Information Systems Vol. 17, No. 6, pp. 443-464, 1992 : 0306-4379/92 §5.00 +0.00
Printed in Great Britain. All rights reserved Copyright © 1992 Pergamon Press Ltd

STRUCTURAL SCHEMA INTEGRATION WITH FULL AND
PARTIAL CORRESPONDENCE USING THE DUAL MODEL

JAMES GELLER,! YEHOSHUA PERL,' ERicH NEUHOLD? and AMIT SHETH®

'Institute for Integrated Systems, CIS Department and Center for Manufacturing Systems, New Jersey
Institute of Technology, Newark, NJ 07102, U.S.A.

Mnstitute for Integrated Publication and Information Systems, GMD, Darmstadt, Germany
3Bellcore, 444 Hoes Lane, Piscataway, NJ 08854, U.S.A.

(Received 10 July 1991; in final revised form 6 August 1992)

Abstract—The integration of views and schemas is an important part of database design and evolution
and permits the sharing of data across complex applications. The view and schema integration
methodologies used to date are driven purely by semantic considerations, and allow integration of objects
only if that is valid from both semantic and structural view points. We discuss a new integration method
called structural integration that has the advantage of being able to integrate objects that have structural
similarities, even if they differ semanticaliy. This is possible by using the object-oriented Dual Model which
allows scparate representation of structure and semantics. Structural integration has several advantages,
including the identification of shared common siructures that is important for sharing of data and
methods,

Key words: Object-oriented databases, database integration, schema integration, view integration,
structure and semantics, Pual Model, structural integration

1. INTRODUCTION

In most enterprises, multiple database systems have been acquired or built over the last several
years. With the advent of easy data communication and powerful workstations many applications
in these enterprises are now being extended to interoperate and to utilize several of these databases.
However, as with other aspects of systems integration [1,2] the process of accessing and
manipulating multiple databases should not be left to the application alone.

An important approach to database integration was introduced in the form of federated
databases by [3] and later on by [4]. Sheth and Larson [5] present an autonomy-oriented taxonomy
of federated databases, in which they distinguish between loosely coupled systems (e.g. [6]) and
tightly coupled systems (¢.g. [7]). Many approaches to database integration rely on traditional data
models, possibly with some extensions; e.g. [8, 9] use extended forms of the ER model. In contrast,
it is believed by a number of researchers that object-oriented databases will aid in the problem of
integrating heterogeneous components {e.g. [10, 11]). Approaches towards object-oriented inte-
gration methodologies have been reported, e.g. in [12, 13, 14].

For our purpose we want to restrict the scenario to two aspects of integration.

1. Multiple autonomous databases will have to cooperate with respect to data redundancy,
data integration, data consistency and data exchange. For expressing these aspects we have
to build in a bortom-up fashion database views that integrate the different database schemas
and make them available in a homogenized (symbolic or semantic) fashion to the
application programs.

2. In multiple applications, each will require its own subset (view) of the data from the
underlying database. On the other hand, many of these data will be shared between
cooperating applications. In order to achieve proper behavior in this sharing we will have
to integrate conceptually in a top-down fashion at least some of these application data into
a common (view) schema of the database.

We may map these two scenarios into the five level architecture proposed in [5] and illustrated
in Fig. 1. The bottom-up approach essentially requires that the (local) schema of a participating
database is at least partially transformed into the modeling language used for the multi-database

443

Ekta Shah

444 . James GELLER ef af.

External Schema > -« .
Federated Schema

. Extermnal Schema
Federatcc@

Export Schema

Export Schema

Export Schema

Local Schema) e Local Schema
Component Database : Component Database

Fig. 1. Five level schema architecture (from [5]).

system. From this compound schema, subsets will be created as export schemas to be integrated
into one (or many} common (federated) schema. In this paper we shall use the term darabase
integration when we discuss the bottom-up approach.

In the top-down approach the external schemas of cooperating applications will have to be
combined into the common schema. In this paper we will use the term view integrarion when we
describe the top-down process of combining the database needs of different cooperating appli-
cations into a common schema. As a common name for both operations, we will use the term
schema integration.

Of course, in general the top-down approach and the bottom-up approach will be utilized
together to arrive at proper common schemas. In addition it should be clear that for each of the
external and common schemas additional data (schema information and instance values) that
cannot be placed into the autonomous component databases will have to be kept. Different claims
have been made by different systems on whether there should exist a single central database system,
a single distributed database system or multiple database systems for this purpose. In PEGASUS
[15] the choice has been made for using as the default database system the database of the individual
user (group). In VODAK [16] a distributed homogeneous object-oriented database system is used.

When multiple databases are developed independently, it is unavoidable that certain incompat-
ibilities will make the integration process difficuit. As has been pointed out in [14], naming
differences, structural differences and semantic differences may occur between the different
databases. In [17] it was shown that similar difficultics arise in view integration for cooperating
applications. Already in early integration work, commeon schemas were not expressed in a relational
database language but, for instance, in the semantically richer model DAPLEX/ADAPLEX [18].
Similarly, many later approaches were either based on ER models [8] or object-oriented data
models [12]. Of course, if the relational data models would be expanded as indicated in the Third
Generation Database Manifesto [19] such a rich relational model could well form the semantic
integration tool required here. The process of integration in all of these models is based on one
hand on semantic generalization principles derived from Artificial Intelligence and on the other
hand on principles of structural inheritance derived from object-oriented programming languages.

In this paper we will show how a gain in expressive power beyond the above modeling tools can
lead to better structural and semantic integration of the different schemas and schema components,
We shall use the Dual Model [20, 21, 22, 23] that separates sfructural and semantic features of a
database schema. (Different data models assign different meanings to the terms structure and
semantics, and we will later clarify the distinctions made by the Dual Model.)

Structural schema integration 445

In the Dual Model we define for each class an object type. The object type captures the structural
properties of a class. The semantic propertics are reflected in the class specification. One can say
that the structural properties have been extracted from the class specification, yielding the
corresponding object type specification. When two classes are similar in their structure, we can use
the same object type for both of them. In the body of this paper more details of the Dual Model
will be supplied, whenever necessary.

An interesting effect of the separation of structure and semantics in the Dual Model is that four
possibilities exist with respect to similarity between two database schemas.

1. Two schemas may be semantically as well as structurally similar. In this case, standard
generalization-based integration tools can be used successfully.

2. Two schemas may be semanticaily as well as structurally different. In this case, no
integration is possible.

3. Two schemas may be semantically different but structurally similar. In this case, general-
jzation-based integration fails; however, structural integration, the topic of this paper, is
possible. This case is of considerable interest for the top-down process of (view) integration.

4. Finally, there is the mirror case of the previous case, where two schemas may be
semantically similar but structurally different. While this case is of considerable interest in
bottom-up (database) integration, we have to defer its discussion to future work.

Structural integration provides the following significant advantages: (a) extended range of
solvable integration problems; (b) simplified specification of schemas; (c) code sharing; (d)
simplified understanding of schemas; and (e) reusable query optimization.

Extended range of solvable integration problems: structural integration permits in many cases to
integrate classes which cannot be integrated with standard generalization-based techniques. This
advantage has been the motivating factor for the inception of structural integration as a technique.

Simplified specification: the structural integration process allows sharing of the specification of
properties (e.g. attributes). The shared type definitions act as templates that can be reused to define
multiple classes that are structurally similar (and hence share a type definition). This advantage
is similar to the advantage conventionally achieved by integration by generalization.

Code sharing: among the properties that may be shared are also methods which are central
elements of object-oriented class specifications. Therefore, structural integration amounts to a kind
of code-reusability.

. Simplified understanding of schemas: this is a cognitive advantage for a user that is faced with
the need to understand two or more schemas. The result of structural integration is a new schema
that captures the important connectivity features of the schemas it integrates. This integrated
schema is always smaller than the sum of the sizes of the schemas it integrates, and ideally is
comparable in size to the largest of the integrated schemas. The user can therefore get a quick
understanding of the database by first studying the integrated schema and then applying his
understanding to the two or more original schemas. '

Reusable query optimization: much of DBMS query optimization is based on syntactic infor-
mation. A query optimization strategy can be developed first for a structural subschema, and then
it can be applied to the semantic schemas that share the structural subschema.

