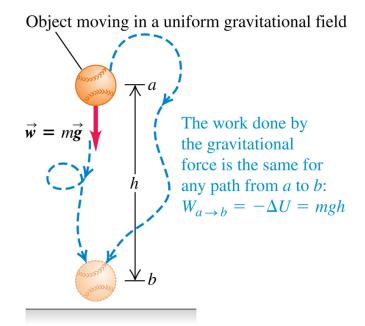
PHYS 122-Lecture 5: Electric Potential Energy

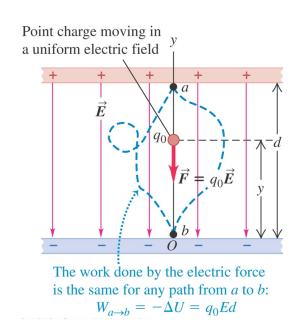
Gravitational Potential Energy vs. Gravitational Potential

• Electric Potential Energy vs. Electric Potential

Electric potential energy in a uniform field

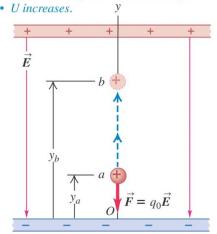
- The behavior of a point charge in a uniform electric field is analogous to the motion of a baseball in a uniform gravitational field.
- Figures 23.1 and 23.2 below illustrate this point.





A positive charge moving in a uniform field

- If the positive charge moves in the direction of the field, the potential energy *decreases*, but if the charge moves opposite the field, the potential energy *increases*.
- Figure 23.3 below illustrates this point.
 - (a) Positive charge moves in the direction of \vec{E} :
 - Field does positive work on charge.
 - U decreases. \vec{E} $\vec{F} = q_0 \vec{E}$ y_a y_b y_b Q
- (b) Positive charge moves opposite \vec{E} :
- Field does negative work on charge.



A negative charge moving in a uniform field

- If the negative charge moves in the direction of the field, the potential energy *increases*, but if the charge moves opposite the field, the potential energy *decreases*.
- Figure 23.4 below illustrates this point.

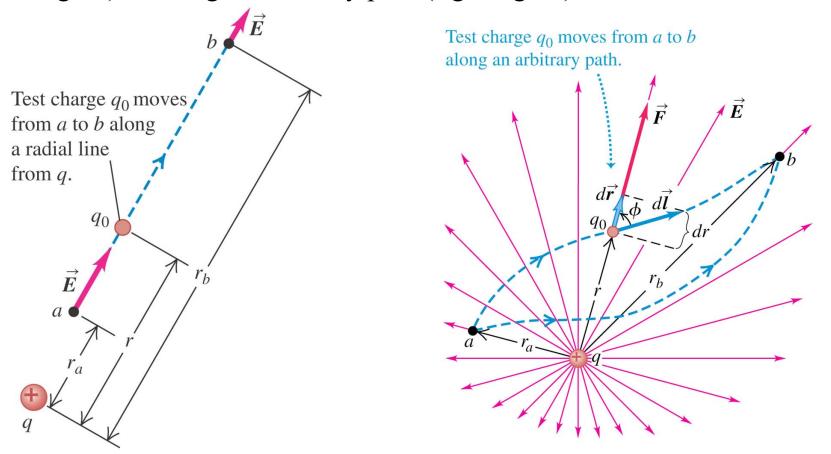
- Field does negative work on charge.
- U increases. \vec{E} $\vec{F} = q_0 \vec{E}$ y_a y_b y_b Q

(b) Negative charge moves opposite \vec{E} :

- Field does positive work on charge.
- U decreases. y \overrightarrow{E} \overrightarrow{V} $\overrightarrow{F} = q_0 \overrightarrow{E}$ \overrightarrow{V} \overrightarrow{V}

Electric potential energy of two point charges

- Follow the discussion of the motion of a test charge q_0 in the text.
- The electric potential is the same whether q_0 moves in a radial line (left figure) or along an arbitrary path (right figure).



Copyright © 2012 Pearson Education Inc.

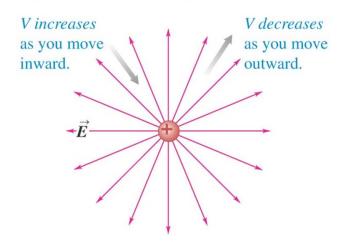
Electric potential

- Potential is potential energy per unit charge.
- We can think of the potential difference between points a and b in either of two ways. The potential of a with respect to b ($V_{ab} = V_a V_b$) equals:
 - \checkmark the work done by the electric force when a *unit* charge moves from a to b.
 - \checkmark the work that must be done to move a *unit* charge slowly from b to a against the electric force.
- Follow the discussion in the text of how to calculate electric potential.

