

CS 700B
Master’s Project Proposal

Building Ontologies of Politicians, Religious Leaders, Researchers for in more Accurate
 Web Searches

Submitted to the
Department of Computer Science
College of Computing Sciences
New Jersey Institute of Technology

 In Partial Fulfillment of
The Requirements for the Degree of
Master of Science
By
 Anushri Mahajan
 Ahm5@njit.edu
 216-47-089

		
	Proposal Number
	

	
Agree to Advise
	

_Dr. James Geller__
 (Project Advisor)

	Date Submitted
	

	
Approved By

(MS in CS Committee)

	Date Approved
	

 Abstract

With respect to computer science, an ontology is the formal representation of a set of concepts within a domain and relationships between those concepts. It is used to model a domain. The representational primitives are typically classes (or sets), attributes (or properties), and relationships (or relations among class members). An ontology provides a shared vocabulary which is used to model a domain [16]. The definitions of the representational primitives include information about their meaning and constraints on their logically consistent application. There should be a close resemblance between the real world and the ontology representation. In the context a of database systems, ontology can be viewed as a level of abstraction of data models, analogous to hierarchical and relational models, but intended for modeling knowledge about individuals, their attributes, and their relationships to other individuals [15].

The purpose of this project is to build ontologies to support an ontology-enabled web search interface. The domain under consideration will be that of searching out information about famous people. In particular, in the beginning “famous people” here will refer to “politicians”. Later, the domain will be extended to religious leader, researchers, etc. This is an ongoing project. I will be building ontologies from the data (related to politicians, initially) mined from the deep web. I will also develop higher level API functions to make it easier to access the ontology. This work will be based on the Protégé system [11]. These ontologies will be validated and tested rigorously so as to enable development of a browser plugin that makes an ontology- enabled web search possible. This will ultimately result in better search results.

Table of Contents

Abstract…………………………………….…………………...………..………………….……3
1 Introduction …………………....………………...……………………...…………………..5
Introduction to Ontologies…….….…………………………………………………………..5
Components of Ontologies……………………………………………………………………7
		1.2.1 Instances………………...………………………..……………………………..7
 1.2.2 Slots……………………………………………………………………..............7
 1.2.3 Classes…………………………………………………………………………..7
	1.3	Why develop an Ontology?.......………………………………………………………8
 1.4 An Introduction to Protégé …………………………………………………………..10
2 Previous Work………...….……………...………............................………………………..12
 2.1 	Enriching a Domain Ontology for the Semantic Deep Web……………………………..12
 2.2 Web Search with Domain Ontology-Based Query Extension…………………………...12
 2.3 Ontology for singers and sportspersons…………………………………………………...13
3	My Work……………………………………….……………………….……………............14
 3.1 A Scenario……………………………………………………………………………14
	3.2 	Building Protégé/OWL ontology fragments and adding functionality to them……...15
	3.3 Deliverables…………………………..…………..……………………………….…15
	3.4 	Weekly Plan...………………………………………………………………..............17
References………………………………………………………………………………………18

1. Introduction

The goal of this project is to build ontologies for an ontology-enabled web search interface. The domain under consideration will be that of searching out information about famous people. In particular, “famous people” here will refer to “politicians” in the beginning. Later, the domain can be extended to religious leaders, researchers, etc. I will be building ontologies from the data related to singers mined from the Deep Web [14]. These ontologies will be validated rigorously for their completeness so as to enable the building of a browser plugin that does an ontology enabled search [13]. This is an ongoing project based on the paper written by An et al. [2]. This work is joint project by Jalaj Asher , Mansi Pedgoankar and myself.

1.1 Introduction to Ontologies
According to Thomas Gruber [1], an ontology is an explicit specification of a conceptualization. A conceptualization is an abstract, simplified view of the world that we want to represent. If the specification medium is a formal language, the ontology defines a representational foundation.