This paper is the second in a sequence of two papers introducing structural integration. The first
paper [24] is application-oriented and demonstrates the occurrence of structural integration in an
actual industrial database. The theory in [24] is limited to full structural correspondence and a
special case of partial correspondence which were found to be sufficient for almost all problems
of the application. In this paper, we provide the complete theoretical framework of full and partial
structural correspondence.

Section 2 supplies additional material necessary for demonstrating structural integration. An
example domain is introduced in Subsection 2.1. Subsection 2.2 discusses details of the Dual Model
and of the textual representation of the Dual Medel. A graphical notation for the Dual Model will be
presented in Subsection 2.3. Using this graphical notation, the example domain will be presented
formally. '

Section 3 discusses structural integration. Subsection 3.1 formally treats the mappings between
object types and classes which are a central issue of the Dual Model and play an important role
in structural integration. Subsection 3.2 formally defines full structural correspondence and partial

446 JaMES GELLER ef al.

structural correspondence and discusses integration for both these cases. In Section 4 we discuss
the question of how one could decide which classes are possible candidates for structural
integration. Section 5 contains our conclusions. A preliminary short version of this paper appeared
in [25]. _ :

2. THE DUAL MODEL REPRESENTATION OF TWO DATABASES

2.1. Purchasing department and inventory control

In order to have a concrete example available, an application domain is now introduced
consisting of a purchasing department database and an inventory control database. In our very
simplified model, the activity of the purchasing department is to issue a purchase order to a
supphier. The department therefore needs a database containing information about all purchase
orders, items to be purchased and suppliers.

The inventory contro! department issues receiving reports. Its database contains information
about items, receiving reports and suppliers. However, the items that are received are not
necessarily the same as those which were ordered, because suppliers sometimes deliver an item that
they consider as equivalent, e.g. a new model of a device that replaces an older model.

To demonstrate the process of schema integration, two separate object-oriented databases, one
for the purchasing department and one for the inventory control, will be introduced in this section
and integrated in Section 3. Before that, a few general comments about the Dual Model and its
graphical notation will be made in the next.two subsections.

2.2, The Dual Model and its notation

The characteristics of object-oriented database systems are, among others, the notions of objects
and classes. A class can be regarded as a container for objects which are similar in their structure
and their semantics in the application. :

To describe the structure and semantics of objects, the class uses the following properties.

1. Attributes—contain printable values of a given data type.t

2. Relationships—contain pointers to other classes. Relationships are user defined.

3. Generic relations-—contain pointers to other classes. They differ from relationships in that
they are predefined in the system. Such relations are for instance roleof and setof.

4. Methods—specify operations which can be applied to instances of a given class. A method

is either an access path method or a segment of code in the host language. The second type
is referred to as an operation and is usually not shown in the database schema. In this paper
we concentrate on access path methods.
An access path method is a chain of relationships or generic refations. This chain may be
terminated by an attribute. It permits the retrieval of an attribute that may be relevant to
an instance of a class, but that is stored with a different class. An access path method may
be visualized as follows:

Relationship) Relationship, Relationship; Relationship, _ | Attribure
class) ————— class, ——— class, e » class, — result.

In the path from class, to class, the relationship Relationship, is said to be at position k
for 1<k <n For a complete and formal definition of access path methods see [21].

In many systems, (e.g. ONTOS [26], ObjectStore [26], O, [26, 27} and others [28, 29, 30, 31, 32])
the subclass hierarchy is used for two purposes at the same time: (1) to factorize common structure
and behavior of classes and (2) to express additional semantic relations between classes. This leads
to a situation that two classes modeling semantically related objects can only be represented
correctly, if the objects in question are structurally related as well,

- In the Dual Model structural information and semantic information are described separately.
This results in improved modeling capabilities. To clarify this claim, it is necessary to summarize
the definitions of structure and semantics in the Dual Model [22].

tSome systems use the term properties limited to what we refer to as attributes. This explicit definition will hopefully help
to avoid confusion.

Structural schema integration 447

operation .operation

refurn
item

Report

receiving

ICCBlVlng
TepOrts

recejived . F:atalog
item

catalog
items

Inventory Control Purchasing Department
Schema Schema

Fig. 2. Two subschemas of the application domain.

An aspect of a specification is considered structural if either (1) it is composed of names, types
and logical or arithmetic operations or (2) it is decidable whether this aspect is consistent with the
mathematical representation of the class(es) it connects to. An aspect of a specification is considered
semantic if either (1) it refers to actual instances of objects in the application or (2) it is not decidable
just based on the mathematical representation of the class(es) it connects to, whether this aspect
properly describes the connection between the corresponding real world objects and their features.
Note that the names of a property are considered semantic in other models (e.g. ER models) but
are not considered semantic in the Dual Model.

As just mentioned, structural and semantic information are represented separately. Structural
information is represented in an object type. Semantic information is represented in the correspond-
ing object class (or, in short, class). Every class has a unique associated object type, but one object
type can function as the object type for several structurally identical classes.

An object class in the Dual Model is either specified by code or by a graphical notation. The
graphical notation will be introduced in Subsection 2.3, but the reader may want to use Fig. 2
already at this point. In a code specification, the term class precedes the name of an object class.
The properties follow in this order: (1) generic relations, (2} attributes, (3) relationships and (4)
methods. Keywords, such as attributes, separate the different property sections. Property names
(except for generic relations) have the first letter capitalized. Class names appear in small letters.
As an example, we consider the class purchase_order from our application domain:

class purchase order
categoryof: operation
memberof: purchase_orders
attributes:

448 . JAMES GELLER et gl

OrderNumber: INTEGER

Quantity: INTEGER

Unit: STRING

Cost: DOLLARTYPE

OrderDate: DATETYPE

OrderingDepartment: STRING
essential: OrderNumber
relationships:

Item: catalog item
methods:

Supplier():

Item — catalog_item:

OfferedBy — supplier

The attributes of a purchase_order are OrderNumber, Quantity, Unit, Cost, OrderDate and
OrderingDepartment. There is a single relationship Item and a single method Supplier.

The Dual Model contains two kinds of specialization generic relations between classes. The first
one is categoryof which relates the specialized class to the more general class when both are in the
same context. The second is roleof which relates the specialized class to the more general class when
the two are in different contexts. The term context describes semantic information since it cannot
be decided mathematically. whether two entities occur in the same context. Thus, roleof and
categoryof are semantic generic relations. The above class purchase_order is categoryof the class
operation. Therefore, a purchase_order is an operation, and both purchase_order and operation
occur in the same context.

Whenever we need a relationship to refer to a set of objects, we can define a class to represent
this set. The connection between the set class and the member class is expressed with the setof and
memberof generic relations. We now present the class purchase_orders which is the set class of the
class purchase_order. '

class purchase_orders
setof: purchase order
attributes:
NurnberofOrders: INTEGER
GroupPurpose: STRING
relationships:
Item: catalog item

The class purchase..orders refers with a setof to purchase_order, and the class purchase_order
refers with a memberof'to purchase_orders. So far we have only shown the “class-side” of the Dual
Model. We now present an object type, namely FORM.

objecttype FORM
subtypeof: OPERATION
memberof: FORMS
attributes:
OrderNumber: INTEGER
Quantity: INTEGER
Unit: STRING
Cost: DOLLARTYPE
FormDate: DATETYPE
OrderingDepartment: STRING
relationships:
Item: ITEM
methods:
Supplier():
Item — ITEM:
OfferedBy — SUPPLIER

Structural schema integration 449

Object types look similar to classes, but they are preceded by the term objecttype and their names
are capitalized. A subtypeof generic relations connects a refined object type to a more general object
type, enabling inheritance of the properties of the general object type to the refined object type.
The object type FORM is a subtypeof the object type OPERATION (not shown) and as such
inherits, e.g. all the aitributes from OPERATION.