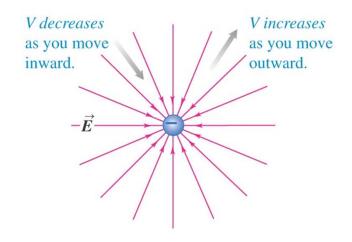
Finding electric potential from the electric field

- If you move in the direction of the electric field, the electric potential *decreases*, but if you move opposite the field, the potential *increases*. (See Figure 23.12 at the right.)
- Follow the discussion in the text.
- Follow Example 23.3.

(a) A positive point charge



(b) A negative point charge



if
$$F = \frac{1}{4\pi\epsilon_0} \frac{|2||20|}{r^2}$$

$$W = \int_{a}^{b} -\overline{d}\ell = \int_{a}^{b} \frac{1}{4\pi\epsilon_0} \frac{|2||20|}{r^2} \frac{ds}{ds} dt = \frac{|2||20|}{4\pi\epsilon_0} \left(\frac{1}{r_0} - \frac{1}{r_0}\right)$$
if $r_0 = \infty$

$$U = \frac{1}{4\pi\epsilon_0} \frac{|2||20|}{r} = \frac{1}{4\pi\epsilon_0} \frac{2\pi\epsilon_0}{r}$$

if
$$\Gamma_b = \infty$$

$$\frac{U}{1901} = \frac{1}{4160} \frac{191}{r} = V = \frac{1}{4160} \frac{9}{r}$$

$$Note: No Vectors!$$

$$V = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$$

$$V = \sum_{i=1}^{n} V_i = \sum_{i=1}^{n} \frac{q_i}{r_i} = \int_{0}^{1} \frac{dq}{r_i} dq$$

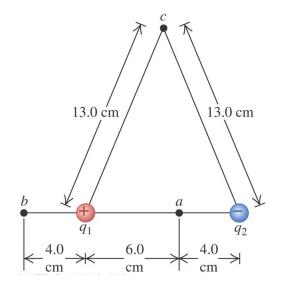
$$W = \int_{0}^{1} F \cdot d\vec{l} = \int_{0}^{1} e^{-i\vec{l}} d\vec{l} = \int_{0$$

Have E -> get V

this is backwards to
"real life"

Potential due to two point charges

- Follow Example 23.4 using Figure 23.13 at the right.
- Follow Example 23.5.



Potential due to two point charges

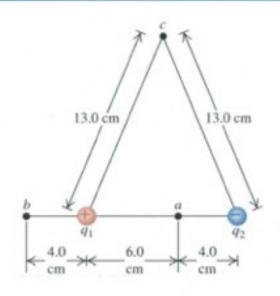
- Follow Example 23.4 using Figure 23.13 at the right.
- Follow Example 23.5.

a)
$$V_{a} = V_{1} + V_{2}$$

$$= \frac{1}{4\pi\epsilon_{0}} \frac{21}{\Gamma_{1}} + \frac{1}{4\pi\epsilon_{0}} \frac{22}{\Gamma_{2}}$$

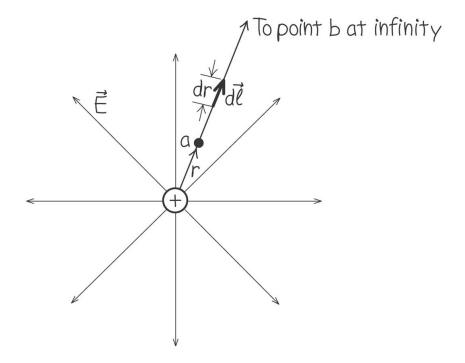
$$= -900[V]$$

$$\left(U_{a} = 2V_{a} = -3.6.10^{6} \text{ (T)}\right)$$



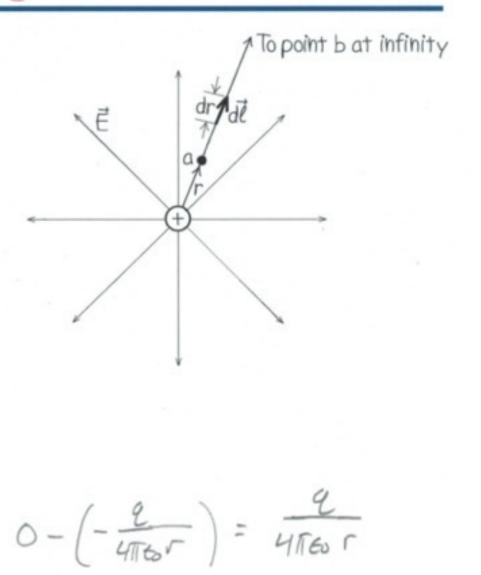
Finding potential by integration

• Example 23.6 shows how to find the potential by integration. Follow this example using Figure 23.14 at the right.



