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Preface

Most algorithms for solving Al problems are computationally very demanding. The
surrent trend in computer architecture towards parallel machines offers the chance to
nxplOlt much more computational power than ever before and to design algorithms
gvhlch would not have been feasible on sequential machines.

The intent of the organizers has been to bring together hardware architects, Al
esearchers and application engineers who are engaged in or interested in parallel pro-
essing for artificial intelligence.

Through sessions dedicated to particular topics we have sought to focus on the
.urrent interests of the community. Each session is designed to consist of an intro-
uctory statement or key presentation by the session chairman and a mix of selected
gubmlssmns and invited talks.

There were fourteen invited presentations and 40 contributed submissions to the
dorkshop. The limited time available mandated a stringent selection from among the
ubmitted papers. One fourth of the submitted papers were selected for presentation
t the workshop and the rule was adopted that if a selected paper’s author could not
e present in person at the workshop, that slot would be given to a paper accepted as
n alternate. Approximately one third of the contributed papers were not accepted for
clusion in the proceedings although some of these submissions expressed interesting
deas and surely will find an audience at some other event. This proceedings includes
he extended abstracts for most of the other papers. Missing are the ones that did not

;et to us by the final deadline. In a few such cases we have extracted a page with the

itle and abstract from the long paper submitted and included that page to represent
he paper.

We are indebted to Wolfgang Bibel, Uwe Egly, Masayuki Fujita, James Hendler,
$teflen Holldobler, Mayuki Koshimura, Vipin Kumar, Ewing Lusk, Dan Moldovan,
erd Neugebauer, Torsten Schaub, Georg Strobl, Christian Suttner, and Kazuo Taki
for serving as reviewers under a short time constraint. We thank the invited authors
r agreeing to participate in the workshop and thank all the authors who submitted
fontributions in response to the call for participation.

Drganizers of PPALII,
1. Kanal, D. Moldovan, and C. Suttner
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Upward-Inductive and Constant Time Downward Inheritance in
Massively Parallel Knowledge Representation

James Geller*
Institute for Integrated Systems, CIS Department
and Center for Manufacturing Systems
New Jersey Institute of Technology, Newark, NJ 07102
geller@mars.njit.edu

ABSTRACT: We review an approach to Massively Parallel Knowledge Representation based on a limited

3 i ference strategy. A class tree is coded using a preorder numbering scheme and represented as a list.
4 Algorithms for standard inheritance and upward-inductive inheritance are given for the preorder encoded
‘# class tree. Experimental data from a Connection Machine implementation are reported.

41, MASSIVELY PARALLEL KNOWLEDGE REPRESENTATION

The development of the Connection Machine and of Massively Parallel Computing in general was heavily

3 influenced by problems from Al Hillis (1985) used examples from Computer Vision and Knowledge Repre-
3} sentation to motivate his design, e.g., Fahlman's (1979) famous NETL system. NETL was the first attempt
% in Al to create a Knowledge Representation model that could be translated naturally into hardware.

Knowledge Representation is the heart of many areas of Artificial Intelligence. Unfortunately, Knowledge

Representation implementations are also notoriously slow. Shastri (1988, 1989) has stated that “To be
4 deemed intelligent, a system must be capable of action within a specified time frame...” (1988, p.3). We
& concur that “A possible solution of the computational effectiveness problem lies in a synthesis of the limited

inference approach and massive parallelism.” (1988, p. 4).
Waltz {(1990) has pointed out that Al has made surprisingly little use of massively parallel processing.

ent Parallel A However, there is a small number of researchers working on what we refer to as Massively Parallel Knowledge
ient raratlel A% gepresentation (MaPKR, pronounced “mapear”). Evett, Hendler, and Spector (1990) have been working
§on PARKA, an implementation of a Knowledge Representation system on the Connection Machine.

Actor/Token Inap

Geller (1990) and Geller and Du {1991) have presented an alternative approach that concentrates on
parallelizing the “IS-A hierarchy.” We first review the basics of this approach and then discuss two types

# of inheritance operations, standard {downward) inheritance and upward-inductive inheritance. It will be

shown that in this implementation downward inheritance in a tree is a constant time operation for a given

d machine size even if the height of the tree is varied.

[ 2. PREVIOUS WORK: SCHUBERT’S TREES

Many Knowledge Representation systems use a so called IS-A hierarchy as their backbone. In the simplest

 possible case this hierarchy is a tree. In Fig. 1 the node with the label Bird stands for the class of all Birds.
§ Below the Bird node and connected to it are the Eagle node and the Crane node. Therefore, every eagle is
§ 2 bird, and every crane is also a bird.