In [21] we show that if a class has a categoryof relation, then the corresponding object type has
a subtypeof relation, while for a roleof relation this may or may not be the case. Thus, whenever
we specify a class for which no object type is given explicitly and which has a roleof that corresponds
to a subtypeof, we add to the roleof specification an additional (subtypeof) annotation.

To summarize the specialization relations of the Dual Model, eategoryof and roleof are semantic
(occur in classes only) while subtypeof is structural (occurs in object types only). The setof and
memberof generic relations were previously introduced for classes, but corresponding structural
generic relations exist also. For instance, the object type FORM is memberof the object type
FORMS. .

' As was seen in the two code examples, both object types and classes contain the same kinds of
properties (attributcs, relationships, methods, generic relations), however, with different interpret-
ations. The specification of properties for both object types and classes might appear burdensome,
but it is not always done explicitly. When there is only one class for a given object type, only the
class needs to be specified, and the object type is defined implicitly through defaults. In a schema
using the Dual Model, an object type is only declared explicitly when there are several classes
corresponding to it. The specification of these classes follows the specification of the object type
and describes the semantic aspects of each class. N

The representation of a class may contain two kinds of semantic constraints, The first constraint
is that of essential properties. The existence of an object is conditioned on the existence of
its essential properties. An instance of a class can only exist if the values of its essential proper-
ties are different from NIL. In the class purchase_order, there is‘an essential attribute Order-
Number. '

The second constraint is that of a dependent relationship. If the existence of an object depends
on the existence of another object, we can model this with a dependent relationship. Suppose an
object has several dependent relationships (meaning that several objects are dependent on the
existence of this object), then the deletion of the object has the consequence that the dependent
objects are also deleted. The semantic constraints do not play a role in structural integration. They
occur in the class but not in the object type. This permits the integration of two classes that differ
in their semantic constraints, by one common object type. S

The previously shown classes purchase_order and purchase orders, as well as the following class
catalog_item form the backbone of the schema of the purchasing department.

class catalog_item
memberof: catalog_items
attributes:
CatalogNumber: INTEGER
Name: STRING
Price: DOLLARTYPE
‘Description: STRING
essentiak: CatalogNumber
relationships:
OfferedBy: supplier
(dependent) Orders: purchase_orders

The relationship Orders (in catalog item) to purchase_orders has to be modeled as a dependent
relationship since you cannot order a nonexistent item. An instance of the previous class
purchase_orders represents all the purchase orders issued for a specific instance of catalog item,
referenced by the relationship Item (in purchase_orders).

The class purchase_order also contains an access path method, Supplier. Access path methods
defined in classes are constructed from pairs of a property and the class that it refers to. Arrows
(—) separate pair elements, while colons (:) separate consecutive pairs. ‘

450 . JaMEs GELLER et al.

The access path method Supplier retrieves the supplier of a given order. It uses the relationship
Item to retricve the correct catalog item and then the relationship OfferedBy, defined in
catalog.item, to retrive the supplier. The Supplier method climinates the need for explicitly
maintaining a relationship Supplier in the class purchase_order and at the same time guarantees
that the supplier referred to in the order is actually the supplier of the catalog_item.

The object type FORM contains a corresponding structural method, also called Supplier. In a
structural method, pairs consist of properties and object types. Object types will be introduced in
more detail as integration tools in Subsection 3.3.

A complete example of Dual Model code will be shown in the Appendix only. It is necessary
to supply an interface connecting the corresponding object type and object class(es). This interface
is realized by two features. The first one is that for each class we have a declaration of its object
type. This is expressed by the objecttype keyword in the class definition. The second is a mapping
M from the set P of properties of the object type to the set Q of properties of the class. This
mapping is a one-to-one function from P onto Q. It identifies for each property of the object type
the corresponding property of the class. This mapping will be discussed in detail in Section 3.

We conclude this section by showing the classes of the inventory control database that will be
integrated with the already introduced classes of the purchasing department. The integration wilt
be performed by finding common object types for pairs of classes.

Inventory control

class receiving_report
categoryof: operation
memberof: receiving_reports
attributes:
OrdNum; INTEGER
DeliveryDate: DATETYPE
Quantity; INTEGER
UnitofMeasurement: STRING
ReceivingDepartment: STRING
Cost: DOLLARTYPE
esseatial: OrdNum
relationships:
OrderedGood: received_item
methods:
Source():
OrderedGood — received_item:
DeliveredFrom — supplier

Note that each receiving report is limited in our simplified example to a given quantity of only
one item. (The same was true for the previous class purchase_order.) The method Source has a
similar structure to the method Supplier in the class purchase_order. An instance of the following
class receiving-reports represents all the reports for a specific instance of received_item. However,
deleting an old instance of received_item does not necessarily imply the deletion of a receiv-
ing report of this item. Thus the Reports relationship in received_item is not dependent, as opposed
to the Orders relationship in catalog_item.

_class receiving_reports
setof: receiving report
attributes:
Quantity: INTEGER
GroupPurpose: STRING
relationships:
Item: received_item

class received_item
attributes:

Structural schema integration 451

CatalogNumber: INTEGER

Price: DOLLARTYPE

Name: STRING

Damaged: BOOLEAN
relationships:

DeliveredFrom: supplier

Reports: receiving reports

2.3. Graphical notation

The details of the two departments are explained using a graphical notation for object-orienied
databases that was introduced in [33]. Classes are represented as boxes. Heavy line arrows represent
generic relations such as roleof and categoryof. Thin arrows represent relationships between classes.
A box with a double frame represents a set class. It is drawn to share one corner with the box that
represents its member class. Dependent relationships are marked with a double-headed arrow. An
access path method is shown as a dotted thin arrow from the class where it is defined to the class
where the path ends.

For example, in Fig. 2 (right side), which represents the purchasing department, the box
purchase order represents the class of all purchase orders. It shares a corner with the box
purchase_orders which is the class of all sets of purchase orders. Every purchase_order is categoryof
an operation, which means that both classes occur in the same real-world context. The class
catalog_item has a dependent relationship Orders to the class purchase order. The class pur-
chase_order has an access path method Supplier that ends at the class supplier. Figure 2 (left side)
represents the inventory control. _

The details and exact conventions as well as the motivations of the graphical representation
language can be found in {33], but the information given in this subsection should be sufficient for
getting an understanding of the domain. Both sides of Fig. 2 show only small subsets of re-
 alistic schemas. Parts of these subsets were previously introduced as code examples in Subsection

2.2.

3. STRUCTURAL INTEGRATION

3.1. The mapping between types and classes

As pointed out previously, it is necessary to supply an interface connecting the corresponding
object type and object class(es). This interface is implemented by two features. The first one is that
for each class we have a declaration objecttype: in the class definition. The second is a mapping
M from the set of P of properties of the object type to the set O of properties of the class. This
mapping is a one-to-one function from P onto Q and was first introduced in [34]. It identifies for
‘each property of the object type the corresponding property of the class. In many cases, an object
type A has only one class ¢ associated. In that case, we implicitly define the object type A so that
the mapping satisfies a set of conditions that will be described after introducing the following
notational conventions.

Every property can be viewed as a pair, consisting of the name of the property and the name
of the type (or class) this property is referring to. For instance, in the previously shown class
received item, the property Price could be viewed as the pair (Price, DOLLARTYPE).

The function “selector” returns the first element of any pair.

selector((u, v)) = u.
For simplicity we will omit the inner pair of parentheses.
selector(u, v) = u.
For example,

selector((Price, DOLLARTYPE)) = selector(Price, DOLLARTYPE) = Price.