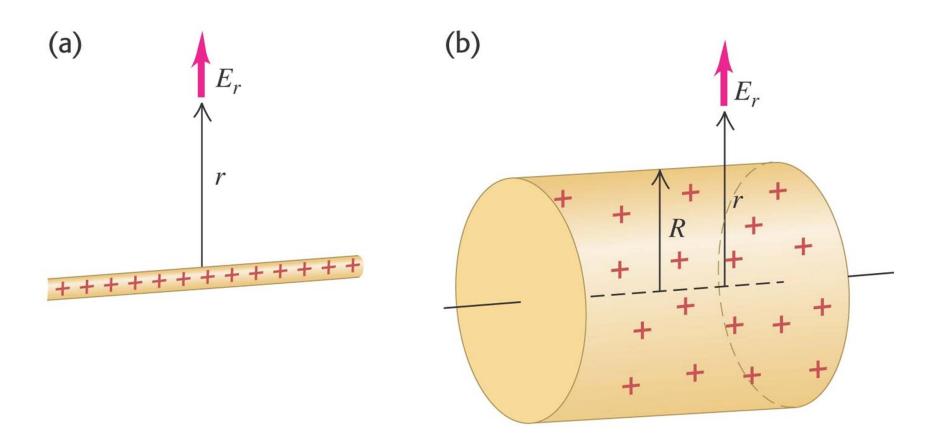
Finding potential by integration

 Example 23.6 shows how to find the potential by integration. Follow this example using Figure 23.14 at the right.



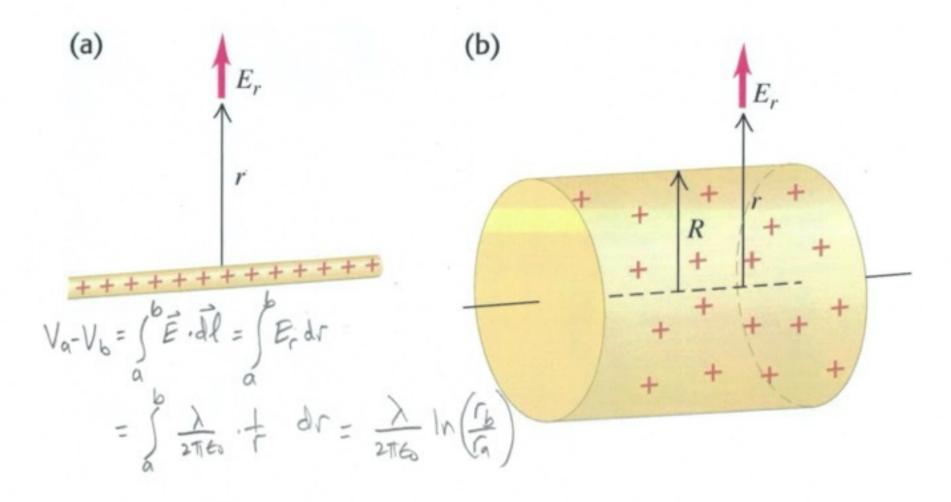
An infinite line charge or conducting cylinder

• Follow Example 23.10 using Figure 23.19 below.



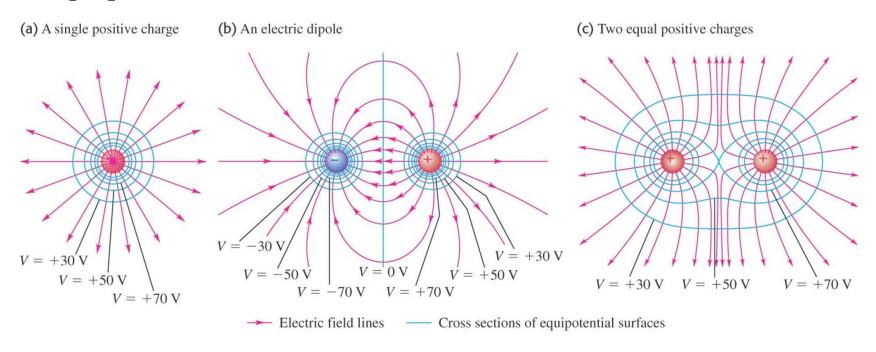
An infinite line charge or conducting cylinder

Follow Example 23.10 using Figure 23.19 below.



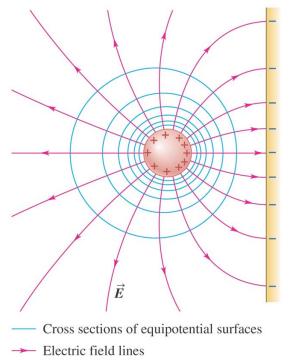
Equipotential surfaces and field lines

- An *equipotential surface* is a surface on which the electric potential is the same at every point.
- Figure 23.23 below shows the equipotential surfaces and electric field lines for assemblies of point charges.
- Field lines and equipotential surfaces are always mutually perpendicular.



Equipotentials and conductors

- When all charges are at rest:
 - ✓ the surface of a conductor is always an equipotential surface.
 - ✓ the electric field just outside a conductor is always perpendicular to the surface (see figures below).
 - ✓ the entire solid volume of a conductor is at the same potential.



An impossible electric field

If the electric field just outside a conductor had a tangential component E_{\parallel} , a charge could move in a loop with net work done.