In simple words, an ontology is a graph (the data structure). Every node of this graph stands for a "concept." A concept is a unit that one can think about and can correspond to words or short phrases. Typically, concepts correspond to nouns or noun phrases, but they don't have to.
Examples of concepts can be New York, World Trade Center, etc. [3]

The nodes of the ontology are connected by different kinds of links. The most important kind of
link is called IS-A link. The nodes and IS-A links together form a Rooted Directed Acyclic Graph (Rooted DAG). Rooted means that there is one single "highest node" called the Root. All other nodes are connected by one IS-A link or a chain of several IS-A links to the Root. In our definition, IS-A links point upwards. If an IS-A link points from a concept X to a concept Y that means that every real world thing that can be called an X also can be called a Y. In other words, every X IS-A Y. (Some people have IS-A-like links but pointing downwards.) Examples: A car IS-A vehicle. A dog IS-A animal. [3]

Acyclic means that if you start at one node and move away from it following an IS-A link, you can never return to this node, even if you follow many IS-A links. Most nodes also have other information attached. This information includes attributes, relationships and rules (or axioms). Ontologies represent information in a form that can be used for some forms of reasoning that are at least partially similar to human reasoning. This includes inheritance reasoning, transitivity reasoning and classification. [3]
In practical terms, developing an ontology includes:
· defining classes in the ontology,
· arranging the classes in a taxonomic (subclass–superclass) hierarchy,
· defining slots and describing allowed values for these slots,
· filling in the values for slots for instances. [4]

1.2 Components of Ontologies
Basically, an ontology consists of three components – Instances, Slots and Classes. Each of these components are explained in the subsections to follow. [5]
1.2.1 Instances
Instances represent objects in the domain that we are interested in. In particular, ‘instances’ refer to ‘instances of classes’ (Classes are explained in the subsection 1.1.2). Instances are indicated in an ontology diagram with ovals. Examples of instances can be England, Matthew, Gemma, Cat, etc. [5]
1.2.2 Slots
Slots are binary relations on the instances – i.e. slots link two instances together. For example, the slot hasSibling might link the instance Matthew to the instance Gemma. A slots can have
inverses. For example, the inverse of hasOwner is isOwnedBy. Slots can be limited to having a single value- i.e. to being functional. They can also be either transitive or symmetric. [5]
1.2.3 Classes
Classes are interpreted as sets that contain instances. They are described using formal (math-
ematical) descriptions that state precisely the requirements for membership of the class. For example, the class Cat would contain all the individuals that are cats in our domain of interest. Classes may be organised into a superclass-subclass hierarchy, which is also known as a taxonomy. Subclasses specialize (‘are subsumed by’) their superclasses. For example, consider the classes Animal and Cat – Cat might be a subclass of Animal (so Animal is the superclass of Cat). This says that, ‘All cats are animals,’ ‘All members of the class Cat are members of the class Animal,’ ‘Being a Cat implies that you’re an Animal,’ and ‘Cat is subsumed by Animal.’[5]
The word concept is sometimes used in place of class. Classes are a concrete representation of concepts. Classes are built up of descriptions that specify the conditions that must be satisfied by an instance for it to be a member of the class. [5]

1.3 Why develop an Ontology?
An ontology defines a common vocabulary for researchers who need to share information in a domain. It includes machine-interpretable definitions of basic concepts in the domain and relations among them. [4]
Why would someone want to develop an ontology? Some of the reasons are: [4]
 To share common understanding of the structure of information among people or software agents
 To enable reuse of domain knowledge
 To make domain assumptions explicit
 To separate domain knowledge from the operational knowledge
 To analyze domain knowledge
Sharing common understanding of the structure of information among people or software agents is one of the more common goals in developing ontologies [6,7]. For example, suppose several different Web sites contain medical information or provide medical e-commerce services. If these Web sites share and publish the same underlying ontology of the terms they all use, then computer agents can extract and aggregate information from these different sites. The agents can use this aggregated information to answer user queries or as input data to other applications. [4]

