Master’s Project Report

CS700B

Deep Web Mining

and

Enriching the Ontology-Supported Web Search

Submitted to the

Department of Computer Science

College of Computing Sciences

New Jersey Institute of Technology

In Partial Fulfillment of

The Requirements for the Degree of

Master’s of Science

By

Jalaj P Asher

JPA7@njit.edu
NJITID:216-31-975
 Project Advisor: Prof. James Geller

 Project Number:

1. Approval by Project Advisor.

Project Advisor: Dr. James Geller

Signature: ___________________

Date:_______________________
2. Approval by MS in CS Committee.

Project Number: _____________________
Submission Date: ____________________
Project Evaluation: ___________________
(By Graduate Advisor / Committee)

Date: ______________________________
Signature: __________________________
3. I hereby affirm that I have followed the directions as published in the program web page http://cs.njit.edu/~mscs/ and I confirm, that this report is own personal work and that all material other than my own is properly referenced.

Student’s Name: Jalaj P Asher
Student’s Signature:
Acknowledgment

Apart from my efforts, the tremendous success of this project depends largely on the encouragement and guidelines of many others. I take this opportunity to express my gratitude to the people who have been instrumental in the successful completion of this project.

Working on this project has been a great learning experience and I would like to show my greatest appreciation to Dr. James Geller for his constant support and help. Without his encouragement and guidance this project would not have materialized.

The guidance and support received from all the team members including Tian Tian who contributed and are contributing to this project, was vital for the success of the project. I am grateful for their constant support and help.

Abstract

The “Ontology-Supported Web Search” project aims at utilizing the vast information extracted from the Deep Web in assisting users in their search for Web pages by increasing the number of relevant Web sites that are returned. To that end, the project aims at mining the Deep Web for instances, building a domain specific ontology with those instances and finally providing the users with a friendly interface for analyzing the search terms entered and getting relevant Web sites, to show the contribution of the enriched ontology to Web search effectiveness. Mining the Deep Web for relevant instances for a particular ontology is an important process as this information is used in the development and enrichment of the ontology and thus making it more usable for indexing of the Deep Web sites.

This is an ongoing project. My predecessor developed the Musicians’ Ontology mining Wikipedia and populating the database with their information.
As a successor developer of this project, I worked on creating an error message detection module that could determine automatically whether a query passed to a particular Web page returns an error or relevant output. I also worked on developing a Deep Web Mining tool for gathering the relevant information, about “Basketball players,” which included gathering a list of their names along with useful information such as their names, dates of birth, places of birth, etc.
 Next was building a database depending on the type of ontology to be built. This tool consists of four modules, one that extracts links about a particular category on Wikipedia, a second to gather names from those links, a third to gather information from those links and finally a fourth to load an Oracle database with information. This information is then used for building and enriching the ontology for the “Ontology-Supported Web Search.”

Table of Contents
3Acknowledgment

4Abstract

71.
Introduction

1.1
What is the Deep Web?
9
81.2
Ontologies

1.3
Deep Web Mining
11
1.4
Role of Ontologies in search for Web pages
13
2. Previous Work
15
2.1
Enriching Ontology for Deep Web Search
15
2.2
Automatic Attribute Extraction from the Deep Web Data Sources.
16
3. My Work
18
3.1
Scenario
18
193.2
Methodology Used

3.2.1 Error Detection Module………………………………………………………….. 19

3.2.2 Deep Web Mining Module………………………………………………………..20
223.3
Phase 1-Research and Design

 223.3.1
Introduction

 3.3.2 Designing Error Message Detection Application…........…………………………23
 3.3.3 Why Wikipedia?
24
 3.3.4 Wikipedia Categories
25
 3.3.5
Designing BBPlayer Miner application’s Modules
26
283.4
Phase 2-Link Extraction Module Development

283.4.1
Introduction

283.4.2
Link Extractor module(LE)

283.4.3
Input for LE

3.5
Phase 3-Name Extractor Module and Background Information Extractor Module Development
30
3.5.1
Introduction
30
3.5.2
Name Extractor module (NE)
30
3.5.3
Working of BIE module
32
3.6
Phase 4-Database Entry Module Development
32
 3.6.1Introduction
32
 3.6.2 Database Entry Module
32
4.
Conclusions
34
References
36
Appendix A: User Manual
38
A.1 Installing Java [16]
38
A1.1 Downloading JDK 1.6
38
A1.2 Installing JDK 1.6 on Windows
38
A1.3 Configuring JDK 1.6 on Windows
39
A.2 Executing Error Message Detection application
40
 A.3 Executing BBPlayer Miner application……….………………………………………….40
Appendix B: Source Code
41
B.1 Source code -WikiConnect.java
41
B.2 Source code - GetPlayers.java
44
 B.3 Source code - GetBackground.java……………………………………………………….47
 B.4 Source code - DBConnection.java…...….………………………………………………..52
 B.5 Source code - ErrorMsg.java……………….……………………………………………..57

1. Introduction
1.1 What is the Deep Web?

“Deep Web” refers to Web pages dynamically generated via query interfaces implemented as Web forms or Web services. In fact the Deep Web is the World Wide Web content that is not part of the surface Web, only the surface Web is indexed by standard search engines. A great deal of information may be caught in the Internet, but there is a wealth of information that is deep and therefore missed. Most of the Web's information is buried far down on dynamically generated sites, and standard search engines do not find it. Traditional search engines cannot see or retrieve content in the Deep Web. These Web pages do not exist until they are created dynamically as the result of a specific search. Accordingly, the Web information can be classified according to the relevant Web pages retuned on a particular search by a user depending on its indexing by Web crawlers as illustrated in Figure 1 below.

[image: image1.png]tow

Relevant
information
s found

Relevant
information
s not found,

Level af uncertainty that information Is “out there” high

«
User s confident that
he information s

dexed

>
User s not confident
that the informaton is
indexed

‘Whether ornot the
information i indexed.
s not known the user

a1
BRIGHT ZONE

Suceessfl scarch

Az a3
REFRACTED ZONE

Search engine is bypassed

Missed

VEILED ZONE
Bl

Unknown

DARK Z0NE
B2 B

Unavailable

Due to its dynamic nature, existing Web crawlers cannot access the Deep Web. Thus, accessing and maintaining the huge amount of Deep Web information remain challenging research issues. Information in a Deep Web site is categorized as being either in textual or structured databases. While a textual database needs input keywords for searching text documents, a structured database requires a user to fill in input fields of a query interface. [8]
Deep Web content includes information in private databases that are accessible over the Internet but search engines are unable to crawl due to various reasons, for example, some universities, government agencies and other organizations maintain databases of information that were not created for general public access. Other sites may restrict database access to members or subscribers. [8]
The Deep Web contained somewhere in the vicinity of 900 billion pages of information. In contrast, Google, the largest search engine, had indexed just 25 billion pages [8]. The term, "Deep Web," was coined by “Michael K. Bergman” co-founder and chairman of BrightPlanet, an Internet search technology company that specializes in searching deep Web content. In their 2001 white paper, 'The Deep Web: Surfacing Hidden Value,' Bergman noted that the Deep Web was growing much more quickly than the surface Web and that the quality of the content within it was significantly higher than the vast majority of surface Web content. Although some of the content is not open to the general public, BrightPlanet estimates that 95% of the Deep Web can be accessed through specialized search [9].
1.2 Ontologies
Ontology in computer science and information science is a formal representation of a set of concepts within a domain and the relationships between those concepts. It is used to reason about the properties of that domain and may be used to define the domain. In the words of Thomas Gruber, “An ontology is an explicit specification of a conceptualization. A conceptualization is an abstract, simplified view of the world that we want to represent. If the specification medium is a formal language, the ontology defines a representational foundation” [2].
For example, Figure 2 gives a pictorial representation of a roadway ontology which consists of various instances and their corresponding relations.