452 James GELLER et ol

The function “datatype™ expects as argument a pair that describes an attribute. It returns the
second element of the pair. It is undefined (L) for any other kind of argument.

v if(u, v) describes an attribute

datatype(y, v} = { L otherwise

The following functions are similar:

class(u, v) = {

v if (4, v) describes a relationship or generic relation defined in a class
1 otherwise

v if (4, v) describes a relationship or generic relation defined in an object type

objecttype(u, v) = {J_ otherwise

u if (w, v) describes a generic relation

relationname(y, v) = { L otherwise

We now enumerate the conditions for the existence of a mapping between an object type and
an object class. This mapping provides the interface from an object type to the corresponding class.
This interface enables the specification of the actual classes referred to implicitly in the object type
description. An understanding of these conditions is necessary for understanding the algorithm
(Subsection 3.2.1) which constructs an object type that structurally integrates two or more classes.

Conditions for mapping M from object type to one class :
The conditions for the existence of a mapping M from an object type A to a class a are:

1. The corresponding properties of the object type and the class have the same selector,

2. Corresponding attributes have the same data type.

3. For every relationship r defined in an object type 4 and pointing to an object type B, there
must exist a corresponding relationship r defined in the class @. This relationship r of the
class ¢ refers to a class b that must have an object type B.

4. For every subtypeof generic relation » from an object type A to an object type B, the class
a has either a categoryof or a roleof relation to a class b having an object type B, but there
might be no connection at all.

5. For every memberof (setof) generic relation r from an object type 4 to an object type B,
the corresponding r is a memberof (setof) relation from the class @ to a class b having the
object type B.

6. For every access path method m (as defined at the beginning of Subsection 2.2) from an
object type 4 referring to a sequence of object types B, B,, ..., B,, the access path method
m of the class a refers to a sequence of classes b, b,, . . . , b, such that the class b,, 1 <i <k,
has the object type B;, 1 </ < k. Furthermore, let r; be the relationship or relation of B,
such that r;(B;) = B, |, 1 <i <k, and let s; be the relationship or generic relation of 4, such
that s,(b;) = b;.,, 1 <i<k, then the mapping from the properties of B; to the properties
of b; must satisfy a mapping M'(r;) = 5;. This mapping M is identical to M only for k = 1.
For all other generic relations (relationships) in the path, M’ is dependent on the class in
which the generic relation (relationship) is defined.

Consider now the case where two classes a, and a, have the same object type A. Let P be the
set of properties of 4. Let ¢ and Q, be the sets of properties of ¢, and a,, respectively. In such
a case, we have the mappings M,: P — Q, and M,: P — (, satisfying the following conditions. Let
M,(p) = q, and M,(p) = gq,, where p € P, g, € Q, and g,€ Q,. If there are k classes @, 4;, ..., 4
with the same object type then the same ideas apply, making use of & mappings.

Conditions for mappings from object type to several classes

1. The properties p, ¢, and ¢, should be of the same kind, i.e. they all should be attributes,
or they all should be relationships, or they all should be methods, or they alt should be
generic relations.

tWith a subtypeof annotation

Structural schema integration 453

2. The selectors of the properties p, g, and ¢, are not necessarily identical; however, if

selector(g,) = selector(g,), then selector(p) = selector(q,).

Let p, g, and g, be attributes. Then datatype(p) = datatype(q,) = datatype(q,).

4. Let p be a relationship from an object type A to an object type B, g, be a relationship from
a class @; to a class b, and ¢, be a relationship from a class a4, fo a class b,. Then b, and
b, should have the same object type B.

5. Let p be a subtypeof relation from an object type A4 to an object type B. Then the relations
g, from a, and g, from a, are either categoryof or roleof relations to the classes b, and b,,
respectively, such that 5, and b, have the same object type B, or ¢, and g, might be
undefined.

6. Let p be a memberof or a setof relation from an object type 4 to an object type B. Then
the relations ¢, from a, and g, from a, are memberof or setof relations to the classes b, and
b,, respectively, such that d, and b, have the same object type B.

7. Let p be any relationship or generic relation at position { in an access path method from
an object type A to an object type B, so that p effectively connects two object types K and
L. Then g, connects two classes &, and /;, and g, conncets two classes &, and £, such that
k, and k, have the object type K and /, and /, have the object type L, and both ¢, and g,
are at position i in their respective access path methods.

el

3.2, Formal conditions for structural integration

Consider two sets of classes C={a,,a,,...,4a,} and D={b,, b,,...,b,} of equal cardinality
|Cl =D, i.e. both sets contain the same number of classes. An example of such a pair of sets are
the classes in the grey block of Fig. 2 (right side) within the PURCHASING_DEPARTMENT
schema and the classes in the grey block within the INVENTORY..CONTROL schema in Fig. 2
(left side). Structural integration between the sets C and D is possible if there exists a correspon-
dence between C and D such that for every two corresponding classes @ e C and b €D, one can
construct a common object type. There are two cases of correspondence, full structural correspon-
dence (Subsection 3.2.1) and partial structural correspondence (Subsection 3.2.2).

3.2.1. Integration of classes with full correspondence. In order to construct a common object type
for two corresponding classes and b, there must exist a full structural correspondence between
these two classes, i.c. between their sets of properties. Full correspondence for attributes means that
their data types must be identical. Full correspondence for relationships means that the referenced
classes have to be of the same object type. For both attributes and relationships, the selectors may
be different. Fully corresponding generic relations must be identical and refer to classes of the same
object type. (For exceptions see below.)

Formally, let the class a(b) have a set {x;}{({y;}) of attributes, a set {r;}({s;}} of relationships,
a set {m;}({n;}) of access path methods and a set {g;}({#}} of generic relations to other classes.
The classes @ and b stand in full structural correspondence if and only if:

1. There exists a one-to-one correspondence between the sets of attributes {x;} and {y,} such

~ that if x, corresponds to y,, then datatype(x;) = datatype(y,).

2. There exists a one-to-one correspondence between the sets of relationships {r,} and {s,} such
that it must be possible to construct a common object type for class(r;) and class(s;).

3. There is a one-to-one correspondence between the sets of generic relations {g,} and {#;}
such that (1) relationname(g,) = relationname(#,) or both relation names are members of
the set {roleof, categoryof’}; and (2) it must be possible to construct a common object type
for class(g;) and class(h;).

4. There exists a one-to-one correspondence between the sets of access path methods {m,} and
{n;} such that if m,is a method that defines a path going through the sequence a,, a,, .. ., a,
of classes, and n; defines a similar path &,, b,, . .., b, of classes, then the following conditions
hold: (a) s = ¢ and (b) it must be possible to construct 2 common object type for o; and b,.
Furthermore, consider the case that g, and b, have the same object type, say A,. Let g,
and b, have the same object type, say 4. ,; and let p,(g;) be the property connecting
a;t0 a;,_, (b; to b,). Let P, be the property connecting 4, to A4,,,. Then the mappings
M, and M} from A, to the classes a; and b;, respectively, satisfy M{(P;)=p; and
M;3(P)=g;.

454 JaMEs GELLER et al.

Some more notational conventions are needed at this point. The function “typeof” returns the
object type A4 of a class a.

) P 4 typeof{a) = A.
The function typeof (in italics!) returns the object type 4 of the class a of a property p =(x, a)
i pair notation.

typeof (p) = typeof(class(p)) = typeof{a) = 4.
The function “class-sequence” returns the sequence of all classes that occur in an access path
method m defined in a class.
class-sequence(m) = {a;, @&, ..., @ >

Similarly, “type-sequence” returns the sequence of all object types that occur in an access path
method m defined in an object type.

type-sequence{m) = {A;, 4>, ..., A, >,

We now present an algorithm for creating a common object type for two classes with full
structural correspondence.

Structural_integration (in a, b: class; out A: object type)

1. For two corresponding attributes x;, ¥, with selector(x;) = selector(y;) define in the object
type 4 an attribute (selector(x,), datatype(x,)).

2. For two corresponding attributes x;, y, with selector(x;) # selector(y;) define in 4 an
attribute (z, datatype(x;)) with z = selector(x,}, or z = selector(y;), or z is a freely chosen
new selector.

3. For two corresponding relationships r,, s; with selector(r;) = selector(s;) define in 4 a
relationship (selector(r;), typeof(r;)).

4, For two corresponding relationships r,, s; with selector(r;) # selector(s;) define in A4 a
relationship (z, typeof(r;)) with z = selector(r;), or z = selector(s;), or z is a freely chosen
new selector.

