
Structural Schema Integration in Heterogeneous
Multi-Database Systems using the Dual Model

James Geller, Yehoshua Per1
Inst. for Integrated Systems, CIS and CMS
S J Inst. of Technology, Newark, NJ 07102

ABSTRACT: The integration of views and schemas is an
important part of database design and evolution to sup-
port complex and multiple applications sharing data. The
view and schema integration methodologies proposed and
used to date are driven purely by semantic considerations,
and allow integration of objects only if that is valid from
both semantic and structural view points. We discuss a
new integration method called structural integration that
has the advantage of being able to integrate objects that
have structural similarities, even if they differ semantically.
This is possible by using the object-oriented Dual Model
which allows separate representation of structure and se-
mantics. Structural integration has several advantages,
including the identification of shared common structures
that is important for physical database design and sharing
of data and methods (code reusability).

1 Introduction
As a solution to the important problem of database in-
tegration the concept of a federated database was intro-
duced by Hammer and McLeod [HM79] and Heimbigner
and McLeod [HM85]. A federated database system con-
sists of several component databases which can all be ac-
cessed through a Federated Database Managemet System
(FDBMS). The component systems continue to function as
autonomous databases, while at the same time the federa-
tion permits controlled access to data from all component
databases. A new layer in a heterogeneous environment,
called by Kim [K89] a “Heterogeneous Database Integra-
tor,” should not result in any changes to existing database
systems. Madnick et al. [M89] have refined this notion
into system non-intrusiveness and data non-intrusiveness,
meaning that neither system components should be added,
nor data in preexisting databases adapted. Sheth and Lar-
son [SLgO] present an autonomy oriented taxonomy of fed-
erated databases, in which

Erich Neuhold
Inst. for Integ. Publ. and Info. Systems

GMD, Darmstadt, FRG (Germany)

they distinguish between loosely coupled systems (e.g.
[RECG89]) and tightly coupled systems (e.g. TBCD871).

Many approaches to database integration rely on tra-
ditional data models, possibly with some extensions, e.g.
[EN84,SL88] use extended forms of the ER model. In con-
trast, it is believed by a number of researchers, that object-
oriented databases will aid in the problem of integrat-
ing heterogeneous components (e.g. [BM89,K89]). A p
proaches towards object-oriented integration methodolo-
gies have been reported, e.g., in [KDN90,BNPS89,SN88].

When talking about integration in the database con-
text there are two different viable approaches that can
be gleaned from the literature. The bottom-up approach,
which we refer to as database integration, essentially re-
quires that the possibly partial (local) schema of an
existing participating database is transformed into the
modeling language of the multi-database system. From
this transformed schema subsets are created as export
schemata to be integrated into one or multiple common
(federated) schemata. In the top-down approach, which
we refer to as view integration, the external schemata of
cooperating applications will have to be combined into one
or multiple common (federated) schemata to be connected
then to newly created databases. As a common name for
both approaches we will use the term schema integration.

We will show that the object-oriented data models can
be improved in their expressive power if the structural and
the semantic aspects of a schema can be handled sepa-
rately. Current schema integration methodologies allow in-
tegration of objects only if that is valid from both semantic
and structural view points. We discuss a new integration
method called structural integration that has the advan-
tage of being able to integrate objects that have structural
similarities, even if they differ semantically. We shall use
the Dual Model [NGPT90,NPGT89a,NPGT89b] that in-
corporates mechanisms for a separate treatment of struc-
tural and semantic modeling principles. The treatment of
the complementary case of semantic similarity and differ-
ent structure is deferred to a future paper. The structural
integration method is not intended to replace integration
by generalization, but to introduce an additional tool for
integration in cases where current techniques are not ap-
plicable.

TH0372-3/91/0000/0200$01 .OO 0 1991 IEEE
200

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on March 15,2010 at 10:29:49 EDT from IEEE Xplore. Restrictions apply.