[image: image2.jpg]Hierarchical Road

a computing ool for

Sevader

has tool

used for

is located on

o
/
&

:
Cycle path Pavement

According to Geller’s more precise and detailed definition of ontology, it is a graph (the data structure). Every node of this graph stands for a “concept” which is a unit that one can think about and corresponds to words or short phrases. Typically, a concept corresponds to a noun or noun phrase like house, man, car, New York, etc., but that is not an obligation [1].

The nodes of the ontology are connected by different kinds of links. The most important kind of link is called IS-A link. The nodes and IS-A links together form a Rooted Directed Acyclic Graph (Rooted DAG). Rooted means that there is one single "highest node" called the Root. All other nodes are connected by one IS-A link or a chain of several IS-A links to the Root. In our definition IS-A links points upward. If an IS-A link points from a concept X to a concept Y that means that every real world thing that can be called an X also can be called a Y. In other words, every X IS-A Y. (Some people have IS-A-like links but pointing downwards.) Examples: A car IS-A vehicle. A dog IS-A animal [1].

Acyclic means that if you start at one node and move away from it following an IS-A link, you can never return to this node, even if you follow many IS-A links. Most nodes also have other information attached. This information includes attributes, relationships and rules [1].
Ontologies represent information in a form that can be used for some forms of reasoning that are at least partially similar to human reasoning. This includes inheritance reasoning, transitivity reasoning and classification. A concept may inherit information from several other concepts. This is called multiple inheritance. Transitivity reasoning corresponds to chaining of IS-A links. Classification means that if we know the attributes of a concept we can decide under which other concepts it belongs in the ontology. [8]
1.3 Deep Web Mining
Just because a Web search engine can't find something doesn't mean it isn't there. The Deep Web is a vast information repository not always indexed by automated search engines but readily accessible to enlightened individuals. The Shallow Web, also known as the Surface Web or Static Web, is a collection of Web sites indexed by automated search engines.
A search engine robot or Web crawler follows URL links, indexes the content and then relays the results back to “search engine central” for consolidation and user query. Ideally, the process eventually scours the entire Web, subject to vendor time and storage constraints. Most of the time, information is stored on Web sites in such a way that the user initially comes in contact with what are called Menu pages. Menus are numerous and too thin i.e. they are just having basic information and users are driven through an endless series of nested menus in order to reach important information stored on backend inside content pages as shown in Figure 3 below. [8]
[image: image3.png]Menu pages
o0 DEEP

Menus are numerous and

tao thin. Users are driven
through an endless series
of nested menus

[E] [B] Content pages

The crux of the process lies in the indexing. A Web crawler does not report what it can't index.
And we know the search result for a particular Web page in terms of its relevance depends greatly on that. This was a minor issue when the early Web consisted primarily of static generic HTML code, but contemporary Web sites now contain multimedia, scripts and other forms of dynamic content. The Deep Web consists of Web pages that search engines cannot or will not index. The popular term "Invisible Web" which refers to the Deep Web is actually a misnomer, because the information is not invisible, it's just not indexed by the Web crawler. The Deep Web is five to 500 times as vast as the Shallow Web, thus making it an immense and extraordinary online resource. The major search engines together index approximately 20% of the Web, and thus missing 80% of the content [9].
Search engines typically do not index the following types of Web sites:

· Proprietary sites

· Sites requiring a registration

· Sites with scripts

· Dynamic sites

· Ephemeral sites

· Sites blocked by local webmasters

· Sites blocked by search engine policy

· Sites with special formats

· Searchable databases
Proprietary sites require a fee. Registration sites require a login or password. A Web crawler can index script code (e.g., Flash, JavaScript), but it can't always ascertain what the script actually does and the Web crawler may get trapped within infinite loops. Dynamic Web sites are created on demand and have no existence prior to the query and limited existence afterward [14].

Webmasters can request that their sites not be indexed (Robot Exclusion Protocol), and some search engines skip sites based on their own inscrutable corporate policies. Not long ago, search engines could not index files in PDF, thus missing an enormous quantity of vendor white papers and technical reports, not to mention government documents. Special formats become less of an issue as index engines become smarter. The most valuable Deep Web resources are searchable databases. There are thousands of high-quality, authoritative online specialty databases. These resources are extremely useful for a focused search [14].
1.4
Role of Ontologies in search for Web pages

Recently, there has been a growing interest in Web searches that are intended to locate information that exists in the backend data bases of Web services. Web sites in E-commerce domains such as airfares, automobiles, books, car rentals, hotels, jobs, movies and music records usually store huge amounts of information, which is of interest to many users, in their backend databases. [8]
Information in E-commerce backend databases is usually not “visible” to general search engines. The information in backend databases is often called Deep Web data. Finding the relevant E-commerce sites and accessing, retrieving and indexing the huge amounts of Deep Web data raises challenging research issues. [8]

Ontology could play an important role in assisting users in their search for Web pages. Domain ontology can be constructed that support users in their Web search efforts and that increase the number of relevant Web pages that are returned. To achieve this goal the Deep Web information, which consists of dynamically generated Web pages, which cannot be indexed by the existing automated Web crawlers, is combined with ontology. [8]
The process of building ontology consists of several steps, as shown in Figure 4. Firstly, the possible search terms, called attributes of Deep Web data sources, are automatically extracted from a static collection of Deep Web sites. Secondly, a separate domain ontology is built for each domain, using the extracted search terms. Thirdly, by probing a few Deep Web sites, domain terms from the backend databases are extracted. Next, the domain ontology is extended to include these Deep Web terms as instances. Finally, the domain ontology is extended with relationships between instances [3].

[image: image4.emf]Extraction of Search Terms

Generation of a Domain Ontology

Extraction of Deep Web terms from a (few)

sample site (s) by a probing methodology

Extension of the domain ontology

Suggestion of other terms to the users, closely related to

the user’s terms in the domain

Perform a Deep Web search

Entry Pages of Deep Web sites

Instances Relationships between Instances

An Extended Domain Ontology

An Extended List of Search Terms

Pre-processing Steps

At Searching time

2. Previous Work
The previous work on this project included addressing the problems of extracting instances from the Deep Web, enriching a domain-specific ontology with those instances, and using this ontology to improve Web search. In the initial phase of the project, information was gathered about all the airports located across North America by mining the Deep Web for building an `Airports` ontology based on that. This information was then used to provide users with additional search terms for making the search more specific and getting more relevant Web pages. The effectiveness of this methodology was shown by comparing the number of relevant Web sites by a search engine with a user’s search terms only, with the web sites found when using additional ontology-based search terms. In the current phase of this project the domain has been extended to searching out information about famous people like basketball players.[8]
2.1
Enriching Ontology for Deep Web Search

Enrichment of ontology is a process that extends it by adding concepts, instances and new relations between concepts. In the related paper [3], a method for extracting instances from the DW is based on developing “robots” (agents) that send many queries to the same DW site to extract as many data values as possible. When a robot encounters an input field, it may enter random values or leave the field empty and then submit the page to elicit an informative response [3].
Figure 5 shows the workflow for extending the ontology with instances. The concept discovery of the robot is guided by a human in its initial stage. Initial pairs of a concept and its corresponding instances are defined, which we call a robot image. The robot submits input values into the query interface. If the input values are not suitable for the form, most Web sites display error messages. The analysis of the error messages often gives useful clues to the robot to guess suitable input values and launch better probing queries. Thus, the queried Web sources may provide information about concepts, instances and semantic relationships, which is recorded in the ontology [3].