5. For two corresponding memberof or setof generic relations, g; and A, define in 4 a generic
relation (selector(g,), tvpeof(g;)). Note that by the definition of full structural correspon-
dence it must be the case that selector(g,) = selector(h;).

6. For two corresponding categoryof or roleoft generic relations, g; and #;, define in 4 a
generic relation (subtypeof, typeof(g,)). . ' :

7. For two corresponding methods, n, #n; with selector(m;) = selector(n) and class-
sequence(m;) =<k, k,,...,k,» define in A4 a method m, such that selector(m)=
selector(m,) and type-sequence(m) = {typeof(k,), typeof(k,), ..., typeof(k,)).

8. For two corresponding methods, m, #, with selector(m;) # selector(n;) and class-
sequence(m;) = <k, k;,..., k> define in 4 a method m, such that selector(m) =z, and
type-sequence(m) = (typeof(k,), type(k,), ..., typeof(k,)>. Like before, z =selector(my),
or z = selector(n,), or z is a newly introduced selector.

As an example of full structural correspondence, we remind the reader of the classes pur-

chase..order from the purchasing department database, and receiving report from the inventory
control database, all of which were previously shown. (We repeat the code for readability.)

class purchase_order

categoryof: operation

memberef: purchase orders

attributes:
OrderNumber: INTEGER
Quantity: INTEGER
Unit: STRING
Cost: DOLLARTYPE
OrderDate: DATETYPE
OrderingDepartment: STRING

tWe assume that every rolegf has an associated subtypeof.

Structural schema integration

essential: OrderNumber
relationships:

Item: catalog item
methods:

Supplier():

Item — catalog_item:

OfferedBy — supplier

class receiving report
categoryof: operation
memberof: receiving_reports
attributes:
OrdNum: INTEGER
DeliveryDate: DATETYPE
Quantity: INTEGER
UnitofMeasurement: STRING
ReceivingDepartment: STRING
Cost: DOLLARTYPE
essential: OrdNum
relationships:
OrderedGood: received_item
methods:
Source():
OrderedGood — received_item;
DeliveredFrom - supplier

435

Clearly these two classes are very similar. One difficulty in integrating them by full structural
cortespondence is that they are members of (memberof?) different classes. Another difficulty is that
purchase order has a relationship to catalog_item, while receiving report has a relationship to
received_item. Later on we will show that the classes catalog item and received_item can also be

integrated by a common object type.

The integration of the classes purchase_orders and receiving_reports by a common object type
is also possible, and in fact trivial. It is shown without further explanation in the Appendix.
Therefore, the two classes purchase_order and receiving report stand in full structural correspon-
dence and can be represented by one common object type. This object type, FORM, represents

the structural aspects of the two classes from the two databases.

objecttype FORM
subtypeof: OPERATION
memberof: FORMS
attributes:
OrderNumber: INTEGER
Quantity: INTEGER
Unit: STRING
Cost: DOLLARTYPE
FormDate: DATETYPE
OrderingDepartment: STRING
relationships:
Item: ITEM
methods:
Supplier():
Iem — ITEM:
OfferedBy —+ SUPPLIER

The following Table 1 shows the correspondence between the object types and the pairs of classes

that are structurally integrated by these object types.

456 JAMES GELLER ¢! al.

Table 1. Correspondence beiween two subschemas

PURCHASING_DEPARTMENT class object type TNVENTORY_CONTROL class
purchase_order FORM receiving report
purchase_orders FORMS receiving reports
catalog_item ITEM received item
supplier SUPPLIER supplier
operation OPERATION operation

The complete mappings for the object type FORM are given in Table 2. The properties of the
object type FORM appear in the middle column. The result of the mapping M, (M,) is shown in
the left (right) column.

A short review of Table 2 shows that selectors for the class receiving report are in general
different from those of the object type FORM, while the class purchase_order shares most selectors
with the object type FORM. The class receiving report also has its attributes in a different order
than the object type FORM. The fact that structural integration permits semantic differences is
seen, for instance, in the lines dealing with FormDate. A delivery date (DeliveryDate) for an order
is semantically quite different from the date when the order was filed (OrderDate). However, each
of the two forms maintains only one of the those two dates, and they are structurally identical;
therefore, they can be integrated into the single FormDate in the object type. Obviously, two classes
that differ in the semantics of one of their attributes are themselves different in their semantics.

Another reason why purchase_order and receiving report are semantically different is that they
are different in their real life interpretation. FORM does not represent a class of objects that permits
any real life operations common only to both classes but not common {o classes representing other
sheets of paper. In other words, in FORM we are not interested in operations such as “write on”
or “tear up” which are common to all sheets of paper, but in operations that are genuinely specific
to both purchase order and receiving report. We have not found such real life operations and
claim, therefore, that FORM is not a correct secmantic generalization of the two classes.
Nevertheless, FORM summarizes interesting structural similarities.

Obviously, the probability of finding an application to which full structural correspondence can
be applied is quite low. However, in practical applications we can expect some situations where
integration by generalization is not feasible, but structural integration based on partial structural
correspondence is possible. Structural correspondence was motivated by our work with actual
telecommunication database schemas at Bellcore [24]. There, we demonstrated a realistic example
that can be solved with attribute partial correspondence. In another practical application of partial
structural correspondence [35], structural integration of a “student admission” subschema and a
““candidate hiring” subschema of a university database is demonstrated. In both these applications,
integration by generalization is not possible. In these examples, structural integration opens new
possibilities for integration which go beyond the previously known integration techniques.

The reason that we need to discuss full structural correspondence in this paper is that the theory
of partial structural correspondence is an extension of it, which cannot be easily understood
without first comprehending the simpler case of full structural correspondence.

3.2.2. Structural integration of classes with partial correspondence. In many practical integration
cases, one finds two classes that are different in only a few properties, and wants to integrate them
in spite of their differences. Let us first formally define what partial structural correspondence
between two classes 4; and g, is. '

Let O, and Q, be the sets of properties of a, and a,, respectively. Let G, = @, and G, = Q, be
the sets of properties for which there is a one-to-one correspondence, as defined for full structural

Table 2. Complete mappings for the object type FORM

purchase order FORM receiving report

(memberof:, purchase_orders) (memberof:, FORMS) (memberof:, receiving_reports)
(OrderNumber, INTEGER) (OrderNumber, INTEGER} (OrderNum, INTEGER)

(Quantity, INTEGER) (Quantity, INTEGER) (Quantity, INTEGER)

(Unit, STRING) (Unit, STRING) (UnitofMeasurement, STRING)
(Cost, DOLLARTYPE) (Cost, DOLLARTYPE) (Cost, DOLLARTYPE)
(OrderDate, DATETYPE) (FormDate, DATETYPE} (DeliveryDate, DATETYPL) -
(OrderingDepartment, STRING) {OrderingDepartment, STRING) (ReceivingDepartment, STRING)
{Ttem, catalog_item) (ltem, ITEM) {OrderedGood, received item)

(Supplier, supplier) {Supplier, SUPPLIER) {Source, supplier)

Structural schema integration 457

correspondence. Then we say that the classes @, and @, have partial structural correspondence if
the sets G, and G, are not empty.

Of course it is not useful to integrate 4, and a, unless the cardinality of G, is close to the
cardinality of @, and Q,. There are interesting special cases of partial structural correspondence,
where the sets of not matching properties Q, — G, and 0, — G, include attributes only, relationships
only, generic relations only or access path methods only. We refer to these special cases as attribute
partial correspondence relationship partial correspondence, generic relation partial correspondence
and access path method partial correspondence, respectively.

We concentrate in this paper on refationship partial correspondence. Attribute partial correspon-
dence is similar and has been dealt with in a previous paper [24]. At the end of this section a short
comment about the other types of partial correspondences will be made.

Suppose we are given two classes, a, and a,, which exhibit relationship partial correspondence.
Let o/, be the set of n, relationships of a;, and let <, be the set of , relationships of a,. Let €, = &,
and %, c &, be the subsets of the relationships for which there exists a one-to-one correspondence
(i.e. a full structural correspondence).

