xcommon U Y U Z,

where the set Xcommon contains an attribute for each pair (x, y) of corresponding attributes
x ~ C, y E D. Y and Z are defined as

Y = X a - C a n d Z = Xb -- D.

158 GELLER, PERL, CANNATA, SHETH AND NEUHOLD

I f x ~ C and y E D are two corresponding attributes, then it must be the case that
DATATVVE(X) = DATATVPE(y). The two attributes may or may not agree in their selectors.
I f they do agree, we will use the common selector for the attribute of the object type. For-
mally, if SELECTOR(X) = SELECTOR(y), then we define an attribute w ~ Xcommon such that

W ----- (SELECTOR(X), DATATYPE(X)).

I f they disagree, i.e., if SELECTOR(X) ;a~ SELECTOR(y), then we are free to define an attri-
bute w E Xcommon.

W = (SELECTOR(W), DATATYPE(X))

with no constraint, i.e.,

SELECTOR(W) = SELECTOR(x) or

SELECTOR(W) = SELECTOR(y) or

SELECTOR(W) ~ SELECTOR(X)and SELECTOR(W) ~ SELECTOR(y)

This process has to be performed for each such pair of attributes (x, y) satisfying the
above conditions. For each attribute w E (Xa - C), we define for Y an attribute y =
(SELECtOR(y), DATATYPE(y)). For each attribute w ~ (Xb -- D) , we define for Z an attribute
Z = (SELECTOR(Z), DATATYPE(Z)).

Now we specify a mapping M1 from the set XA of attributes of A to the set Xa of attri-
butes of a, and a mapping ME from Xa to Xb. The cardinality of XA is

IXAI = m + n - IcI.

Thus, M 1 and M2 are both mappings from a larger set to a smaller set and are defined
by specifying how they map the individual subsets of XA (i.e., Xcommon, Y and Z).

For each attribute w E Xr let (x, y), x ~ Xa, y ~ Xb be the pair of corresponding
attributes used in defining the attribute w. Then

MI: (SELECTOR(W), DATATYPE(W)) = (SELECTOR(X), DATATYPE(X))

M2: (SELECTOR(W), DATATYPE(W)) = (SELECTOR(y), DATATYPE(y)).

For each attribute y ~ Y, the mappings are

MI: (SELECTOR(y), DATATYPE(y)) = (SELECTOR(y), DATATYPE(y))

M2: (SELECTOR(y), DATATYPE(y)) = NULL.

For each attribute z ~ Z, the mappings are

STRUCTURAL INTEGRATION: CONCEPTS AND CASE STUDY 159

MI(SELECTOR(Z), DATATYPE(Z)) = NULL

M2(SELECTOR(Z), DATATYPE(Z)) = (SELECTOR(Z), DATATYPE(Z)).

In this way we obtain two mappings, M1, which is one-to-one from Xa onto Xa and ME,
which is one-to-one from Xn onto X b. To summarize, our approach enables a mapping
to both sets of attributes of the classes a and b by inserting the corresponding attributes
of both a and b into the object type A. This technique should be used carefully since it
can be abused by integrating two classes that have little in common.

6. Conclus ions

We discussed a technique that allows sharing of database structures (schema objects) even
when they have different semantics. This leads to a better understanding of data and to
sharing of data and methods. Throughout the article, we used the example of an existing
large telecommunications application database to investigate the complexity and scalability
of our technique.

Structural integration would not be possible without the Dual Model, which permits a
separation of the structure and semantics of an object-oriented database. A specification
in the Dual Model consists of two schemas. The building blocks of the semantic specifica-
tion are called classes, the building blocks of the structural specification are called object
types. Every class must have exactly one corresponding object type, but one object type
may have several corresponding classes. It is exactly that last characteristic of the Dual
Model that is the basis for the theory of structural integration.

The Dual Model can integrate two classes even if it is impossible to find a common
superclass for them, because a single object type can correspond to several semantically
different classes, as long as they are structurally similar. As such, structural integration
makes use of a novel form of semantic relativism which is provided by the Dual Model,
and permits integration in cases where other known methods fail.

The simplest case of structural integration occurs when the two sets of properties of the
two classes to be integrated correspond perfectly to each other in their numbers and kinds.
This is referred to as full structural correspondence. However, even for full structural corre-
spondence, the properties may differ in their selectors and order, and the classes to which
relationships point may be different as long as these classes are associated with the same
object type. Two classes are then integrated by defining a common object type and two
mappings from the properties of this object type to the properties of the classes. The more
complicated case of integration with partial correspondence has been defined. The special
case of attribute partial correspondence, where there are only differences in attributes, has
been discussed.

Besides extending the range of cases where integration is possible, structural integration
has the following additional advantages. The integration process allows sharing of attributes,
relationships, and methods, thus contributing to compact representations and software reusa-
bility. Especially for methods it is possible to achieve a considerable amount of savings
in specification.

160 GELLER, PERL, CANNATA, SHETH AND NEUHOLD

Acknowledgements

We thank Ashok Ingle, Gene Wuu, Howard Marcus, Pat Quigley, Bob Davis, Veena Teli,
and Nevil Patel for helpful discussions, and for helping us understand the telecommunica-
tions application. The schema in Figure 2 is loosely based on concepts used in the SWITCIT ~
application modeled by Ashok Ingle. Mike Halper has proofread this article. Thoughtful
referee comments are gratefully acknolwedged.

Notes

1. Much work exists in various fields to describe what semantics is. Unfortunately, there is no consensus. We
will limit our attention to the definitions that are relevant to our modeling needs.