 ——

*This work was conducted using the computational resources of the Northeast Parallel Architectures Center (NPAC) st

Sme University, which is funded by and operates under contract to DARPA and the Air Force Systems Command, Rome
& Az Development Center (RADC), Griffiss Air Force Base, NY, under contract# F306002-88-C-0031. '
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Inheritance in MaPKR 2 James Gellor
. Thing (1, 8)
Minerat (8, 8)
Plant (2, 2)
nimal (3, 7)
Bird (5, 7) Dog (4, 4)
Eagle (7, T) Crane (6, 6)

Figure 1: An IS-A Tree

One method of reasoning which is commonly associated with IS-A hierarchies is inheritance. It is assumed
that every node in the hierarchy has certain associated attributes. If an attribute is associated with a nods
A and the user wants to know whether a node B has this attribute, then it is possible to answer this question
in the affirmative, if A is above B and connecied to it by a path of IS-A arcs.

Schubert et al. (1983) use a class reasoner as a “server” to a general purpose resolution theorem prover.
This special purpose reasoner has to decide quickly whether A IS-A B and report the result back. To achieve
this, Schubert has introduced 2 coding for the nodes in an IS-A tree of mutually exclusive classes. In Fig.
1 every node is followed by a pair of numbers. The first number is the result of a preorder right-to-left tree
traversal. This traversal visits the nodes in Fig. 1 in the order {(Thing, Plant, Animal, Dog, Bird, Crane,
Eagle, Mineral). The second number of a node A is the largest first number that occurs under 4. For
example, under Animal (4, 5, 6, 7) occur as “first numbers”. The largest of these numbers is 7, therefore the
second number of Animal is 7. By definition, a leaf node’s second number is identical to its first number.

The decision whether B is under 4 can be made easily by comparing the number pairs of 4 and B: the
pair of B is a subinterval of the pair of 4 iff B is a subclass of 4. Bird is a subclass of Animal, because (5,

7) is a subinterval of (3, 7).

3. THE LINEAR TREE REPRESENTATION

Schubert’s representation is ideal for fast retrieval of subclass relations. However, any attempt to update
the tree requires, that the number pairs of many of the nodes be recomputed. This difficulty can be overcome
if one makes use of two observations. (1) The number pairs make the tree redundant. Instead of a tree, one
can use a list of nodes with number pairs associated. (2) It is possible to update all the number pairs in
parallel. This is the point where the Connection Machine comes into play.

We will now explain the intuition behind (1). Proofs are contained in Geller and Du (1991). The basic’

idea for using a list representation instead of a tree representation is to transform a given tree into a list by
a left-to-right preorder traversal. For Fig. 1 this results in (Thing (1, 8) Mineral (8, 8) Animal (3, 7) Bird
(5, 7) Eagle (7, 7) Crane {6, 6) Dog (4, 4) Plant (2, 2)).

The verification of the subclass relation between any two nodes does not change. What is needed is an
update operation for adding 2 new node to this list. This update operation should have the same effect
as if we would have added that new node to the tree and would have recreated the tree by a left-to-right
traversal. It is possible to find such an update operation if one always adds a new node at the leftmost
possible position. Then we can add this new node to the list immediately after its parent, and we get the
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LEFT SUBTREE PATH START RIGHT SUBTREE
Thing (1,9)
Mineral (9, 9}
Plant (2, 2)
Dog (4, 4)

Crane (6, 6)

Robin (8, 8 Eagle(@,T

pATH END

Figure 2: Three Parts of an 1S-A Tree

wme effect. For example, if Robin is added under Bird (to the left of Eagle) then a new lefi-to-right traversal
results in (Thing (1, 8) Mineral (8, 8) Animal (3, 7) Bird (5, 7) Robin () Eagle (7, 7) Crane (6, 6) Dog (4,
4) Plant (2, 2)). This is identical to adding Robin into the list immediately after Bird.

The next step is to correctly update the number pairs of all the nodes. Fig. 2 shows that when one adds
s node to a tree as a new leaf, this operation divides the tree into three parts. The first part is a path of

¥ 15-A arcs from the root node to the newly added node. This path cuts the tree into a left subtree and a right
{ subtree. There are three simple rules for updating the number pairs of these three parts. (1) All the nodes
1o the right subtree have unchanged number pairs. (2} All the nodes in the path will have their first number
} unchanged but will have their second number incremented (by 1). (3) All the nodes in the left subtree will
{ have both numbers incremented. (For a proof, see Geller and Du, 1891).