We now define an object type 4 common for both classes a, and a,. We need to define the set
of relationships & of & such that & = #u & U7, where & contains a relationship for each pair
{q,, ¢2) of corresponding relationships ¢, %;, ,€%,, ¥ =&, — ¢ and T =, — %,.

Let ¢, €%, and ¢,€%, be two corresponding relationships in the partial structural correspon-
dence between a, and a,. By the definition of this correspondence, typeof (g,) = typeof(q;)- We have
to consider two cases:

1. selector(g,) = selector(g;). In that case, we define a relationship re% such that
r = (selector(q,), typeof(q,)).

2. selector(g,) # selector(q,). In this case, we definc a relationship re# such that
r = (z, typeof(q,)) where z = selector(g,), or z = selector(g,), or z is different from both,

We repeat this process for each such pair of relationships (g, ¢,) satisfying the above conditions.
For each relationship g, (s, —%,) we define for & a relationship s = (selector(q,), object-
type(g,)). For each relationship ¢, € (&, —%,) we define for 7 a relationship ¢ = (selector(yg,),
objecttype(q,)). To deal with the difference in the set of relationships of the object type 4 and its
classes we specify two partial mappings. M, is a mapping from the set & of relationships of 4 onto
the set 7, of relationships of @,, and M, is a mapping from & onto the set o/, of relationships
of a,. '

The cardinality of & is || = 1, + 1, — |€,|. Thus, the mapping M, from & to =/, and the mapping

" M, from & to s, are both mappings from a larger set to a smaller set. We define these two
mappings from & by detailing the mappings for %, & and 7.

For each relationship r € &, let (¢, g;) be the pair of corresponding relationships that exists

according to our definition. Then ‘

M, ((selector(r), objecttype(r))) = (selector(q,), class(g,))
M, ((selector(r), objecttype(r))) = (selector(g,), class(g,))

Note that by the definition of # both the classes class(g,) and class(q;) have the object type
objecttype(r).
For each relationship s € # and the corresponding relationship g, € «, the mappings are

M, {(selector(s), objecttype(s))) = (selector(g,) class(g,))
M, ((selector(s), objecttype(s))) = NULL

The class(g,) has an objecttype(s) and selector(s) = selector(g,).
For each relationship ¢ € 4 and the corresponding relationship ¢, € &/, the mappings are,

M ((selector(t), objecttype())) = NULL
M, ((selector(t), objecttype(t)) = (selectdr(qz), class(g,)

The class(g,)} has an objecttype(s) and selector(?) = selector(g,).

15 17:16—B

458 JaMEs GELLER ef al.

We will now show an example of partial structural integration. The foliowing object type ITEM
integrates the class catalogitem from the purchasing department schema with the class re-
ceived_item from the inventory control schema. For ease of reading, we first repeat these two classes
here. : - '

class catalog_item
memberof: catalog items
attributes:
Catalog Number: INTEGER
Name: STRING
Price: DOLLARTYPE
Description: STRING
essential: CatalogNumber
relationships:
OfferedBy: supplier
{dependent) Orders: purchase_orders

class received_item

attributes;
CatalogNumber: INTEGER
Price: DOLLARTYPE
Name: STRING
Damaged: BOOLEAN

relationships:
DeliveredFrom: supplier
Reports: receiving reports

The object type ITEM looks like:

objecttype ITEM

memberof: ITEMS

attributes:
CatalogNumber: INTEGER
Name: STRING
Price: DOLLARTYPE
Description: STRING
Damaged: BOCLEAN

relationships:
OfferedBy: SUPPLIER
Orders: FORMS

The complete mappings for the object type ITEM are given in Table 3.

Table 3 is characteristic of a partial structural correspondence. For instance, the “Damaged”
attribute shown in the middle column exists for a received_item but not for a catalog_item, which
can never be damaged. Therefore, the left column contains the entry NULL in the sixth row.
Similarly, the memberof relation is not defined for the class received item and the first row of the
third column in Table 3 contains NULL.

Table 3. Complete mappings for the object type itern

catalog_item ITEM received_item
(memberof:, catalog_items) (memberof:, ITEMS) NULL

(CatalogNumber, INTEGER) (CatzlogNumber, INTEGER) (CatalogNumber, INTEGER)
{(Name, STRING) {Name, STRING) . (Name, STRING)

(Price, DOLLARTYPE) {Price, DOLLARTYPE) (Price, DOLLARTYPE)
(Description, STRING) (Description, STRING) NULL

NULL {Damaged, BOOLEAN) {Damaged, BOOLEAN)
(OfferedBy, supplier) (Offered By, SUPPLIER) {DeliveredFrom, supplier)

(Orders, purchase_orders) (Orders, FORMS) {Reports, receiving_reports)

Structural schema integration 459

OPERATION

subtypeof
subtypeof TCANCELLATION |

Cancel

subtypeof

RETURN
ITEM

Report

FORM

FORMS

Order‘ Item [Item Supplier

ITEM

Offered

ITEMS by

Supplies
Fig. 3. Integration expressed by a schema of object types.

When we integrated the classes purchase_order and receiving. report, taking advantage of their
full structural correspondence, it was pointed out that this integration would only be possible if
the two classes catalog_item and received_item could also be integrated by one single object type.
We have now accomplished this integration of catalog item and received_item by defining the
object type ITEM. The reader will notice that changing the order of presentation. would not have
helped in any way, because catalog_item and received item both refer with relationships to
purchase_order and receiving report. In other words, the dependency is circular, and we can only
integrate any one of the two pairs of classes if we can integrate the other pair also.

The case where one cannot integrate two classes @ and & but car integrate two sets of classes
C and D, such that @ € C and b € D is guite common in structural integration. In the next section,
we describe a procedure for identifying two such sets, i.e. two corresponding subschemas.

A complete description of the integrated database schema consists of the object types presented
in this section, and the classes shown as code in Subsection 2.2 and graphically in Subsection 2.3.
Because the object type description captures much of both schemas, it expresses the integration
of the schemas for humans and for the system. Figure 3 shows the graphical representation of the
object types.

The treatment of generic relation partial correspondence is very similar to that of relationship
partial correspondence. The only difference is that for generic relations the correspondence is
limited to identical relations, while for relationships different selectors are permitted. As an
exception, the generic relations categoryof and roleof may correspond to each other.

Access path methods are chains of relationships and relations, possibly terminated by an
attribute. Therefore, integration of access path methods follows the same principles as integration
of relationships and does not warrant a repetitive description. The integration of operations will
not be discussed in this paper and is the subject of future work.

4, FINDING SUBSCHEMAS WITH FULL STRUCTURAL CORRESPONDENCE

In order to ease the task of finding subschemas that permit structural integration, we now present
a procedure for finding subschemas with full structural correspondence. For simplicity, this

460 JaMES GELLER ef al.

procedure ignores the use of methods, but a proper extension is possible. The data are the classes
of two databases, D, and Dg, which are to be structurally mtegrated

In the process of structural integration, we are looking for pairs of classes with full structural
correspondence. The first phase in this process is to look just for two such classes, one in each
database. However, as ‘was demonstrated in the previous section, most of the time such classes
cannot be found due to their connections to other classes. Nevertheless, it may still be possibie to
find two subschemas with a one-to-one correspondence between their sets of classes.

The following procedure accepts human advice to avoid matching all permutations of two sets
of properties which would increase its time complexity drastically. We also use the user’s intuition
in picking two classes for starting the matching process, rather than to run over all possibilities.

Once the procedure finds.two corresponding subschemas it halts. This is the case when full
structural correspondence between the two sets of classes is achieved and there exists no class in
the subschemas with a relationship or relation to a class outside the subschemas. To continue
searching for more corresponding subschemas, the procedure needs another pair of unmatched
classes to start with.

The procedure uses two queues, O, and (,, and two arrays, R, and Rp, to process.the
classes of the two desired corresponding subschemas, S, and S,. Initially, @,, Oy, R, and R, are
all empty.

