New Jersey Institute of Technology- Spring 2024 PHYS 114 – INTRODUCTION TO DATA REDUCTION WITH APPLICATIONS (3-0-3)

Topics:	An introduction to both the theory and application of data processing, error analysis, and reduction methodologies, for use in scientific research. Topics include probability distrib	
	functions, specifically the binomial distribution and its simplification to Gaussian and Poisson probability distribution functions, estimation of moments, and propagation of uncertainty. Forward modeling, including least-squares fitting of linear and polynomial functions are	
	discussed. Topics in digital signal processing, including Fourier transforms, windowing,	
	filtering, and power spectral density estimation is reviewed. The course enables students to apply the concepts of the data reduction and error analysis using a commonly available data analysis software suite to real data sets often found in the physical sciences.	
Objectives:	By the end of the course, students should	
	a) Be able to address the pros and cons of various methods of measurementb) Be conversant with the data reduction and error analysis concepts mentioned above,c) Be able to analyze 1D and 2D data sets to find computational estimates of PDFs, moments, and to address the appropriateness of various forward models,	
	d) Be familiar with various measurement techniques so as to best experimentally determine PDFs, moments, and the appropriateness of various forward models,	
	e) Be able to create figures that are journal-quality,	
	f) Be extremely familiar with the agreed upon software package so as to utilize it in subsequent classes and research endeavors.	
Instructor:	Andrew J. Gerrard, Ph.D., Professor	
	Email: gerrard@njit.edu, Office: 101 TIER, Phone: 3360 Web: http://web.njit.edu/~gerrard Office Hours: TBD	
Co-requisite:	MATH 111	
Course Materi	als: Bevington, P.R. and D. K. Robinson, <i>Data reduction and error analysis for the physical sciences, 3rd ed.</i> , McGraw-Hill, Boston, 2003.	
	Python, using the Anaconda package (<u>https://www.anaconda.com</u>)	
Course Requir Homework	ements and Grading Policy: 30%	
110mework.	3070	

Homework:

Homework is given every other week and is considered an important part of the class. The homework usually consists of reading the text, short answer questions, and mathematical calculations; often requiring Python. An assignment is given on the first lecture of the week [when theoretical material is covered] and may require measurements to be performed during that week either at the second lecture or outside of class. Students are encouraged to work together on the homework problems, though each student is responsible for handing in an *individual* homework set.

3 Exams (2 during the semester worth 15% each, and 1 final worth 25%): The purpose of the exams is to test the *individual* student's progress in the class. Exams are closed book/notes, but the student is allowed to bring in one 8.5x11 inch sheet of notes for each exam. Later exams can make use of previous note sheets (i.e., the note sheets are cumulative). Exams will be announced ahead of time.

Class participation

Attendance at lecture is expected.

THE NJIT HONOR CODE WILL BE STRICTLY ENFORCED AND ANY VIOLATIONS WILL BE BROUGHT TO THE IMMEDIATE ATTENTION OF THE DEAN OF STUDENTS.

55%

15%

Week	Date	Торіс
1	Jan 14	INTRODUCTION TO CLASS
		Data files, types, conversion, importance (e.g., <i>header</i> , <i>metadata</i> , <i>EOF</i>)
		Review of <i>Python</i> : reasons for use, range of capabilities, and alternatives
		APPLICATION: Writing a basic Python program
2	Jan 21	<u>Undergraduate Research 101</u>
		Funding agencies and mission, proposals (purpose, submission, review), budgets, tasks
		Things To Do and Things To Not Do: Strongly Encouraged Suggestions
		Basic Python operations for reading in data, analysis, and professional graphical output
3	Jan 28	APPLICATION: Write a basic Python program to read in real data and make a plot Uncertainties in Measurement: Chap 1
5	Jall 20	Probability Distribution Functions (PDFs)
		Sample mean + sample standard deviation
		Percent error, SNR, dB/dBi
		APPLICATION: Given a counting experiment [e.g., PMT] find various quantities
4	Feb 4	Explicitly defined <u>PDFs</u> : Chap 2
		<u>Binomial</u>
		Gaussian, Poisson, Others [Lorentzian, Cauchy, etc.]
		<u>PDF Moments</u> and <u>Moment Generating Function</u> , focus on the <u>first and second moments</u>
		APPLICATION: Determine the PDF for 3-4 different random variables [temperature,
5	Feb 11	PMT photon count from previous week] CATCH UP + REVIEW + EXAM 1
6	Feb 18	An Aside: Uncertainty Analysis: Chap 3
0	10010	Statistical Uncertainty and Bias
		Propagation of Uncertainty
		APPLICATION: Propagation of uncertainty in a "complex" measurement:
		Measurements from a CCD
7	Feb 25	Estimators and Estimation Theory: Chap 4
		Best estimates of the moments:
		Mean, standard deviation of the mean, standard deviation of the standard deviation of
		the mean, etc.
		Variance, standard deviation of the variance, standard deviation of the standard The <i>Forward Model</i> Concept
		APPLICATION: Expected photon counts from " <i>The Lidar Equation</i> "
8	Mar 3	Curve Fitting: Chap 6-8
-		Linear fits to data
		Least-squares fitting to a linear data set
		Polynomial forward model
		Least-squares fitting to a polynomial data set
	10	Generalized Least-Squares Fitting
- 9	Mar 10 Mar 17	SPRING BREAK Testing the Fit: Chap 11 [and some Chap 5]
9	Mar 17	Correlation Analysis
		Chi-square
		Monte-Carlo Techniques/Methods
10	Mar 24	CATCH UP + REVIEW + EXAM 2
11	Mar 31	Generalized Random Variables and Stochastic Processes
		Continuous realm to discrete realm
		Introduction to <u>Digital Signal Processing (DSP)</u>
10		Common DSP functions: delta, step, step down, top-hat (square), sinc, Gaussian
12	Apr 7	Into the <u>Spectral Domain</u>
		Limitations and assumptions, <u>data windows</u>
		<u>FT vs. DFTs vs. FFTs</u> FTs of common functions
13	Apr 14	Power Spectral Density (PSD) estimation, from periodograms
13	Apr 14 Apr 21	DSP Filtering concepts, low-pass, high-pass, bandpass, and stopband filters
17	1 P1 21	When all heck breaks loose: <u>Lomb-Scargle, parametric vs. non-parametric</u> , etc.
15	Apr 28	LAST WEEK OF CLASSES + CATCH UP-REVIEW
10	1p- 20	