2 Integration by Generaliza-
t ion

As an example environment which has been used widely
in the literature we will consider a purchasing department.
The activity of a purchasing department is composed of
two phases which can be identified with two separate di-
visions of the department. The first phase is “ordering”
which results in a purchase order. The second phase in-
volves receiving the goods and producing a receiving re-
port. To demonstrate the process of schema integration
we will present (next to each other) small parts of two
separate object-oriented database schemata, one created
for the ordering division and one created for the receiving
division. Issues that are not absolutely necessary will be
omitted.

A class definition is done with a language called VML
[FKRSTBP]. It consists of a class name, immediately fol-
lowing the keyword class, and a sequence of properties,
given in the order (1) relations, (2) attributes, (3) relation-
ships, and (4) methods. The difference between (1) and (3)
is that relations are part of the VML language and as such
predefined, while relationships are user-defined. Space lim-
itations prohibit a complete explanation of the VML lan-
guage. We rely on the intuitions of the reader. We also
need to limit ourselves to the crucial parts of the exam-
ple code. Specifically, we omit the classes purch-orders,
receiv-reports, and supplier.

ORDERING DB RECEIVING DB
class purch-order class receiv-report
member: purch-orders member: receiv-reports
a t t r ibu tes : attributes:

OrderNumber: INTEGER OrderNumber: INTEGER
Amount: INTEGER Amount: INTEGER
Unit: STRING Unit: STRING
Price: DOLLARTYPE Price: DOLLARTYPE
OrderDate: DATETP ReceivDate: DATETP

Item: catlg-item Item: receiv-item
Refer: receiv-report Refer: purch-order

relationships: relationships:

class catlg-item class receiv-item
a t t r ibu tes : attributes:

CatlgNumber: INTEGER CatlgNumber: INTEGER
Name: STRING Name: STRING

OfferedBy: supplier OfferedBy: supplier
Orders: purch-orders Reports: receive-reports

relationships: relat ionships:

In order to clearly demonstrate the advantages of struc-
tural integration we need to compare it to the cur-
rently popular strategy of integration by generalization
[LR88,AM87]. With the usual generalization mechanisms
the common properties of two or more classes (from differ-
ent applications or databases) are identified and collected
into a superclass where the original classes become sub-
classes and contain only those properties that are specific

to them. For database integration the subclasses would
come from the export schema to be mapped into the lo-
cal database schema. For view integration the subclasses
would come from the user views. In both cases the gen-
eralized superclass would be a member of the federated
common schema.

In the above example we can identify two sets of very
similar class definitions, i.e., (purch-order, receiv-report)
and (catlg-item, receiv-item). In the first case we could use
generalization to produce a superclass such as “purchas-
ing forms,” but we argue that this class is not a proper
semantic generalization of the two classes purch-order and
receiv-report. Each of these two classes expresses very dif-
ferent information and is handled (via methods not shown
here) differently. The generalization is actually only a
structural one, but we cannot find that fact without an
elaborate analysis of the semantics of the two classes at
the time when we want to utilize the unified schema.

In contrast, the two classes catlgitem and receiveitem
not only describe objects of similar structure but also of
similar semantics. Here they actually denote the same ob-
jects a t different phases of the purchasing process. Gen-
eralization allows us to define a class hierarchy of the fol-
lowing form and to save in the amount of specification
necessary.

class item
attributes:

CatlgNumber: INTEGER
Name: STRING

OfferedBy: supplier
relationships:

class catlgitem class receiv-item
roleof: item roleof: item
relationships: relat ionships:

Orders: purch-orders Reports: receiv-reports

The class hierarchy here abstracts both the semantics
of the classes catlg-item and receiveitem, as well as their
structural descriptions. In the integrated database there
may now exist instances of items that are neither ordered
nor received but just e.g. members of some supplier’s cat-

With generalization a single subclass hierarchy has to
be used for two purposes at the same time: (1) to factor-
ize common structure and behavior of classes and (2) to
express additional semantic relationships between classes.
This leads to problems when attempting to integrate struc-
turally similar but semantically dissimilar classes. But it
also leads to a situation that two classes modeling seman-
tically related objects can only be dealt with, if the objects
in question are structurally similar as well. The use of a
single hierarchy for two conceptually distinct connections
among specifications has resulted in inadequate conceptual
models. Therefore, it should be advantageous to separate
those two parts of the specification, and we have done so
in the Dual Model.

alog.