Full _structural_correspondence (in D4, Dy: schema; out Ry, Ry: schema)

1. Initialization: pick two object classes 4, and b, which seem to be corresponding but are not
identical in their properties. Insert &, into @, and b, into Q.
2. While the queues Q4 and Qp are not empty do:

“Let a(b;) be the class at the front of Q,(Q3). Transfer a;(h;) from Q,(Q;) to R, (R;).

3. If the number of attributes in 4; and b, is not equal, then exit{a,, 5;). (No full correspondence
is possible.) If the number of attributes of any given data type in a; and b; is not equa]
then exit (a;, b;). (No full correspondence is possible.)

4, Consider the categoryof and roleoft relations of g, and b,. If their numbers are not equal,
then exit{a,, b;). If @, and b, both have on¢ such relation to object types «; and b;, respectively,
then if @; and b; do not have identical object types or 4; and b, do not appear as a pair in
the arrays R, and Ry, or they do not appear as a pair in the 'queues @, and Qg, then insert
a;into Q, and insert b;into Q. (They are now candidates for comparison. If they appeared
in R, and R, they were compared already. If they appeared in Q, and O, then they are
already waiting for processing.) '

5. Multiple inheritance: if a; has many categoryof and roleof relations to a;, 4,,,..., 4, and
b, has many categoryof and roleof relations to b;,b,,...,8; .
Fori=1tomdo
For k =1 to wi do
If g; and b, have a common object type
or are stored as a pair in the array R, and R,
or are stored as a pair in the queues @, and J,
then delete o and b, from the appropriate kst (4, a,, ..., 4,) or (5. b;,,...,5;)
6. Set m to the number of remaining object classes. Consider the two sets of remaining object
classes @, a;,,...,a, and b, . b,,..., b, . Display these two sets to the user so that he can
suggest a onc-to -one correspondence between these two sets and can rearrange the order
of the b, classes respectively, such that g, corresponds to b;, for k =1,...,m. Insert
@,...,a, into @, and b;,...,b; into Q. '

7. Consider the setof relations of a; and b,. (There exists at most one.) The treatment is the
same as for categoryof and roleof in step 4.

8. Consider the memberof relations of a; and b,. (There may be more than one.) The treatment
is the same as for categoryof and roleof (in steps 4, 5 and 6).

$As before it is assumed that the roleof relation in question is annotated by a subtypeof relation.

Structural schema integration 461

9. Consider the relationships of a; and b;. The treatment is the same as for categoryof and
roleof (in steps 4, 5 and 6).
End of while loop (2).

The subschema §, consists of the classes in R,, and the subschema S, consists of the classes
in Ry, where the correspondence is given by the order in R, and Rj. The previous procedure applies
to the case of full structural correspondence. However, it is possible to modify it for cases of partial
structural correspondence. The basic idea is as follows, If the given procedure fails, the user will
be provided with the pair of classes causing the failure in question. If he decides that the two classes
should actually correspond to the same object type, then the procedure can continue under the
assumption of structural correspondence between these two classes. In such a case, the procedure
can find two subschemas with partial structural correspondence.

In our example (Fig. 2), suppose the procedure starts with purchase_order in @, and
receiving.report in Q. These two classes are transferred to R, and R,, respectively. The classes
operation, purchase_orders and catalog_item are inserted into Q,, and the classes operation,
receiving reports and received__item are inserted into Q. In the next steps the classes purchase_
order and operation are moved into R, and the classes receivingreport and operation ar¢ moved
into R,;. When processing catalog item from Q, and received_item from Qp, we encounter a mis-
match since catalog-item has a memberof relation to the class catalog items, but received_item has
no corresponding relation. Therefore, there is no full correspondence. However, if the user allows
partial correspondence between catalog item and received_item, the procedure can continue.

The class supplier is now inserted into both Q, and Q,. Processing this pair of classes leads to
another mismatch because supplier has a relationship to catalog items in the purchasing
department schema, but there is no corresponding relationship in the inventory control schema.
If we allow partial correspondence for the class supplier, we end up with two schemas with partial
correspondence which are shown in Fig. 2 as two gray areas. Now one couid try to re-execute the
procedure with the initial pair of classes return item and cancellation. One would find that either
there is full structural correspondence, or there is attribute partial correspondence, depending on
their lists of attributes which are not shown in this paper. The same applies to the pair return_item
and payment.

5. CONCLUSIONS

The object-oriented Dual Model has been shown to be a good tool for structural integration. 1t
separates the structure of an object-oriented database from its semantics. The semantic specification
contains classes, and the structural specification contains object types, such that every class has one
corresponding object type, but one object type may have several corresponding classes.

The classical method of integration is based on generalization, where, if two classes are to be
integrated, a common superclass for them is created. However, it is not possible to find such a
common superclass if the two classes to be integrated have different semantics, The Dual Model
can integrate two classes even in this situation, because a single object type can correspond to
several semantically different classes, as long as they are structurally similar.

Besides extending the range of cases where integration is possible, structural integration has the
following additional advantages. The integration process allows sharing of attributes, relationships
and even methods, thereby contributing to compact representations, software reusability and
understandability. The structural schema also forms a “semantics free” representation that can be
used as the basis for reusable optimization.

Structural integration is performed by defining a common object type for two corresponding
classes and a mapping from the properties of the object type to the properties of each class. For
a full structural correspondence, this mapping overcomes name and order differences and identifies
the classes for the referenced object types in the relationships. The more complicated case of
integration with partial correspondence has been formally defined, discussed and applied to a small
but realistic example. Finally, a procedure for identifying subschemas of two databases which
satisfy full structural correspondence was presented. Future work includes the formal definition of
a corresponding procedure for partial structural correspondence and work on semantic integration.
Currently, we arc defining an OODB model for part relationships [36, 37]. Structural integration
will have to be extended to deal with this part model.

462 JamEs GELLER et al.

Acknowledgemenis—We thank Mike Halper for proofreading a version of this paper and two anonymous reviewers for
their thoughtful comments.

REFERENCES

[1] P. Ng, C. V. Ramamoorthy, L. Seifert and R. T. Yeh (Eds) Proc. Ist Int. Conf. on Systems Integration, Morristown,
NJI. IEEE Computer Society Press (1990),

[2] P. Ng, C. V. Ramamoorthy, L. Seifert and R. T. Yeh (Eds) Proc. 2nd Int. Conf. on Systems Integration, Morristown,
NIJ. IEEE Computer Society Press (1992).

[3] M. Hammer and D. McLeod. On database management system architecture, Technical Report. MIT/LCS/TM-141,
Massachusetts Institute of Technology, Cambridge, MA (1979).

[4] D. Heimbinger and D. McLeod. A federated architecture for information management. ACM Trans. Office Inf. Syst.
3, 253-278 (1985).

[5] A. P. Sheth and J. A. Larson. Federated database systems for managing distributed, heterogeneous, and autonomous
databases. ACM Comput. Surv. 22, 183-236 (19%0).

[6] M. Rusinkiewicz, R. Elmasri, B. Czejdo, D. Georgakopoulous, G. Karabatis, A. Jamoussi, L. Loa and Y. Li.
Omnibase: Design and implementation of a muitidatabase system. In Proc. A. Symp. in Paraflel and Distributed
Processing, Dallas, TX, pp. 162-169 (1989).

[7] M. Templeton, D. Brill, A. Chen, 8. Dao, E. Lund, R. McGregor and P. Ward. Mermaid: A front-end to distributed
heterogeneous databases, In Proc. of the IEEE, pp. 695-708 (1987).

{8] R. Elmasri and S. Navathe. Object integration in logical database design. In Proc. Ist Int. Conf. on Data Engineering,
Los Angeles, CA, pp. 426433 (1984).

9] A. P. Sheth and J. A. Larson. A tool for integrating conceptual schemas and user views. In Proc. 4th Int. Conf. on
Data Engineering, Los Angeles, CA, pp. 176-183 (1988).