The update rules can be translated into rules that are valid for the list representation of a class hierarchy.

The nodes in the right subtree will be exactly the nodes that occur in the list AFTER the newly added node.
“§ However, the left subtree and the path occur intermixed in the list BEFORE the newly added node. There
s 2 way to decide whether a node belongs to the path or the left subtree. All nodes in the path will have a
4 first number which is smaller than the first number of the parent node of the newly added node. This is not
" the case for all nodes in the left subtree.

In our example the nodes Plant, Dog, Crane, and Eagle do not require any changes to their number
pairs. The nodes Thing, Animal and Bird belong to the path and therefore have their second numbers
incremented. The node Mineral forms the left subtree and has both its numbers incremented. The resulting
list representation is (Thing (1, 9) Mineral (9, 9) Animal (3, 8) Bird (5, 8) Robin () Eagle (7, 7) Crane (6,
§) Dog (4, 4) Plant (2, 2)). The new node Robin is numbered with (8, 8) (Geller and Du, 1991).

The algorithm described has been implemented on the Connection Machine (Thinking Machines Corpo-
tation, 1988). In semantic network implementations on massively parallel hardware every node in a concept
network is assigned to one processor (Hillis, 1985). Attributes are usually represented as parallel variables
and attribute values as values of these parallel variables. This is a localized representation of attributes
which we share with Evett et al. (1990). Details about the implementation and about successful test runs
are described in {Geller and Du, 1991}.
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4. INHERITANCE: TERMINOLOGY AND MOTIVATION

Downward inheritance is a well established technique. The contribution of this paper to the research
in downward inheritance consists of experimental verification that downward inheritance can be done in a
massively parallel environment in constant time for a given machine size! and a strict hierarchy. On the
other hand, upward-inductive inheritance is a new technique which needs some justification.

Preliminary Notation: The letter X, possibly with subscripts, represents an individual or class node.
Greek letters represent variables over nodes. The letters § and T represent sets of nodes. The letter 4
represents an attribute, and the letter a represents its corresponding value. When we say that an attribute
A is not defined at 6 node X then there is no value associated with A.

Gituation: Assume a set S of n nodes § = {Xi, X3, ..., Xn} which are all subclasses of X, or individuals
belonging to X. Assume a set T of m nodes, such that T C S, (i.e., m < n) and an attribute A, that is
defined for every & € T. Note that a; of X; and a; of X; are not necessarily the same, unless ¢ = j. Finally,
assume that A is undefined for X and cannot be derived by standard inheritance, and A is undefined for all
¥e(5-T).

Problem: The problem is to find an algorithm that assigns a correct value a to the attribute A of
X. This is an induction problem, and induction is generally considered an unsolved problem. We do not
claim any research on solving the induction problem in general. However, it is claimed that a reasoner may
find itself in a situation where no answer would be more disastrous than an incorrect one. If there is any
probability for a given answer to be correct, then such an answer is certainly preferred to no answer at ali.?
Reasoning that relies on such an inductive step occurs quite often in everyday life. We consider this as 2
variant of what Shastri (1988) has described as evidential reasoning.

5. DOWNWARD INHERITANCE AND UPWARD-INDUCTIVE INHERITANCE

The downward inheritance algorithm relies on the fact that in our linear tree representation all the
ancestors of a node are to its left. In addition, the number pairs of all ancestors are superintervals of the
number pair of a given node. Therefore, using the Connection Machine, the algorithm locks as follows:

ACTIVATE-PROCESSORS-WITH
PRENUM!! <=11 (!¢ PRENUM(N))
ARD!! ATTRIBUTE!! <»!f (1! -1)
DO (RETRIEVE-PVAR ATTRIBUTE!! (#MAX SELF-ADDR!!))

ARD!1 MAXNUM!! >=11 (1! MAXNUM(X))

We first activate all the processors that have a number pair which includes the given number pair. These
are the possible ancestors. Of these we want only the nodes that have a value for a given attribute. We are
marking the omission of a value by the number -1. Of these we select the right most node, which is lowest
in the hierarchy. This is achieved by finding the node with the highest address. N is the node for which
we want to know a value for ATTRIBUTE!. *MAX finds, in parallel, the largest value of a given parallel
variable.