[image: image5.jpg]Some concepts in Trstances in e
< cham tevel antology Guer Inerfaces

Fobatimage

St aWeb dataz ouros
from the dataset

unoh prabing qusres

htan query reculs

Evatiate
EvrorMiesage

Feteve consepts Wi
inctanca

Recard data evel amiogy
agment

Burd btz
Level Oriblogy.

2.2
Automatic Attribute Extraction from the Deep Web Data Sources.

Understanding the attributes and contents of Deep Web data sources is also important in order to locate the most relevant Deep Web data sources for a user, since these sources use different attributes to access contents. The related paper [4], presents a novel approach to automatically extracting attributes from query interfaces in order to address the current limitations in accessing Deep Web data sources. It introduces the Semantic Deep Web for utilizing an ontology to determine attributes to access the Deep Web [4].

In the general sense, an attribute of a Web data source is any item of information that describes this source. The more specific meaning of “attribute” is derived from the HTML/XML syntax. A tag of HTML consists of a mandatory name between angular brackets, which may be followed by optional attribute/value pairs. As an example, the Web page in Figure 6 is generated by the HTML code in Figure 7, which contains several attribute/value pairs. Thus the tag <SELECT> contains the attribute “size” with the value 2. The attribute and the value of such a pair are separated by an equal sign (=) [4].
[image: image6.emf]

3. My Work

3.1 Scenario

The goals of this project, as stated earlier, are (1) to build an error message classification application and (2) to extract instances from the Deep Web, and then enrich a domain specific ontology with those instances. For this purpose, I have worked on classifying error messages based on manual checking of Websites and then using common error messages to check whether a query that has been entered by a user actually returns some relevant output or gives you an error. I have also developed a Deep Web Mining tool for gathering information and building a database for loading an ontology of `Basketball players,` which can be easily be extended to `Researchers,` etc.
I have developed the application in Java. It consists of four modules. The first module, i.e., Link Extractor module, is used for extracting relevant links from the Web to get the names of basketball players and links to their background information.
The second module, i.e., the Name Extractor module, is used to get the links from the first module and extract links with player names in it. The third module, i.e. Background Information Extractor, gathers information about basketball players from the links returned as output from the second module. The fourth module, i.e., the Database Entry module loads the extracted information into an Oracle database. The table “BASKETBALL_PLAYERS” is used to store the list of all the players along with their background information. This information is then used for building and enriching the ontology for the Ontology-Supported Web Search project.
3.2
Methodology Used

3.2.1 Error Detection Module

The development of the Error Detection Module started with manually searching over a hundred Websites with text boxes. It is not possible to query Websites if they do not have text boxes to pass queries in them, unless they are passed via URL. The next step was to assemble a list of error messages from these Websites and classify them. They were mainly classified as user- defined, for example “zero matches found,” “no such string found,” ”did you mean,” etc. and system-based errors for example “404 error ,” “server error ,” “500 error,” etc.
These errors are some of the common ones returned by these Websites, to report that a query incompatible with the Website had been entered by the user or that the Website itself had issues processing queries because of problems faced by servers.
There were many problems that this module had to deal with before an application could be built to check Web pages against error messages. First, not all Websites had text fields to pass queries. Secondly, no POST queries could be analyzed for errors, as the whole Web page structure had to be taken into account to post queries to it. This is not possible by a single application, as each Web page has a different structure, which makes it difficult to analyze the right text box, if any. Another important issue was certain Websites did not allow using automated queries, either through a disclaimer or by using captchas, i.e. human interaction based control queries.

To circumvent these issues, an application was implemented, called Error Message Detection (EMD) application, to run only for GET queries wherein the query was passed via the URL. In this scenario the user could repeatedly pass the URL to a Website without actually going with a browser to the Website to check whether the query would work on it or not. Here too, each URL is unique to a Website. Hence the user has to check the part in the URL where the query is being passed. He has to repeatedly change that portion in the URL. The Web page returned is then checked against the classified errors by the application to determine if the Web page contains an error message or not.
3.2.2 Deep Web Mining Module

For Deep Web Mining I developed a Java application called, BBPlayer Miner, used for extracting instances from the Deep Web. The extraction is done by sending multiple queries to the same Web site to get as many data values as possible. The process includes first of all finding a suitable Web site that has all the information regarding basketball players. Then the mining application submits input values into the query interface by analyzing the structure of that particular Web page and extracts as many names of basketball players as possible. [8]

One of the problems faced during the extraction was that most of the Web sites list the basketball players in different formats. So it was very difficult for the application to determine if the Website listed players according to teams, names, leagues or some other feature.
Another problem faced was that format of the background information of players on Web pages varied enormously. For example, birth date was referred to as date of birth or born or some other terms and mentioned at several places in the Web page in different formats like MM-DD-YY, MM-DD-YYYY, DD-MM-YYYY and so on [8]. So, I needed to make sure that this is the information we are looking for and then extract it in the format we needed.

s
For the same purpose the information extracted from the Deep Web needs to be filtered and scanned over and over again by applying various filtering techniques that I developed depending on the type of information required to be extracted. This is, in fact, part of Background Information Extractor module [8]. It takes the information generated by Name Extractor module, i.e., the links with the names of basketball players and then proceeds to a Deep Web site, namely a page on Wikipedia, which has information about players, like their names, locations, ages, etc. The first part is gathering the information from Websites or a Web page of a Website. This information is then processed, i.e., irrelevant information is filtered out. The process includes parsing Web pages and then analyzing their structure, i.e., the attribute/value pairs of the HTML code as they define the only way for accessing the form information, before this information is stored the database. The work flow for this process is depicted in Figure 8.

 Basketball player database

3.3
Phase 1 - Research and Design

3.3.1
Introduction

The first phase of the project was to create an error detection module that could detect errors in case an invalid query was passed to a Website. This involved weeks of manual browsing of Websites and passing them queries, both valid and invalid, to understand how the Websites process these queries and generate outputs for each of them. Understanding and classifying user errors is the biggest challenge, as system defined errors are standardized, but user-defined errors are coded by individuals relevant to their Websites and vary considerably. Hence a pattern needs to be found that could define how an error message looks.

This posed a big challenge for the EMD application as it can determine if the Web page returned a standardized system error, but user defined errors tend to vary based on the preferences of Website designers. Also, off late many Websites have started giving suggestions even for invalid queries unless total garbage values are passed to the Website. This makes it tougher to detect errors except for the string “did you mean <query string suggestion>” which suggests that the query might have been invalid.
Some of the system errors include “4xx” or 500 errors. User-defined errors would be, for example “did you mean xyz,” ”Zero matches found,” ”No such results found,” ”Invalid entry,” etc.