[10] M. L. Brodie and F. Manocla. Database management: A survey. In Readings in Artificial Intelligence and Dutubases
{Edited by J. Mylopoulos and M. L. Brodie). Morgan Kaufmann, San Mateo, CA (1989).

[11] W. Kim. Research direction for integrating heterogenecus databases. In 1989 Workshop on Heterogeneous Databases,
NSF, Northwestern University and IEEE-CS, pp. 1-5 (1989).

[12] M. Kaul, K. Drostern and E. Neuhold. Viewsystem: Integrating heterogencous information bases by object oriented
views. In Proc. 6th Int. Conf. on Data Engineering, Los Angeles, CA (1990). ‘

[13] E. Bertino, M. Negri, G. Pelagatti and L. Sbattella. An object-oriented approach to the interconnection of
heterogeneous databases. In /989 Workshop on Heterogeneous Databases, pp. 1-7, (1989).

[14] M. Schrefl and E. J. Neuhold. A knowledge-based approach to overcome structural differences in object-oriented
database integration. In Proc. of the IFIP Working Conf on The Role of Artificial Intelligence in Database and
Information Systems, Canton, China, North Holland, Amsterdam (1988). }

[15] M. C. Shan. Unified access in a heterogeneous information environment. IEEE Office Knowl. Engng 2, (1989).

[16] D. Fischer, W, Klas, L. Rostek, U. Schiel and V. Turau. VMI—the vodak data modelling language. Technical Report
GMD-IPSI (1989).

[17] E. }. Neuhold and M. Schrefl. Dynamic derivation of personalized views. In Proc. 14th Int. Conf. on Very Large
Databases, Long Beach, CA, pp. 183-194 (1988).

[18] D. Shipman. The functional data model and the data language DAPLEX. ACM Trans. on Database Syst. 6, [40-173
(1981).

{191 M. Stonebraker, L. Rowe, B. Lindsay, I. Gray, M. Carey, M. Brodie, P. Bernstein and D. Beech. Third-generation
data base system manifesto. Technical Report UCB/ERL M90/28, University of California, Berkeley (1990).

[20] E. J. Neuhold, J. Geller, Y. Perl and V. Turau. A theoretical underlying Dual Model for knowledge-based systems.
In Proc. of the Ist int. Conf. on Systems Integration, Morristown, NJ, pp. 96-103 (1990).

[21] E. Neuhold, Y. Perl, J. Geller and V. Turau. The Dual Model for object-oriented data bases. Technical Report
CIS8-91-30; New Jersey Institute of Technology. Submitted for publication.

[22]). Geller, Y. Perl and E. J. Neuhold. Structure and semantics in OODB class specifications. SIGMOD Rec. 20, 40-43
(1991).

[23] E. J. Neuhold, Y. Perl, J. Geller and V. Turau. Separating structural and semantic elements in object-oriented
knowledge bases. In Proc. of the Advanced Database System Symp., Kyoto, Japan, pp. 67-74 (1989). -

[24] J. Geller, Y. Perl, P. Cannata, A. Sheth and E. Neuhold. A case study of structural integration. In Proe. Ist Int. Conf.
on Information and Knowledge Management, Baltimore, MD. In press.

[25]). Geiler, Y. Perl and E. Neuhold. Structural schema integration in heterogeneous multi-database systems using the
Dual Model. In Proc. Ist mt. Workshop on Interoperability in Multidatabase Systems, Los Alamitos, CA, pp. 200--203.
IEEE Computer Society Press, Washington, DC (1991).

[26] V. Soloviev. An overview of three commercial object-oriented database management systems: ONTOS, ObjectStore
and O,. SIGMOD Rec. 21, 93-104 (1992).

[27] C. Lecluse and P. Richard. Modeling inheritance and genericity in object-oriented databases. Technical Report. LNCS
#1326, ICOT (1988). ’

[28] G. Copeland and D. Maier. Making Smaltialk a database system. ACM SIGMOD 316-324 (1984).

[29] W. Klas, E. J. Neuhold and M. Schrefl. On an object-oriented data model for a knowledge base. In Research into
Networks and Distributed Applications—EUTECO 88 (Edited by R. Speth). North-Holland, Amsterdam (1988).

[30] D. Fishman, D. Beech, H. P. Cate and E. C. Chow. [RIS: An object-oriented DBMS. ACM Trans. Office Inf. Syst.
5(1) (i987).

[31] A. Goldberg and D. Robson. Smalltalk-80. The Language and its Implementation. Addison—Wesley, Reading, MA
(1983).

[32] M. Stonebraker and L. Rowe. The design of POSTGRES. In Proc. ACM SIGMOD Conf. on Management of Data,
Washington, DC, pp. 340-355 (1986).

[33) M. Halper, J. Geller, Y. Perl and E. J. Neuhold. A graphical schema representation for object-oriented databases. In
Proc. Workshop on Interfaces in Database Systems (IDS-92), Glasgow. In press.

Structural schema integration 463

{34] W. Klas. A metaclass system for open object-oriented data models. PhD thesis, Technicai University of Vienna, Vienna,
Austria (1990).

[35] J. Geller, A. Mehta, Y. Perl, E. J. Neuhold and A. Sheth. Algorithms for structural schema integration. in Proc. Znd
Int. Conf. on Systems Integration. Morristown, NJ, pp. 604-614 (1992).

[36] M. Halper, J. Geller and Y. Perl. Part relationships for object-oriented databases. In Proc. the 11th Int. Conf. on the
Entity Relationship Approach, Karlsruhe. In press.

[37] M. Halper, J. Geller and Y. Perl. An OODB part relationship model. In Proc. Ist Int. Conf. on Information and
Knowledge Management. In press.

APPENDIX

Although the parts of the integrated subschema have occurred in the body of the paper, they have not occurred in the
correct order and in a comprehensive form, Therefore, in this appendix, we present now the object types and classes of
the integrated subschema. A quick comparison with Fig. 2 will show that all classes not relevant to the integration process
have been omitted. We also show the object type FORMS which was omitted in the body of the paper and which inlegrates
the classes purchase_orders and receiving reports.

objecttype FORM
subtypeof: OPERATION
memberef: FORMS
attributes:
OrderNumber: INTEGER
Quantity: INTEGER
Unit; STRING
Cost: DOLLARTYPE
FormDate: DATETYPE
OrderingDepartment: STRING
relationships:
Item: ITEM
methods:
Supplier(X
Item -» ITEM:
OfferedBy — SUPPLIER.

class purchase_order
objecttype: FORM
categeryof: operation
memberof: purchase_orders
attributes:

OrderDate: DATETYPE
essential: OrderNumber
relationships:

Item; catalog item
methods:

Supplier();

Item — catalog..item:

OfferedBy — supplier

class recetving_report
objecttype: FORM
categoryof: operation
memberof: receiving_reports
attributes:
OrdNum: INTEGER
DeliveryDate: DATETYPE
UnitofMeasurement: STRING
essential: OrdNum
relationships:
OrderedGood: received_item
methods;
Source():
OrderedGood — received_item:
DeliveredFrom —» supplier

objecttype ITEM
memberof: ITEMS
attributes:
CatalogNumber: INTEGER
Name: STRING

464 JAMES GELLER et al.

Price: DOLLARTYPE : :
Description: STRING
Damaged: BOOLEAN
relationships:
OfferedBy: SUPPLIER
Order: FORM

class catalog item
objecttype ITEM
memberof: catalog items
essential: CatalogNumber
relationships:
{dependent) Orders: purchase_orders

class received_item
objecttype: ITEM
relationships:
DeliveredFrom: supplier
Report: receiving_report

objecttype FORMS
setof: FORM
atiributes:

NumberofForms: INTEGER
GroupPurpose: STRING
relationships: .

Item: ITEM

class purchase_orders
ohjecttype: FORMS
setof: purchase_order
attributes:
NumberofOrders: INTEGER
relationships:
Item: catalog_item

class receiving_reports
objecttype: FORMS
setof: receiving report
attributes:
Quantity: INTEGER
relationships:
Item: received_item