2. The definition of roleofis similar to that of categoryof [6].
3. SWITCH is a trademark of Bellcore. This schema should be seen as a realistic schema. No implication should

be made about sufficiency or accuracy with respect to the real system.
4. If there are k classes al, a2, 9 9 at that have the same object type A, then the same ideas apply, making

use of k mappings.

References

1. A. Aho, J. Hopcroft, and J. Ullman, "Data structures and algorithms," Addison Wesley: Reading, MA, 1987.
2. C. Batini, M. Lenzerini, and S. Navathe, "A comparative analysis of methodologies for database schema

integration," ACM Computing Surveys, vol. 18, no. 4, pp. 323-364, December 1986.
3. M. Brodie, "On the development of data models" On Conceptual Modeling, Springer Verlag, 1984.
4. M.L. Brodie, and F. Manola, Database Management: A Survey. Readings in Artificial Intelligence and Data-

bases, J. Mylopoulos and M.L. Brodie (Eds.), Morgan Kaufinann Publishers: San Mateo, CA, 1989.
5. U. Dayal, and H. Hwang, "View definition and generalization for database integration in a multidatabase

system" IEEE Trans. on Soft. Eng., SE-10, 6, (Nov.), pp. 628-644, 1984.
6. R. Elmasri, and S. Navathe, Fundamentals of Database Systems, Benjamin/Cummings: Redwood City, CA, 1989.
7. D. Fishman, et al., "IRIS: An object-oriented DBMS" ACM Trans. on Office Info. Syst., vol. 4, no. 2, April

1987.
8. J. Geller, A. Mehta, Y. Perl, E. Neuhold, and A. Sheth, Algorithms for Structural Schema Integration, Sec-

ond International Conference for Systems Integration, Morristown, NJ, pp. 604-614, 1992.
9. J. Geller, Y. Perl, P. Cannata, A. Sheth, and E. Neuhold, 'gt case study of structural integration" Proceedings

of the First International Conference on Information and Knowledge Management, Baltimore, M D, pp. 102-111,
November 1992.

10. J. Geller, Y. Perl, and E.J. Neuhold, "Structure and semantics in OODB class specifications," SIGMOD
RECORD, vol. 20, no. 4, pp. 40-43, 1991.

11. J. Geller, Y. Perl, E.J. Neuhold, and A. Sheth, "Structural schema integration with full and partial corre-
spondence using the Dual Model," Information Systems, vol. 17, no. 6, pp. 443-464, 1992.

12. M. Gyssens, J. Paredaens, and D.V. Gucht, "A graph-oriented object model for database end-users interfaces"
Proceedings of the ACM SIGMOD Conference, Atlantic City, pp. 24-33, 1990.

13. A. Goldberg, and D. Robson, Smalltalk-80: The Language and its Implementation, Addison Wesley: Reading,
MA, 1983.

14. M. Halper, J. Geller, Y. Perl, and E. Neuhold, '9, graphical schema representation for object-oriented databases"
First International Workshop on Interfaces to Database Systems (1DS-92), Glasgow, Scotland, 1992 (to be
published by Springer Verlag).

15. W. Kim, "Research direction for integrating heterogeneous databases," 1989 Workshop on Heterogeneous
Databases, Chicago, IL, December 1989.

STRUCTURAL INTEGRATION: CONCEPTS AND CASE STUDY 161

16. W. Klas, '9, metaclass system for open object-oriented data models" Ph.D. dissertation, Technical University
of Vienna, Austria, 1990.

i7. W. Klas, E.J. Neuhold, R. Bahlke, K. Drosten, P. Fankhauser, M. Kaul, P. Muth, M. Oheimer, T. Rakow,
and V. Turau, "VML design specification document," Tech Report, GMD-IPSI, Germany, 1992.

18. W. Klas, E.J. Neuhold, and M. Schrefl, "On an object-oriented data model for a knowledge base" In Research
into Networks and Distributed Applications--EUTECO 88, R. Speth (Ed.), North-Holland, 1988.

19. C. Lecluse, and P. Richard, "Modeling inheritance and genericity in object-oriented databases," LNCS #326,
ICOT, Japan, pp. 223-237, 1988.

20. E.J. Neuhold, J. Geller, Y. Perl, and V. Turau, 'gt theoretical underlying Dual Model for knowledge-based
systems," Proc. of the First Intl. Conf. on Systems Integration, Morristown, NJ, pp. 96-103, 1990.

21. E.J. Neuhold, Y. Perl, J. Geller, and V. Turau, "Separating structural and semantic elements in object-oriented
knowledge bases" Proc. of the Advanced Database System Symposium, Kyoto, Japan, pp. 67-74, 1989.

22. E.J. Neuhold, Y. Perl, J. Geller, and V. Turau, "The Dual Model for object-oriented data bases," New Jersey
Inst. of Tech., Tech Report CIS-91-30, 1991.

23. E Saltor, "On the power to derive external schemata form the database schema," Proc. of the 2nd 1EEE
Int. Conf. on Data Engineering, Los Angeles, CA, 1986.

24. A. Sheth, "Issues in schema integration: Perspective of an industrial researcher" presented at ARO Workshop
on Heterogeneous Databases, Philadelphia, PA, September 1991.

25. A. Sheth, and J. Larson, "Federated database systems for managing distributed heterogeneous, and autonomous
databases," ACM Computing Surveys, pp. 183-236, September 1990.

26. G.L. Steele, Jr., Common LISP--The Language, Second Edition, Digital Press: Bedford, MA, 1990.