Automating query submission to Websites in general was a challenge as some Websites don’t allow it and again the structure of each of them is different. So I decided to build the EMD application so that it would accept queries as part of the URL or “GET queries” and then search the returned Web page for the error messages classified by me. Though this limits the kind of Websites that would be checked for errors, it made sure that no automation legalities of the Websites were violated and also gave better results for error checking. It is not possible to generalize error processing to non-URL based query passing, as it requires an understanding of the Web page structure. A Web service for that particular Website has to be created, which is a task by itself depending on the complexity of the Website or the services provided by it in terms of the APIs exposed by the Website.
When the URL is being passed by the user to the Website it is not possible to have a generalized parser for all URLs as each URL has a specific point at which the query is passed. Thus the user has to manually determine that point and accordingly change the query string and pass it to the program to find out whether it matches any error message strings.

The second phase of the project was to extract details of basketball players using Deep Web mining. This included one of the biggest challenges in Deep Web mining, which is finding a suitable Website for information extraction. For this, I scanned through several Web sites having information about basketball players and the web site I chose for extracting the required information was “Wikipedia” [12]. Along with that I also worked on the design of the application, which consisted of four modules, and the “information flow” and “functional requirements” of each specific module.
3.3.2 Designing Error Message Detection application
EMD is a single module application that is used to accept a URL from the user. This URL is supposed to be a “GET” query-based URL. The sample of a “GET” query-based URL is shown in Figure 9 below.

Figure 9: Sample: Get query

Here the query part has been highlighted in bold in the URL shown above. Since the position where the query will be passed in a URL varies, the user has to change the query in the highlighted portion and repeatedly pass the URL to the application.

The page from this URL (i.e. the Web page content) is then compared against a list of errors, either system-based or user-defined, to find out if the query was valid or not.
The EMD application sends the result to the screen (Figure 10).The output shows the different checks made about the website and the final result. One of the checks made is whether the Website allows user interaction or not and a relevant true or false output is given. Next a check is made whether user is allowed to submit dynamic queries, which is a Boolean value. One more check is whether the Website returns results when queried and this is a Boolean value again. The output is a message with all three Boolean values and a message saying “error found on page” or “error message not found” as shown in Figure 10 below.
[image: image7.png]User Interaction allowed ? false
can Input 2true

can Output 2false

erzor found on page

Figure 10: Output of the application
3.3.3 Why Wikipedia?

Wikipedia is one of the most detailed and enormous information encyclopedias for everything, including famous peoples. After going through the structure of information stored, Wikipedia was the best possible match for extracting information about basketball players, and at the later stage of my project could be extremely useful for extending the scope of BBPlayer Miner application to various other categories of famous peoples like researchers, actors and so on. Along with names it also had all the information that was needed for building the ontology like player names, date of birth etc. about most of the basketball players. [8]
3.3.4 Wikipedia Categories

The desired information is stored in Wikipedia, based on various Wikipedia categories. Categories are a software feature of Wikipedia, which enables pages to be added to automatic listings. These help structure a project such as Wikipedia by grouping together pages on similar subjects. A category page is a page in the “Category” namespace. The page “Category:Name” corresponds to the category called “Name.” For example, “Category:Basketball players” corresponds to the Wikipedia category relating to all the basketball players in America [15].

Categories can be defined as subcategories of other categories, allowing easy navigation between connected subject areas via tree-like structures. Wikipedia’s categories form a hierarchical structure, consisting of overlapping trees. Because subcategories can have more than one immediate parent, the system as a whole is not a tree, but rather approximates a directed acyclic graph as depicted in Figure 11. [8]
[image: image8.png]Academia

Categories

Wikipedia cleanup cé

Wikipedia maintenance categorles sorted by month

Wikipedia categories diferent from Wikimedia C

[i totc dosstcations | | knowede
I i
\ Science Fundamental
sy s Socety
\
Haman selences e
arzstons | [rtea reory soce scences [r—

Cuttural studies

Structure

Bellef Abstraction

Sociology

Scentfc ascpines | | Priosopty /
.

-

Categories are of two basic types:

· Topic categories – These contain articles on a particular topic.
For example, “Category:Basketball Players” contains articles on subjects related to basketball players.

· List Categories – These contain articles whose subjects are members of a particular set.

For example, “Category:Musicians” contains articles on musicians.
BBPlayer Miner application parses the Web pages of basketball players in Wikipedia extracts the information needed. This is done by analyzing the categorical index at Wikipedia, finding a suitable match and then sending queries to the Wikipedia API’s to find the start of a current Wikipedia category list and finally extracting the useful information from that Web page while remembering the next linked URL (Uniform Resource Locator). [8]
3.3.5
Designing BBPlayer Miner Application’s Modules

I designed the BBPlayer Miner application’s information and process flow for a successful extraction process while carefully following the functional requirements to include the Deep Web mining techniques. The final design consisted of four functional modules as shown below

· The Link Extractor module

· The Name Extractor module

· The Background Information Extractor module

· The Database Entry module.
Each module of the application was developed carefully to make it not only easy to debug but also make it as flexible as possible in its process flow.

The Link Extractor module gathers links of basketball players according to their names.

The Name Extractor module extracts the names from the links that we received as output from the Link Extractor.

The Background Information Extractor module uses the output of the Name Extractor module as feed to extract useful information, like date of birth, place of birth, league, etc., which are used to build the ontology.

The Database Entry Module is used to interact with the Oracle database and store all the extracted information in the required database table. Figure 12 shows the flow of data between modules.

3.4
Phase 2 – Link Extraction Module Development

3.4.1
Introduction

The second phase of the project consisted of developing the BBPlayer Miner application code, starting with the Link Extraction module. It was needed for mining and parsing Wikipedia pages to get a list of all the people listed as basketball players in the Wikipedia Database. BBPlayer Miner application’s user interface starts execution by asking the user to select ‘y’ or ‘n’ to start the application.
3.4.2
Link Extractor module (LE)

I developed the first module of the BBPlayer Miner application called the Link Extractor module (LE). The LE module is used to extract the links from the basketball player Wiki page to get the links to all the players in the Wiki database. The user selects if he/she wants to start extraction of “Basketball Players.”
The LE goes to the Wikipedia seed page: “http://en.wikipedia.org/wiki/ List_of_National_Basketball_Association_players” provided in the module, applies the Deep Web mining techniques and parses the information present on that Web page which consists of links to the players. Depending on the information found on that Web page the LE only stores the links relevant to the players’ information. It then passes all the links to the next module to get the links of players’ names and their background information from the links of their name listed on the page.
3.4.3
Input for LE
The input for BBPlayer Miner application’s LE module is the seed page, which contains links of players. These are links of players having last names from A to Z, along with other irrelevant links. The user selects yes or no, if they want to start the extraction or not. If the user chooses to start the extraction process the module takes over and then starts searching for the links to various players. Here all of them are National Basketball Association players and so are easily categorized. The links are filtered for relevant information i.e., only the links pointing to basketball players are passed to the Name Extractor module.
The output generated by the LE module is a list of links of players alphabetically originating from A to Z. The LE module was successful in extracting the links to the names of basketball players. Figure 13 shows the process flow of the LE module.

 Yes

 No
 No

 Yes

3.5
Phase 3 – Name Extractor Module and Background Information Extractor Module Development

3.5.1
Introduction

The next phase in BBPlayer Miner included development of both the Name Extractor module (NE) and the Background Information Extractor module (BIE). NE provides the links to all the player pages that are extracted by LE, starting with players with last names from A to Z. The BIE is the heart of this application and is used to extract all the information required for the list of players that was collected by the NE. If it finds the information then it stores it along with the name of the player or else it goes to the next link, while keeping track of what information was found for whom.