Enabling reuse of domain knowledge was one of the driving forces behind the surge in ontology research. For example, models for many different domains need to represent the notion of time. This representation includes the notions of time intervals, points in time, relative measures of time, and so on. If one group of researchers develops such an ontology in detail, others can simply reuse it for their domains. Additionally, if we need to build a large ontology, we can integrate several existing ontologies describing portions of the large domain. We can also reuse a general ontology, such as the UNSPSC (United Nations Standard Products and Services Code) ontology, and extend it to describe our domain of interest. [4]
Making explicit domain assumptions underlying an implementation makes it possible to change these assumptions easily if our knowledge about the domain changes. Hard-coding assumptions about the world in programming-language code makes these assumptions not only hard to find and understand but also hard to change, in particular for someone without programming expertise. In addition, explicit specifications of domain knowledge are useful for new users who must learn what terms in the domain mean. [4]
Separating the domain knowledge from the operational knowledge is another common use of ontologies. We can describe a task of configuring a product from its components according to a required specification and implement a program that does this configuration independent of the products and components themselves [7]. We can then develop an ontology of PC-components and characteristics and apply the algorithm to configure made-to-order PCs. We can also use the same algorithm to configure elevators if we “feed” an elevator component ontology to it [8].
Analyzing domain knowledge is possible once a declarative specification of the terms is available. Formal analysis of terms is extremely valuable when both attempting to reuse existing ontologies and extending them [10].
Often an ontology of the domain is not a goal in itself. Developing an ontology is akin to defining a set of data and their structure for other programs to use. Problem-solving methods, domain-independent applications, and software agents use ontologies and knowledge bases built from ontologies as data. For example, we can develop an ontology of wine and food and appropriate combinations of wine with meals. This ontology can then be used as a basis for some applications in a suite of restaurant-managing tools: One application could create wine suggestions for the menu of the day or answer queries of waiters and customers. Another application could analyze an inventory list of a wine cellar and suggest which wine categories to expand and which particular wines to purchase for upcoming menus or cookbooks. [4]
An Introduction to Protégé
Protégé is a free, open-source platform that provides a growing user community with a suite of tools to construct domain models and knowledge-based applications with ontologies. At its core, Protégé implements a rich set of knowledge-modeling structures and actions that support the creation, visualization, and manipulation of ontologies in various representation formats. Protégé can be customized to provide domain-friendly support for creating knowledge models and entering data. Further, Protégé can be extended by way of a plug-in architecture and a Java-based Application Programming Interface (API) for building knowledge-based tools and applications. [11]
The Protégé platform supports two main ways of modeling ontologies:
The Protégé-Frames editor enables users to build and populate ontologies that are frame-based, in accordance with the Open Knowledge Base Connectivity protocol (OKBC). In this model, an ontology consists of a set of classes organized in a subsumption hierarchy to represent a domain's salient concepts, a set of slots associated with the classes to describe their properties and relationships, and a set of instances of those classes - individual exemplars of the concepts that hold specific values for their properties. [11]
The Protégé-OWL editor enables users to build ontologies for the Semantic Web, in particular in the W3C's Web Ontology Language (OWL). "An OWL ontology may include descriptions of classes, properties and their instances.

Figure 1: The Classes Tab
Given such an ontology, the OWL formal semantics specifies how to derive its logical consequences, i.e. facts not literally present in the ontology, but entailed by the semantics. These entailments may be based on a single document or multiple distributed documents that have been combined using defined OWL mechanisms.” [11]

 2. Previous Work

The paragraphs below give a glimpse of the previous work done in this field on which this project is based.

2.1 Enriching a Domain Ontology for the Semantic Deep Web
Enriching an ontology is a process that extends it by adding concepts, instances and new relations between concepts. Previous works dealt with the schema level whereas the paper on which this project is based deals with the data level, as we utilize the concepts extracted from the Deep Web (DW) result pages. While the schema level extraction finds concepts such as ‘city name,’ etc., the data level extraction results in instances such as ‘Newark’. Our method for extracting instances from the DW is based on developing “robots” (agents) that send many queries to the same DW site to extract as many data values as possible. [2]

2.2 Web Search with Domain Ontology-based Query Extension
Consider a DW site such as a Flight Reservation System. In a Domain Ontology-based Web Search module, if a user clicks on assertions related to airport codes or airports, the search module will create an extended list of key words (i.e., “New York,” ”NYC,” ”Seoul,” SEL) [2].

Based on the ontologies built, the search module will help the user in refining his search by
providing him a variety of choices based on the relationships as illustrated in the Figure 2 on the next page.