The algorithm for upward-inductive inheritance is more complicated. All the nodes under N are activated.
Of these we need to select all the nodes that have a value for the given attribute. Then the algorithm selects
the left-most active node. It retrieves its property value and then deactivates temporarily all the nodes that
do NOT have the same value. It counts the number of nodes that have the given value and then permanently

1The dependency on the machine size was pointed out to me by Lokendra Shestri and his students.
2This situation occurs for instance at written midterm cxaminations.
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deactivates all those nodes. It repcats the same step, if necessary, several times., In the end it reports all
found attribute values together with the number of occurrences. It is left to the user or a general purpose
reasoner to decide whether he wants to use the most commonly occurring value.

Clearly, this algorithm has a serial component, and the worst case retrieval time depends on the number
of different existing attribute values. This might result in very long response times for some attributes;
powever, for many practically useful attributes, such as color, there is a limited number of possible attribute
values. Our implementation is recursive. The following is an iterative version of the algorithm.

JCTIVATE-PROCESSORS-WITHE
PRENUM!! >=!! (!! PRENUM(N)) AND!! MAXNUM!! <={! (!! MAINUM(N))
AWD!! ATTRIBUTEE! <! (1t -1)
50 WHILE some processors are still active DO
ATT := (RETRIEVE-PVAR ATTRIRUTE!! (*MIN SELF~ADDR!!))
CNT := *COUNT processors with ATTRIBUTE!! =!! (1! ATT)
DEACTIVATE processors with ATTRIBUTE!! =!! (!! ATT)
(PRINT ATT CNT)
END-WHILE

4 ¢, EXPERIMENTAL RESULTS

We now describe six experiments that analyze the temporal behavior of downward inheritance and
spward-inductive inheritance. In the first experiment, 5 class trees {11 levels high), are created such that

:} the number of nodes increases from tree to tree. In every tree the root node is assigned a property and the

value of this property is queried at one of the leaf nodes. The purpose of this experiment is to show that the

4} inheritance algorithm is independent of the number of nodes in the tree.

The first column shows the number of nodes in the tree. The second column shows the run times

%} (in seconds} for downward inheritance. Experiments were repeated three times. Times for experiments
§ interrupted by dynamic garbage collections are omitted. Clearly the speed of inheritance is independent of

the pumber of nodes in the tree. The second experiment (third column) uses the same trees with upward-
inductive inheritance. One of the leaf nodes receives a property, and that property is queried at the root

s} node. The times required for upward inheritance grow very moderately with the size of the tree.

Number of Sons | Times for Downward Inheritance { Times for Upward Inheritance
15634 0.46 0.47 0.46 0.47 9.46

2558 0.46 0.47 0.48 0.54 0.57

3582 0.47 0.47 0.46 0.68 0.64

4350 0.47 0.45 0.45 0.74 0.72 0.72

5630 0.46 0.46 0.48 0.83 0.81 0.79

In the third set of experiments, 5 trees of nearly equal size are created; however, every tree has a different
height. The first column contains the number of levels in the tree, the second the number of nodes, and the
third the runtimes. The height of the tree has no influence on the runtime of standard inheritance. The
fourth experiment displays the use of the same class trees with upward-inductive inheritance. Runtimes are
in the fourth column. Again, tree height has no influence on the time for this operation.
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Inheritance in MaPKR 6 James Geller
Tevels | Number of Sons | Downward Inheritance | Upward Inheritance
5 1016 0.44 0.45 0.41 0.42 0.41
9 1006 0.46 0.45 0.46 0.42 0.43
13 1052 0.47 0.46 0.45 0.44 0.43 0.44
17 1102 0.49 0.47 0.48 0.44 0.45 0.45
21 1131 0.46 0.47 0.46 0.45 0.44 0.44

The fifth set of experiments creates 5 trees with 4 levels each and a different branching factor throughout.
The fist column shows branching factors, the second the number of nodes in the tree, and the third run
times. 3 The times are clearly independent of the branching factor. In the sixth experiment, the same sef
of trees is used for upward inheritance. Run times are in the fourth column. Times are growing slightly as
we would expect from our previous results with growing numbers of nodes.

Branching Factor | Number of Sons | Downward Inheritance | Upward Inheritance

2 14 0.62 0.60 0.63 0.48 0.52 0.48

4 84 0.64 0.63 0.58 0.48 0.43 0.45

6 258 0.60 0.53 .52 0.450.49 0.44

B 584 0.54 0.45 0.46 0.56 0.49

10 1110 0.61 0.58 0.55 0.52 0.59 0.57
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