7

201

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on March 15,2010 at 10:29:49 EDT from IEEE Xplore. Restrictions apply.

3 Structural Integration Using
the Dual Model

LVe will now present a few of the highlights of the Dual
Yodel to give the reader a better understanding of its use-
fulness. In order to express that all instances of a class
have a common structure and behavior we consider them
to be of the same abstract data type. This type is called
the object type of that class. Hence, we associate with each
object class an object type. Different classes may have
the same abject type. A type-to-class mapping provides
the necessary interface between object types and corre-
sponding classes. An object type is determined by a list
of properties. There are four kinds of properties, and they
correspond to the already introduced class properties. At-
tributes contain values of a given type. Relationships con-
tain references to other object types. Methods are code
segments to be used on the instances of the object type.
Relations contain references to other object types and are
system defined. The object types can be organized in a
type hierarchy utilizing structural inheritance for proper-
ties [XPGT89b].

The classes themselves reflect the object instances and
the semantic constraints and semantic relationships be-
tween classes which can be formulated independently of
the object types. The classes are organized in a hierarchy
utilizing semantic inheritance [NGPT89b]. It is important
to point out that the terms s t ruc ture and semantkcs are
used differently than in other data models. A more exact
definition of our use can be found in [GPCSSI].

In the following examples the left column represents the
object types of the Dual Model, and the right column the
corresponding object class(es). In the left column defini-
tions are omitted, if there exists only one class for a given
type. The names of object types are printed with capital
letters, the names of object classes are printed with small
letters, properties have only the first letter capitalized.

Structural schema integration is based on identifying
structural similarities between the two object types which
represent the structural elements of the two corresponding
classes while disregarding the semantic aspects of the two
classes. In case these two object types are equal we have
a case of structural schema integration since we found a
common structural object type for these two classes. Such
integration will be possible even where schema integra-
tion by generalization is not possible due to semantic dif-
ferences between the classes. For reasons of space a full
formal definition of structural integration will be given in
[GPCSSl,GNPSI].

Returning to the example from Section 2 it turns out
that structural integration can be performed without com-
bining purch-order and receiv-report into a superclass.
Looking at the structure of purch-order and receiv-report
we realize that they are identical except for four differ-
ences. If we resolve these differences we can assign the
same object time, PURCHPORM, to purch-order and re-
ceiv-report. Both classes have member relations to the
corresponding set classes purch-orders and receiv-reports.

They have the relationship Item to catlg-item and re-
ceiveiteni. respectively. They have the relationship Refer
[Reference) wi th which they refer to one another and they
are different in the attribute Date.

The difference between purch-orders and receiv-reports
is settled if we define an object type PURCHPORMS
for both purch-orders and receiv-reports, which would
have as instances sets of objects from purch-order and
receiv-report respectively. The relationship Item can be
made to refer to an object type ITEM, ifl catlg-item
and receiv-item can be integrated by this object type
ITEM. The third difference is settled automatically
once we have an object type PURCH-FORM, because
in PURCH-FORM the relationship Refer will point to
PURCH-FORM itself. The actual classes purch-order
and receiv-report utilizing PURCHIORM will be spec-
ified in the semantic description in the right column of
our specification. This semantic description of each class
specifies the actual classes of the object types ITEM and
PURCH-FORM referred to by the relationships Item and
Refer, respectively. D a t e is transformed by the previ-
ously mentioned type to class mapping to OrderDate for
purch-order and to ReceivDate for receiv-report.