3.5.2 Name Extractor module (NE)

The NE module parses the Web pages from the links that they got from LE. These are links to the Web pages of players mentioned alphabetically by their last names from A-Z. This module goes to each page and extracts all links from that page containing the names of players. It filters irrelevant links from the Web page and the links of players that do not have links to their background information before passing them to the BIE.
3.5.2
Background Information Extractor module (BIE)

BIE goes through the links of players, one by one, and finds the Web page relating to each particular player. It then starts mining the page for the required information. It scans each line, parsing only the line that contains the name information. Next the information for date of birth is parsed by looking for the word “born” and removing the HTML tags around it. There are many ways this information is represented in the Web page and most of the patterns have been taken care of while parsing to get the right information. But there are still some patterns that sometimes arise when page structure is changed. This results in incorrect parsing and wrong data being collected. There are instances when this happens, but the percentage is too low compared to the information being mined about players. Similarly the place of birth of each player is also extracted. This is one field that is not available on each Web page. Hence, sometimes a null value is passed in that field. The league field mentions the league, the player belongs to.

The work flow for BIE is as shown in Figure 14.

 Yes

 No

3.5.3
Working of BIE module
The input for BIE is the output generated by the NE module, one at a time, of all the basketball players. Each Web page is parsed, information, i.e., name, date of birth, place of birth and league of each basket ball player is gathered from the Web page and is stored in a text file named “basketball.txt.” The file then serves as input for the database.
3.6
Phase 4 – Database Entry Module Development

3.6.1
Introduction

The Database Entry module is the final one for BBPlayer Mining application. All the information that was collected till now about all the players including the names and the background information is stored in an Oracle database.
3.6.2
Database Entry Module

The Database Entry (DBEntry) module is used to add all the data from the text file generated by the BIE module, which is the players’ names with their background information.
The DBEntry does this by connecting to the Oracle database by using the Java Database Connectivity API and then loading the information into the appropriate table depending on the type of information to be loaded.

I have used an Oracle table to store the “Players” information

· Table BASKETBALL_PLAYERS contains the list of all the players and the information relating to that player in the columns in the following order - PlayerName, DateofBirth, PlaceofBirth, League.

The DBEntry loads the player’s information into the Oracle table. This module can be used for storing information in other tables also, as and when they are created to store information of other details extracted by the other applications.
4. Conclusions
The “Deep Web Mining and Enriching the Ontology-Supported Web Search” project’s objective is to enrich a domain-specific ontology for “Basketball players,” and due to the success of its powerful Deep Web mining techniques, can be extended to gather the list of any Wikipedia category which can be researchers, cars, actors, and many others.

During the designing of BBPlayer Miner application it was my utmost concern to make the application as modular as possible so as that any further development can be easily integrated in such a way that the final application is not only easy to debug, but also scalable for future research. During the initial design phase of the application, I carefully listed all the modules and their “information flow” and “functional requirements”. This allowed proper development of these modules with a clear understanding of their interaction with each other.
The Mining application consists of four modules. (1) The Link Extractor module that gathers lists of any basketball players. (2) The Name Extractor module that uses the output of the Link Extractor as feed to extract links with player names. (3) The BackGround Information Extractor module which is used to build up the ontology. (4) The Database Entry module is used to interact with the Oracle database and store all the extracted information in the required database tables.

The Link Extractor module accesses the appropriate Wikipedia categories seed page, parses the information present on that Web page and gathers relevant links. The Name Extractor module then parses those links to get further links to player’s background information and filter links that do not have any information about the players. The Background Information Extractor module takes as input the list of all the names links generated by the Name Extractor module, then goes to Wikipedia for searching the required information using the powerful Deep Web mining techniques (including pattern matching, regular expressions, etc.) depending on the type of Web page patterns, to be extracted. If it finds the information then it stores it along with the name of the player or else it goes to the next link, while keeping track of what information was found for whom.

The Database Entry (DBEntry) module is used to add all the data from the load files generated by the other Mining application’s modules to the Oracle database by using the Java Database Connectivity API and then loading the information into the tables Basketball_Players, etc., depending on the type of information to be loaded.

I was able to extract 3213 players names, 3211 dates of birth, 3027 places of birth and 3213 leagues. This difference in values of the players and their respective fields is because sometimes this information is not mentioned on Web pages or the application has not been able to parse the information considering that their pattern was very different than rest of the Web pages.
References
1. James Geller. Definition of Ontology, http://web.njit.edu/~geller/what_is_an_ontology.html, February 16, 2009.
2. Thomas Gruber (2008), Ontology. Entry in the Encyclopedia of Database Systems, Ling Liu and M. Tamer Özsu (Eds.), Springer-Verlag. February 16, 2009.
3. Yoo Jung An, Soon Ae Chun, Kuo-chuan Huang, James Geller: Enriching Ontology for Deep Web Search. DEXA 2008: 73-80, January 24, 2009.
4. Yoo Jung An, James Geller, Yi-Ta Wu, Soon Ae Chun: Semantic Deep Web-Automatic Attribute Extraction from the Deep Web Data Sources, March 12, 2009.
5. Yoo Jung An, Soon Ae Chun, Kuo-chuan Huang, James Geller: Assessment for Ontology Supported Deep Web Search, March 14, 2009. March 7, 2009.
6. Yagnesh Bhat, Building Ontologies for Ontology Enabled Web Search, NJIT, CS Department, Fall 2009.
7. Tian Tian, Enriching Multi-Domain Ontology for Web Search, PhD Project Proposal, NJIT, CS Department, Fall 2009.
8. Ashish Rajbar, Deep Web Mining and Enriching the Ontology Enabled Web Search. MS Project Report, CS Department NJIT, Fall 2009.
9. http://en.wikipedia.org/wiki/Google_search, April 21, 2010.
10. http://brightplanet.com, February 21, 2010.
11. http://www.cybergeo.eu/docannexe/image/8322/img-1.jpg, March 12, 2010.
12. http://www.wowter.nl/blog/uploaded_images/ford-795385.gif, March 15, 2009.
13. http://www.wikipedia.org/, March 1,2010
14. http://en.wikipedia.org/wiki/Wikipedia:Categorization, March21, 2010
15. http://www.computerworld.com/, April 16,2010
16. http://en.wikipedia.org/wiki/Portal:Contents/Categorical_index , March 21 2010
Appendix A: User Manual
A.1 Installing Java [16]

A1.1 Downloading JDK 1.6

You can download the latest JDK 1.6 from http://java.sun.com/javase/downloads/index.jsp. The Windows version of JDK download file is named jdk-6-windowsi586.exe.

NOTE: New versions or updates may be available. If you download a new version or an update version, the file name may be slightly different from jdk-6-windowsi586.exe.
A1.2 Installing JDK 1.6 on Windows

Follow the steps below to install JDK 1.6:

1. Double click jdk-6-windows-i586.exe to run the installation program. You will see the JDK License dialog displayed.

2. Click Accept to display the JDK Custom Setup dialog.

3. You may install JDK in a custom directory. For simplicity, don’t change the directory. Click Next to install JDK. After a while, the JRE Custom Setup dialog is displayed.

4. You may install JRE in a custom directory. For simplicity, don’t change the directory. Click Next to install JRE.

5. After installation completed, the complete dialog is displayed. Click Finish to close the dialog.
6. For testing the installation just open Windows command prompt through

Start(Run(: typing `cmd` and type `javac` at the command prompt this will give you the listing of all the java classes installed.

