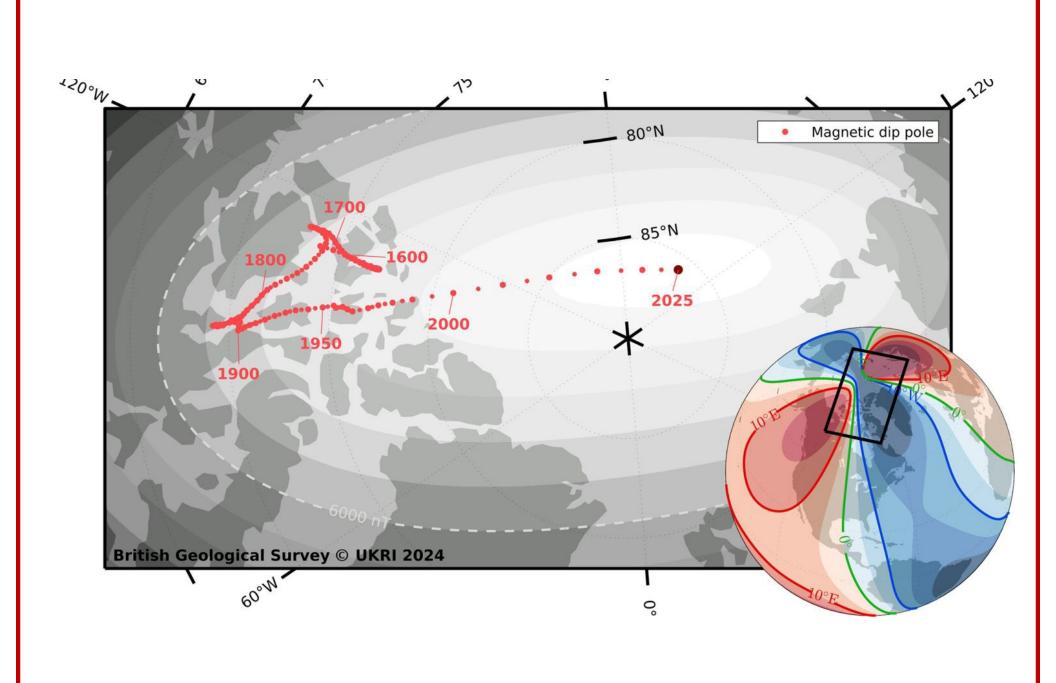
## PHYS 122-Lecture 14: EM Waves


- Final Exam Date/Logistics
- Review Session?
- Today: Exam 3 Results

The magnetic poles

"5-sec rule" and power-cycling

EM Waves from Maxwell's Equations





## In most modern electronics:

- Inductors have values that typically range from 1 μH to 20 H.
- Capacitance values are typically between 1 nF and 1 μF
- Resistors (E3) have the following three values; 1.0, 2.2, and 4.7. (This means that E3 resistors can have a resistance of  $1\Omega$ , 2.2 $\Omega$ , or 4.7 $\Omega$ .)

MAX  $\tau$  for LR circuit is then: L/R, or 20/4.7 = 5 sec

MAX  $\tau$  for RC circuit is then: RC, or  $1\mu F * 5 = 5\mu s$ 

5-sec rule comes from LR circuits.

## **Maxwell's Equations To Date**

$$\oint \vec{E} \cdot d\vec{a} = \frac{q_{enc}}{\epsilon}$$

$$\oint \vec{B} \cdot d\vec{a} = 0$$

$$\oint \vec{B} \cdot d\vec{\ell} = \mu I_{enc} + \epsilon \mu \frac{\delta}{\delta t} \oint \vec{E} \cdot d\vec{a}$$

$$\oint \vec{E} \cdot d\vec{\ell} = -\frac{\delta}{\delta t} \oint \vec{B} \cdot d\vec{a}$$

Gauss' Law

"No Name Law"

Ampere's Law w/ Maxwell's Correction

Faraday's Law