objecttype PURCH-FORM
member: PURCH-FORMS
attributes:

OrderNumber: INTEGER
Amount: INTEGER
Unit: STRING
Price: DOLLARTYPE
Date: DATETP

relationships:
Item: ITEM
Refer: PURCHIORM

class purch-order
objtp: PURCHTORM
member: purch-orders
attributes:

OrderDate: DATETP
relationships:
Item: catlgitem
Refer: receiv-report

class receiv-report
obj t p: P URCH-FO RM
member: receiv-reports
attributes:

ReceivDate: DATETP
relationships:

Item: receiv-item
Refer: purch-order

The object type PURCH-FORM expresses the struc-
tural integration of the two classes purch-order and re-
ceiv-report, thus achieving the desired savings in the spec-
ification. Now we show that both, catlgitem and re-
ceiv-item can actually have a common object type ITEM,
thus enabling the object type PURCHPORM as described
above. The relationship Forms is transformed by the type
to class mapping to “orders” and “reports.”

objecttype ITEM class catlgitem
at tributes: objtp: ITEM

CatlgNumber: INTEGER relationships:
Name: STRING Orders: purch-orders

relationships: class receiv-item
OfferedBy: SUPPLIER objtp: ITEM
Forms: PURCHPORMS relationships:

Reports: receiv-reports

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on March 15,2010 at 10:29:49 EDT from IEEE Xplore. Restrictions apply.

For both pairs of classes, (purch-order, receiv-report)
and (catlg-item, receiv-item) we had a case of
full structural correspondence, formally defined in
[GPCSSl,GNP91]. Also defined there is partial struc-
tural correspondence which permits structural integration
of classes with minor structural differences by one single
object type.

Notice that our example has shown that it is sometimes
not possible to perform structural integration for a single
pair of classes, but that two interrelated subsets of classes
need to be analyzed to allow for structural integration.

In our example we have shown structural integration
as an ad hoc method. In [GNPSI] we will elaborate on
a methodology for this process which tends to become
quite complicated for large databases. This methodology
is based on using a labeled graph model of the object-
oriented database schema, where classes and object types
are represented as nodes, and relations and relationships
as edges, and structural integration makes use of graph
isomorphisms.

In this paper we have introduced a new technique called
structural integration. We have demonstrated that this
technique is capable of integrating classes with similar
structure and different semantics, for which integration by
generalization is not applicable. Thus, structural integra,
tion can serve as an additional integration tool besides
generalization.

REFERENCES:
[AM871 Andrews, T. and Morris, C., “Combining Lan-
guage and Database Advances in an Object-Oriented De-
velopment Environment”, Proceedings of the OOPSLA
Conference, 1987.
[BM89] Brodie, M. L., and Manola, F., Database Manage-
ment: A Survey. Readings in Artificial Intelligence and
Databases, edited by J. Mylopoulos and M. L. Brodie,
Morgan Kaufmann Publishers, San Mateo California,
1989.
[BNPS89] Bertino, E., Negri, M., Pelagatti, G., Sbattella,
L., An Object-Oriented Approach to the Interconnection
of Heterogeneous Databases. 1989 Workshop on Heteroge-
neous Databases, Sponsored by NSF, Northwestern Uni-
versity and IEEE-CS, 1989.
[EN841 Elmasri, R., and Navathe, S., “Object Integration
in Logical Database Design”, Proceedings of the 1st Intl.
Conference on Data Engineering, 1984.
[FKRST89] Fischer D., Klas, W., Rostek, L., Schiel, U.,
Turau, V., “VML - The VODAK Data Modelling Lan-
guage”, GMD-IPSI, Technical Report, Dec. 1989.
[GPCSSI] Geller, J., Perl, Y., Cannata, P., and Sheth,
A. “Structural Integration using the Object-Oriented Dual
Model”, Submitted for Publication.
[GNPSI] Geller, J., Neuhold, E.J., and Perl, Y. “Full
and Partial Correspondence in Structural Schema Integra-
tion”, In preparation.
[HM79] Hammer M., and McLeod D., “On Database Man-
agement
System Architecture”, Tech Report, MIT/LCS/TM-l41,