A1.3 Configuring JDK 1.6 on Windows
To configure JDK is to make it available in the operating system so that Windows can find your JDK commands such as javac.

To configure JDK on Windows NT, 2000, ME, and XP, set the environment variables as follows:

1. Right-click the My Computer icon on your desktop to display a context menu. Choose Properties from the context menu to open the System Properties window.

2. In the System properties window, click Environment Variables in the Advanced tab to display the Environment Variables window.

3. You can set or modify user variables or systems variables. User variables affect the individual users and system variables affect all the users in the system. In the User variables section, select PATH and click Edit if PATH is already a user variable. Otherwise, click New to display the New User Variable Window.

4. Type PATH in the Variable field and c:\Program Files\Java\jdk1.6.0\bin;%path% in the Variable Value field. Click OK.

NOTE: You don’t have to reboot the computer, but you have to open a new command window to use JDK commands.

NOTE: If you download a new version or an update version, the directory name jdk1.6.0 may be slightly different.

For example, the directory name is jdk1.6.0_02 for JDK 1.6 Update 2.
A.2 Executing Error Message Detection Application

1. Compile java file ErrorMsg.java by typing javac ErrorMsg.java
2. This will generate ErrorMsg.class file in the same directory.
3. Run the application by typing java ErrorMsg at the command prompt in the same directory as the file is located. The same holds true for compiling also.
4. Follow the instructions that are then shown on screen.
A.3 Executing BBPlayer Miner application
1. Compile java files WikiConnect.java, GetPlayers.java,GetBackground.java, DBConnection.java . Method to do this is javac <file name>. For example,

type “javac WikiConnect.java“ and “javac GetPlayers.java“ at command prompt.

2. This will generate java class files in the same directory. For example,

WikiConnect.class and GetPlayers.class

3. Run the java Application by executing the class file WikiConnect.class to get the text file and then Type “java WikiConnect” at the command prompt.

4. Similarly run DBConnection.java at the command prompt to load the data in the database.

4. This will start the execution of BBPlayer Miner application and the user interface of application will appear on the command prompt.

5. Please enter the appropriate module you wish to execute and follow the instructions on screen.
Appendix B: Source Code
B.1 Wikiconnect.java
import java.io.*;

import java.util.*;

import java.util.regex.*;

import java.net.*;

import javax.swing.text.*;

import javax.swing.text.html.*;

public class WikiConnect {

ArrayList storelinks=new ArrayList();

GetPlayers gp=new GetPlayers();

static Reader getReader(String uri)

throws IOException {

//
if (uri.startsWith("http:")) {

// get from Internet.

URLConnection conn = new URL(uri).openConnection();

return new InputStreamReader(conn.getInputStream());

//
}

}

public void getPageLinks(String str){

EditorKit kit = new HTMLEditorKit();

Document doc = kit.createDefaultDocument();

doc.putProperty("IgnoreCharsetDirective",

Boolean.TRUE);

try {

ArrayList al=new ArrayList();

Reader rd = getReader(str);

StringBuffer sb=new StringBuffer(str);

// Parse the html document.

kit.read(rd, doc, 0);

//Iterate through html document

ElementIterator it = new ElementIterator(doc);

javax.swing.text.Element elem;

while ((elem = it.next()) != null) {

MutableAttributeSet s = (MutableAttributeSet)

elem.getAttributes().getAttribute(HTML.Tag.A);

if (s != null) {

sb.append(","+s.getAttribute(HTML.Attribute.HREF));

}

}

String linkstring=sb.toString();

StringTokenizer st=new StringTokenizer(linkstring,",");

while(st.hasMoreTokens()){

String tok=st.nextToken();

if(tok !=null){

storelinks.add(tok);

}

}

System.out.println("links are :"+linkstring);

discardLinks(storelinks);

} catch (Exception e) {

e.printStackTrace();

}

}

void discardLinks(ArrayList al){

Iterator itr=al.iterator();

ArrayList gotLinks=new ArrayList();

while(itr.hasNext()){

String links=(String)itr.next();

String matchLinks = links==null ? "": links;

//
System.out.println("Strings in match"+matchLinks);

if(matchLinks.contains("/wiki/List_of_National_Basketball")){

String fullLink="http://en.wikipedia.org"+matchLinks;

System.out.println("matchLinks---" +fullLink);

gotLinks.add(fullLink);

}

else{

continue;

}

}

getNames(gotLinks);

}

public void getNames(ArrayList al){

gp.getNames(al);

}

public static void main(String[] args) {

try{

System.out.println("Welcome to BBPLAYER MINER ");

System.out.println("This application is made by JALAJ ASHER");

System.out.println("Once you start this application it will mine all the Basketball Players");

System.out.println("To insert the values in database please run DBConnection.java");

System.out.println("Do you want to start the application ? Press 'y' for yes and 'n' for no");

BufferedReader in = new BufferedReader(new InputStreamReader(System.in));

 String input=in.readLine();

 if("y".equals(input)){

WikiConnect wc=new WikiConnect();

wc.getPageLinks("http://en.wikipedia.org/wiki/List_of_National_Basketball_Association_players");

 }

 else{System.out.println("Thankyou for accessing this application you are now exiting!!!!!!");}

}

catch(Exception e){

System.out.println("Page not parsable with this application");

e.printStackTrace();

}

}

}

B.2 GetPlayers.java

import java.util.*;

import java.io.*;

import java.net.*;

import javax.swing.text.Document;

import javax.swing.text.EditorKit;

import javax.swing.text.ElementIterator;

import javax.swing.text.MutableAttributeSet;

import javax.swing.text.html.HTML;

import javax.swing.text.html.HTMLEditorKit;

public class GetPlayers {

int count;

ArrayList storeLinks=new ArrayList();

GetBackGround gbg=new GetBackGround();

String linkstring;

static Reader getReader(String uri)

throws IOException {

//
if (uri.startsWith("http:")) {

// get from Internet.

URLConnection conn =

new URL(uri).openConnection();

return new

InputStreamReader(conn.getInputStream());

}

public void getPageLinks(String str){

storeLinks.clear();

EditorKit kit = new HTMLEditorKit();

Document doc = kit.createDefaultDocument();

doc.putProperty("IgnoreCharsetDirective",

Boolean.TRUE);

try {

Reader rd = getReader(str);

StringBuffer sb=new StringBuffer(str);

// Parse the html document.

kit.read(rd, doc, 0);

//Iterate through html document

ElementIterator it = new ElementIterator(doc);

javax.swing.text.Element elem;

while ((elem = it.next()) != null) {

MutableAttributeSet s = (MutableAttributeSet)

elem.getAttributes().getAttribute(HTML.Tag.A);

if (s != null) {

sb.append(","+s.getAttribute(HTML.Attribute.HREF));

}

}

 linkstring=sb.toString();

StringTokenizer st=new StringTokenizer(linkstring,",");

while(st.hasMoreTokens()){

String tok=st.nextToken();

if(tok !=null){

if(tok.contains("#")||tok.contains("/w/")|| tok.contains("List")||tok.startsWith("_")||tok.contains(":")||tok.contains("Main")||tok.contains("List")){

continue;

}

else{

count++;

storeLinks.add(tok);

}

}

}

System.out.println("links are :"+linkstring);

callBackground(storeLinks);

System.out.println("Count is "+count);

} catch (Exception e) {

e.printStackTrace();

}

}

public void getNames(ArrayList al){

Iterator itr=al.iterator();