Figure 2: A Sample User Feedback Interface [2]
As a part of my project, I will be building ontologies that will help in getting the enhanced search results for a particular political leader or a researcher or religious leader. These ontologies will to made to support the working of a plugin which will be developed on similar lines as shown in the Figure 2 above. [13]
3. Ontology for singers and sportspersons: The complete ontology is created for the domain singers and sportspersons. For the domain singer the ontology has attributes like name, birth date, city of birth, state of birth, country of birth, original name and genre. This helps in better searching results for any singer.

 3. My Work
3.1 A Scenario
The overall working of the project can be explained in a scenario as follows:
Firstly, there will be a huge ontology of political leader which will be created by me. Supposing if I create an ontology like the one shown in Figure 3 (a very small ontology is given for understanding).
Now in the plugin, if the user types in “Michael Jackson,” the system finds ontology pieces
about all Michael Jacksons and presents these pieces of choices to the user. The user selects
what matches his information need best. Then the system (i.e. the plugin) automatically
 (
Researcher
) (
Michael Jackson
) (
Michael Jackson
) (
Politician
) (
Religious Leader
) (
Michael Jackson
) (
 Occupation
)resubmits the query with additional search terms from the ontology. Example: Michael Jackson, a political leader.

 Figure 3: A small ontology

This kind of search is sure to give better results to the user since many unrelated concepts would be left out. This avoids information overload for the user.
3.2 Building Protégé/OWL ontologies and adding functionality to them
This is an ongoing project and my work here will be to develop ontologies from the data mined about the politicians and other famous people [14]. Also, these ontologies will be validated rigorously so as to fit properly with the requirements of the plugin that enables ontology enabled search [13]. As shown in chapter 2, the overall goal is to enable the user to find better search results for what he/she is looking for. Protégé will be extensively used to build OWL ontologies. Also, the higher level OWL APIs in the Java programming language will be implemented to add functionality to these ontologies.
3.3 Deliverables
Three ontologies called PoliticianOnt, ReligionOnt and ResarcherOnt.
This will include attributes like name, country to which they belong, field of specialization and other attributes relevant to the particular domain.
Addition of increased functionality to these ontologies through the usage of OWL APIs written in the Java Progamming language.
The following higher level API functions :
- InstanceTwoLevelUpNeighborhood()
Input: One Instance ID.
Output: A list of all instances reachable by traversing two link upwards.That is the grandparent of the node .

- InstanceTwoLevelsDown()
 Input: One Instance ID.
 Output: A list of all instances reachable by traversing two links downwards. That is the grandchildren of the node.
-InstanceOneUpOneDown()
Input: One Instance ID.
Output: A list of instances reachable by traversing one link upward and then a link downward. That is parent and the siblings of the node.
-OneDownOneUp()
Input: One Instance ID
Output: A list of instances reachable by traversing one link downwards and one link upwards. That is the child and its step sibling.
-OneStepLateral ()
 Input: One Instance ID
Output: A list of instances reachable by traversing one link laterally. That is the sibling if the node.

3.4 Weekly Plan

	Week 1
	Getting started: Studying the working of Protégé in depth.

	Week 2
	Understanding the working of the essential OWL APIs.

	Week 3
	Continued.

	Week 4
	Building the ontology PoliticianOnt and Adding increased functionality to the PoliticianOnt ontology using the OWL APIs written in the Java Programming Language.

	Week 5
	Building the ontology ReligionOnt and adding functionalities to relevant parts of the ReligionOnt ontology using OWL APIs.

	Week 6
	Building the ontology ResearcherOnt and adding functionality to it using the OWL APIs wriiten in Java Pragramming Language.

	Week 7
	Writing code for TwoLevelUpNeighborhood() function.

	Week 8
	Writing code for TwoLevelsDown() function.

	Week 9
	Writing code for OneUpOneDown() function.

	Week 10
	Witing code for OneDownOneUp() function.

	Week 11
	Writing code for OneStepLateral() function().

	Week 12
	Testing and debugging.	

	Week 13
	Continued.

	Week 14
	Writing report for the work done.