Massachusetts Institute of Technology, Cambridge, MA,
1979.
[HM85] Heimbinger, D., and McLeod, D., A Federated
Architecture for Information Management, ACM Trans.
on Office Information Systems, 3,3, 253-278, 1985.
[K89] Kim, W., Research Direction for Integrating Het-
erogeneous Databases. 1989 Workshop on Heterogeneous
Databases, Sponsored by NSF, Northwestern University
and IEEE-CS.
[KDNSO] Kaul, M., Drostern, K., and Neuhold, E.,
“Viewsystem: Integrating Heterogeneous Information
Bases by Object Oriented Views”, In Proceedings of the
6th Intl. Conf. on Data Engineering, (Los Angeles, CA),
1990.
[LR88] Lecluse, C. and Richard, P., “Modeling Inheritance
and Genericity in Object-Oriented Databases”, LNCS
#326, ICOT 1988, p. 223-237.
[M89] Madnick, et al. CISL: Composing Answers from
Disparate Information Systems. 1989 Workshop on Het-
erogeneous Databases, Sponsored by NSF, Northwestern
University and IEEE-CS.
[NGPTSO] Neuhold, E. J., Geller, J., Ped, Y., Turau, V..
“A Theoretical Underlying Dual Model for Knowledge-
Based Systems”, The First International Conference on
Systems Integration, Morristown, NJ, 96-103, 1990.
[NPGTSSa] Neuhold, E. J., Perl, Y., Geller, J., Turau, V.,
“Separating Structural and Semantic Elements in Object-
Oriented Knowledge Bases”, Advanced Database System
Symposium, Kyoto, Japan, 1989, 67-74.
[NPGT89b] E. Neuhold, Y. Perl, J. Geller, V. Turau, “The
Dual Model for Object Oriented Knowledge Bases”, New
Jersey Institute of Technology, Tech Report CIS-89-23,
submitted for publication.
[RECG89] Rusinkiewicz, M., Elmasri, R., Czejdo, B., Geo-
rakkopoulous, D., Karabatis, G., Jamoussi, A., Loa, L.,
and Li, Y., “OMNIBASE: Design and Implementation of
a Multidatabase System.” In Proceedings of the 1st An-
nual Symposium in Parallel and Distributed Processing,
Dallas, Texas, 162-169, 1989.
[SL88] Sheth, A. P., and Larson, J. A., “A Tool for In-
tegrating Conceptual Schemas and User Views,” Proceed-
ings of the Fourth Intl. Conf. on Data Engineering, Los
Angeles, CA, February 1988.
[SL90] Sheth, A. P., and Larson, J. A., “Federated
Database Systems for Managing Distributed, Heteroge-
neous, and Autonomous Databases”, ACM Computing
Surveys, 1990, 183-236.
[SN88] Schrefl, M. and Neuhold, E. J., “A Knowledge-
based approach to overcome structural differences in
object-oriented database integration”, Proceedings of the
IFIP Working Conference on The Role of Artificial In-
telligence in Database and Information Systems, Canton,
China, North Holland Publ. Co., 1988.
[TBCD87] Templeton, M., Brill, D., Chen, A., Dao, S.,
Lund, E., McGregor, R. and Ward, P., “Mermaid: A
Front-end to Distributed Heterogeneous Databases, Pro-
ceedings of the IEEE, 695-708, April 1987.

203

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on March 15,2010 at 10:29:49 EDT from IEEE Xplore. Restrictions apply.