//
itr.next();

while(itr.hasNext()){

String link=itr.next().toString();

getPageLinks(link);

}

}

void callBackground(ArrayList al){

try{

ArrayList finallist=new ArrayList();

Iterator itr=al.iterator();

while(itr.hasNext()){

String passedLinks=itr.next().toString();

if(passedLinks.contains("=")||passedLinks.contains("roster")||passedLinks.contains("NBA")||passedLinks.contains("Basketball")||passedLinks.equals("null")){

continue;

}

else{

String playerLink="http://en.wikipedia.org"+(String)passedLinks;

System.out.println("Entered Line :"+playerLink);

gbg.getBackGround(playerLink);

}

 }

}

catch(Exception e){

e.printStackTrace();

}

}

}
B.3 GetBackground.java
import java.io.*;

import java.util.*;

import java.net.*;

public class GetBackGround {

String playerName=null;

String playerBorn=null;

String birthPlace=null;

String playerTeam=null;

String playerLeague="National Basketball Association (NBA)";

boolean gotDateofBirth=false;

void getBackGround(String link){

try{

gotDateofBirth=false;

URLConnection conn =

new URL(link).openConnection();

BufferedReader br =new BufferedReader(new InputStreamReader (conn.getInputStream()));

String inputLine;

while ((inputLine = br.readLine()) != null) {

String input=inputLine.toString();

if(input.contains("wgTitle")){//populate the name of the player here

playerName=getName(input).trim();

}

// populate the date of birth here

else if(input.contains("born")){

String born=getBirth(input);

if(born!=null){

playerBorn=getBirth(input);

}

else{continue;}

String plborn=getBornPlace(input);

if(plborn!=null){

birthPlace=plborn;//getBornPlace(input);

}

else{continue;}

}

}

}

catch(Exception e){

System.out.println("Host not found in getting background");

//
e.printStackTrace();

}

writeFile(playerName, playerBorn, birthPlace, playerLeague);

}

public String getName(String name){

int startpos=name.indexOf("wgTitle=");

int endpos=name.indexOf("\",");

String gname= name.substring(startpos +9, endpos);

//

System.out.println(gname);

return gname;

}

public String getDateofBirth(String birth){

int startpos=birth.indexOf(":");

int endpos=birth.indexOf("<span");

System.out.println("birth"+birth+"sp "+startpos+"ep "+endpos);

String birthdet=birth.substring(startpos+5, endpos);

//

System.out.println(birthdet.trim());

return birthdet;

}

public String getBirth(String birth){

String birthdet=null;

String tempBirthDet=null;

String place=null;

boolean if_flag=false;

int endpos=-1;

int endpos1;

int startpos1;

if(birth.contains(" (born")){

if_flag=true;

int startpos=birth.indexOf("(born");

if(birth.contains(") is")){

endpos=birth.indexOf(") is");

}

else if(birth.contains("),")){

endpos=birth.indexOf("), ");

}

else if(birth.contains(")")){

endpos=birth.indexOf(")");

}

if(endpos!=-1){

 tempBirthDet=birth.substring(startpos+5,endpos);}

 birthdet=tempBirthDet;

if(tempBirthDet.contains("in <a")){

//

System.out.println("contains <a>");

endpos1=tempBirthDet.indexOf("in <a");

birthdet=tempBirthDet.substring(0,endpos1);

}

 birthdet=format(birthdet);

}

if(if_flag){

return birthdet;

}

else{

//
System.out.println("in get birth method---->"+birth);

return birthdet;

}

}

String format(String frm){

String bdate=null;

String alias=null;

if(frm.contains("span") && frm.contains("sup")){

bdate=frm.replace(";","");

bdate=bdate.substring(0,bdate.indexOf("<sup"));

return bdate;

}

else if(frm.contains("span")){

bdate=frm.substring(0,frm.indexOf("<span"));

return bdate;

}

else if(frm.contains(";")){

bdate=frm.substring(0,frm.indexOf(";"));

return bdate;

}

else if(frm.contains("a href")){

bdate=frm.substring(0,frm.indexOf("<a href"));

return bdate;

}

else if(frm.contains("")||frm.contains("")){

alias=frm.substring(frm.indexOf("")+3,frm.indexOf(""));

bdate=frm.substring(frm.indexOf(" on")+7,frm.length());

//

System.out.println("Alias is "+alias);

return bdate;

}

else{return frm;}

}

public String getBornPlace(String place){

String placedet=null;

if(place.contains(" (born")){

int startpos=place.indexOf("\">");

int endpos=place.indexOf("");

 placedet=place.substring(startpos+2,endpos).replaceAll(";","");

 return placedet;

//

 System.out.println("in born place-->"+placedet);

}

else{ placedet=place.replace(";","");return placedet;}

}

public String getPlaceofBirth(String place){

int startpos=place.indexOf("<a href=\"/wiki/");

int endpos=place.indexOf(" title=");

String tempplace=place.substring(startpos+15,endpos+1);

String placedet=tempplace.replace("\"","");

//

System.out.println(placedet);

return placedet;

}

void writeFile(String name,String born,String placeborn,String League){

try{

FileWriter fw=new FileWriter("Basketball.txt",true);

BufferedWriter br=new BufferedWriter(fw);

String write=name+";"+born+";"+placeborn+";"+League;

System.out.println("Entered Line :"+write);

br.write(write);

br.newLine();

br.close();

}

catch(Exception e){

e.printStackTrace();

}

}

}

B.4 DBConnection.java
import java.sql.*;

import java.util.*;

import java.io.*;

public class DBConnection

{

 protected Connection connection;

 protected Statement statement;

 protected static String driver = "oracle.jdbc.driver.OracleDriver";

 protected static String dbURL = "jdbc:oracle:thin:@seer.njit.edu:1521:research";

 protected static String login = "ar237";

 protected static String password = "6gGlBnXv";

 public DBConnection()

 {

 }

 public void insertintoDataBase(String txt){

try{

String name=null;

String born=null;

String place=null;

String league=null;

Class.forName(driver);

connection = DriverManager.getConnection(dbURL, login, password);

FileInputStream fis =new FileInputStream(txt);

BufferedInputStream bis=new BufferedInputStream(fis);

DataInputStream dis=new DataInputStream(bis);

while(dis.available()!=0){

String line=dis.readLine();

StringTokenizer st=new StringTokenizer(line,";");

 //

System.out.println("Line inserted is"+line);

while(st.hasMoreTokens()){

name=st.nextToken();

born=st.nextToken();

place=st.nextToken();

league=st.nextToken();

}

if(name.contains("(basketball)")){

name=name.substring(0,name.indexOf("(basketball)"));

//
System.out.println("name "+name);

}

System.out.println("Line inserted is"+name+"','"+born+"','"+place+"','"+league);

 //

String insertQuery = "INSERT INTO BASKETBALL_PLAYERS " + "VALUES ('"+name+"','"+born+"','"+place+"','"+league+"')";

String insertQuery = "INSERT INTO BASKETBALL_PLAYERS VALUES (?,?,?,?)";

PreparedStatement statement = connection.prepareStatement(insertQuery);

statement.setString(1,name);

statement.setString(2,born);

statement.setString(3,place);

statement.setString(4,league);

statement.execute();

}

}

catch(Exception e){

e.printStackTrace();

}

finally{}

 }

 public Connection getConnection()

 {

 return connection;

 }

 public void commit()

 throws SQLException

 {

 connection.commit();

 }

 public void rollback()

 throws SQLException

 {

 connection.rollback();