References

1. Gruber, T.R., (2008), Ontology. Entry in the Encyclopedia of Database Systems, Ling Liu and M. Tamer Özsu (Eds.), Springer-Verlag.
2. An, Y.J., Chun, S.A., Huang, K., Geller, J. (2008). Enriching Ontology for Deep Web Search. DEXA 2008: 73-80.
3. James Geller Definition of Ontology,
 http://web.njit.edu/~geller/what_is_an_ontology.html , February 2009.
 4. Noy, N.F., and McGuinness, D.L. Ontology Development 101: A Guide to Creating Your First Ontology. Stanford Knowledge Systems Laboratory Technical Report KSL-01-05 and Stanford Medical Informatics Technical Report SMI-2001-0880, March 2001.
 5. Horridge, M., Knublauch, H., Rector, A., Stevens, R., Wroe, C. A Practical Guide To Building OWL Ontologies Using The Protégé-OWL Plugin and CO-ODE Tools Edition 1.0, August 27, 2004.
 6. Musen, M.A. (1992). Dimensions of knowledge sharing and reuse. Computers and Biomedical Research 25: 435-467.
 7. Gruber, T.R. (1993). A Translation Approach to Portable Ontology Specification. Knowledge Acquisition 5: 199-220.
 8. McGuinness, D.L. and Wright, J. (1998). Conceptual Modeling for Configuration: A Description Logic-based Approach. Artificial Intelligence for Engineering Design, Analysis, and Manufacturing - special issue on Configuration.
 9. Rothenfluh, T.R., Gennari, J.H., Eriksson, H., Puerta, A.R., Tu, S.W. and Musen, M.A. (1996). Reusable ontologies, knowledge-acquisition tools, and performance systems:
 PROTÉGÉ-II solutions to Sisyphus-2. International Journal of Human-Computer Studies 44: 303-332.
 10. McGuinness, D.L., Fikes, R., Rice, J. and Wilder, S. (2000). An Environment for Merging and Testing Large Ontologies. Principles of Knowledge Representation and Reasoning: Proceedings of the Seventh International Conference (KR2000). A. G. Cohn, F. Giunchiglia and B. Selman, editors. San Francisco, CA, Morgan Kaufmann Publishers
 11. Stanford University, What is Protégé,
 http://protege.stanford.edu/overview , February 2009.
 12. Kav,Y, Data Caching and Display Features For Neighborhood Auditing Tool, MS Project Proposal, NJIT, CS Department, Summer/Fall 2007.
 13. Tian,T., Enriching Multi-Domain Ontology for Web Search, PhD Project Proposal, NJIT, CS Department, (in preparation)
 14. Rajbar, A., Deep Web Mining for Enriching the Ontology Enabled Web Search,
 Project Proposal, NJIT Fall 2009.
 15. Bhat, Y., Building Ontologies for Ontology Enabled Web Search Plugin,Project
 Proposal, NJIT Fall 2009.
 16. http://en.wikipedia.org/wiki/Ontology_(information_science).

1

image1.png
newspaper Protégé 3.2.1 (file:\C:\Program%20Files\Protege_3.2.1\examples\newspaper\newspaper.pprj, Protégé File.

Ele Edt Proect Window Tooks Hep

ne o BB R ms ¢W

® Gosoes [0t | Fams |/ ® instarces |/ & Gusres | M Negatiood Auing Too |

For Project: @ newspaper For Class: ® Newspaper (nstance of :STANDARD-CLASS)

Class Hierarchy AN %X~ | wame Documentation Constraints.
NG,
© :SYsTEMCLASS
© Author Role
© contert
© Layout_info
® siling_chart
® Content_Layout
® Prototype_Newspaper
® Rectange
® section
® Lbrary
@ Newspaper
® Organization
> ® person

Newspaper

Concrete ®

>
>
>
v

Template Siots

Cardinalty Type Other Facets.
= corterts mutple Instance of Cortent
= ate singe sting

= rumber_of _pages single Integer

= prototype single Instance of Prototype_Newspaper

Superclasses
NG,

image2.png
I newyork seoul

W can search more details about your terms, please check the term(s) below:
[seoul isCityOf south korea
[seoul hashirport seoul
[seoul hashirport seoul incheon international airport
[seoul hasirport seoul gimpo international airport
[Dseoul isAirportOf seoul
[seoul hashirporiCode sl
[new york isCityOf ny
[lnew york isCityOf united states
[new york hasAirport new york
[lnew york has irport Ia guardia international airport
[new york hasAirport john £ kennedy internationl airport
[new york isirportOf new york
[lnew york hasfirporiCode nyc