 }

 public void setAutoCommit(boolean flag)

 throws SQLException

 {

 connection.setAutoCommit(flag);

 }

 public ResultSet executeQuery(String s)

 throws SQLException

 {

 return statement.executeQuery(s);

 }

 public int executeUpdate(String s)

 throws SQLException

 {

 return statement.executeUpdate(s);

 }

 public void safeClose()

 {

 try

 {

 if(statement != null)

 {

 statement.close();

 }

 }

 catch(Exception exception)

 {

 System.out.println("SQLException occured during safeClose Method");

 exception.printStackTrace();

 }

 try

 {

 if(connection != null && !connection.isClosed())

 {

 connection.close();

 }

 }

 catch(Exception exception1)

 {

 System.out.println("SQLException occured during safeClose Method");

 exception1.printStackTrace();

 }

 }

 public void close()

 throws SQLException

 {

 try

 {

 if(statement != null)

 {

 statement.close();

 }

 }

 catch(SQLException sqlexception) { }

 if((connection == null || !connection.isClosed()) && connection != null)

 {

 connection.close();

 }

 }

 protected void finalize()

 throws Throwable

 {

 try

 {

 connection.close();

 }

 catch(Exception exception) { }

 super.finalize();

 }

 public boolean isClosed()

 throws SQLException

 {

 if(connection != null)

 {

 return connection.isClosed();

 } else

 {

 return false;

 }

 }

 public static void main(String args[])

 {try{

System.out.println("Welcome to BBPLAYER MINER ");

System.out.println("This application is made by JALAJ ASHER");

System.out.println("Once you start this application it will insert contents of text file in database");

System.out.println("Do you want to start the application ? Press 'y' for yes and 'n' for no");

BufferedReader in = new BufferedReader(new InputStreamReader(System.in));

 String input=in.readLine();

 if("y".equals(input)){

 DBConnection DBConnection = new DBConnection();

 DBConnection.insertintoDataBase("basketball.txt");

 }

 else{System.out.println("Ok you are now exiting!!!!!!!!");}

 }

 catch(Exception e){e.printStackTrace();}

 }

}
B.5 ErrorMsg.java

import java.io.*;

 import java.util.*;

import java.net.*;

public class ErrorMsg {

 public static void main(String args[]) {

 try {

System.out.println("Welcome to Error Message Detection Application ");

System.out.println("This application has been developed by JALAJ ASHER");

System.out.println("Once you start this application check the url string agaisnt some common error messages");

System.out.println("Do you want to start the application ? Press 'y' for yes and 'n' for no");

BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

 String input=br.readLine();

 if("y".equals(input)){

System.out.println("Enter the url you want to check for errors");

System.out.println();

 String str;

 boolean errorflag=false;

 String string=br.readLine();

 URL url = new URL(string);

 // URL url = new URL("http://www.webmd.com/search/search_results/default.aspx?query=bhjgl&sourceType=undefined "); sample url.

 URLConnection urlc = url.openConnection();

 System.out.println("User Interaction allowed ? "+urlc.getAllowUserInteraction());

 System.out.println("can Input ?"+urlc.getDoInput());

 System.out.println("can Output ?"+urlc.getDoOutput());

 // System.out.println("set can write "+urlc.setDoOutput(true));

 // System.out.println("set can read "+urlc.setDoInput(true));

 // BufferedInputStream buffer = new BufferedInputStream(urlc.getInputStream());

 // StringBuilder builder = new StringBuilder();

 // int byteRead;

 // while ((byteRead = buffer.read()) != -1)

 // builder.append((char) byteRead);

 // buffer.close();

 // System.out.println(builder.toString());

 // System.out.println("The size of the web page is " + builder.length() + " bytes.");

 BufferedReader in = new BufferedReader(new InputStreamReader(

urlc.getInputStream()));

 while((str=in.readLine())!=null){

if(str.toLowerCase().contains("error") || str.toLowerCase().contains("did not match any documents ") || str.toLowerCase().contains(" No pages were found ") || str.toLowerCase().contains("no results matching your search") || str.toLowerCase().contains(" ")||str.toLowerCase().contains("did you mean")){

errorflag=true;

break;

}

else if(str.toLowerCase().contains("zero matches found")||str.toLowerCase().contains("did not find results")||str.toLowerCase().contains("no standard webpages")||str.toLowerCase().contains("did not match")){

errorflag=true;

break;

}

}

if(errorflag==true){

System.out.println(" error found on page ");

}

else{System.out.println(" no errors found ");}

 }

 else{System.out.println("Ok you are exiting");}

 } catch (MalformedURLException ex) {

 System.out.println("The url passed is not right or check you internet connection");

 } catch (IOException ex) {

 System.out.println("Problem in io stream");

 }

}

}
Figure 1: Distribution of the Web pages search results based on relevance [11].

Figure 2: An example of roadway ontology [10].

Figure 3: Information storage format on a typical Web site. [8]

Figure 4: The Flow for an Ontology-Supported Deep Web Search [3].

Figure 5: A Flow for generating data level ontology fragments [3].

Figure 6: An Example of a simple Form [4].

<FORM action= “...” method= “…”>

<P><LABEL for= “departure_city”>Departure

</LABEL>

<SELECT size= “2” name= “depart_city”>

<OPTION selected value= “city1”>Newark</OPTION>

<OPTION>Arlington</OPTION></SELECT><P>

Where is your departure city?

<INPUT type= “text” id= “origin”><P> Search by:

<INPUT type= “radio” name=“searchBy” value=“fare”> fare

<INPUT type=“radio” name=“searchBy” value= “schedule”>

schedule<P>

<INPUT type= “submit” value= “Go”> </P> </FORM>

Figure 7: HTML corresponding to Figure 6 [4].

Deep Web

Names Extractor Module

Filtering and Background information extraction module

 Seed page

DataBase Entry Module

Database

Figure 8: Flow of Data Extraction and Filtering Process of BBPlayer Miner.

Figure 11: Partial view of Wikipedia's category system [13].

Figure 12: BBPlayer Miner’s application’s Information Flow Process.

Background Information Extractor (BIE) module

DataBase Entry (DBEntry) module

http://google.njit.edu/search?q=highlander&site=default_collection&client=default_frontend&proxystylesheet=default_frontend&output=xml_no_dtd&ie=UTF-8&oe=UTF-8&sort=date:D:L:d1

Link Extractor Module

Figure 13: Process Flow Link Extractor Module.

Name Extractor (NE) module

Figure 14: Name Extractor and Background Information Extractor work flow.

Link Extractor (LE) module

Basketball

Players.txt

Database

Wikipedia seed page

Extract link from seed page

Does the link refer to basketball players list ?

Pass the link for storage in a Data -Structure

Link from LE

Extract links with names in NE

Process the Web page in BIE

Extract relevant information from the Web page

Store the information in basketball.txt

Anymore Links in NE?

Exit Application

Anymore Links?

Pass on the data structure to NE for further processing

PAGE
1

_1333377102.ppt

Extraction of Search Terms

 Generation of a Domain Ontology

Extraction of Deep Web terms from a (few) sample site (s) by a probing methodology

Extension of the domain ontology

Suggestion of other terms to the users, closely related to

the user’s terms in the domain

Perform a Deep Web search

Entry Pages of Deep Web sites

Instances

Relationships between Instances

An Extended Domain Ontology

An Extended List of Search Terms

Pre-processing Steps

At Searching time

