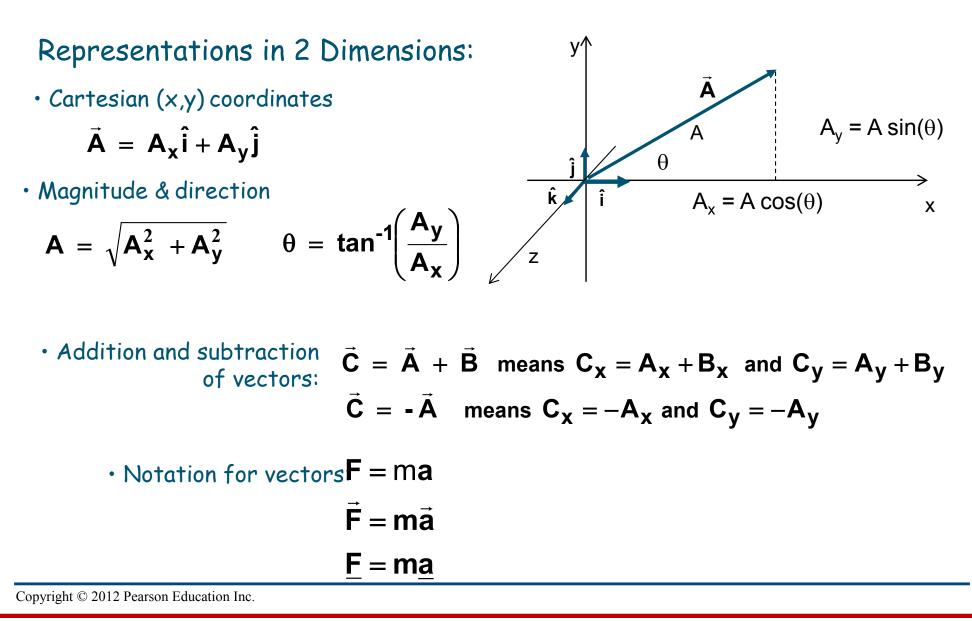
Vector Definitions

- Experiments tell us which physical quantities are scalars and vectors - E&M uses vectors for fields, vector products for magnetic field and force

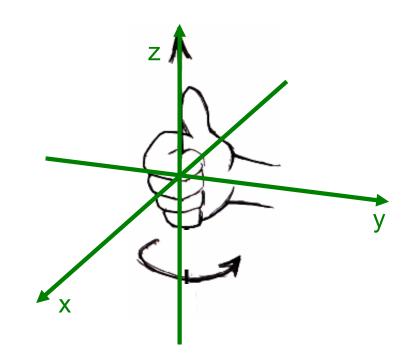


Definition: Right-Handed Coordinate Systems

We always use right-handed coordinate systems.

In three-dimensions the right-hand rule determines which way the positive axes point.

Curl the fingers of your RIGHT HAND so they go from x to y. Your thumb will point in the positive z direction.



This course uses several right hand rules related to this one!

Vectors in 3 dimensions

Unit vector (Cartesian) notation: $\vec{a} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k}$

Spherical polar coordinate representation:

1 magnitude and 2 directions $\vec{a} \equiv (a, \theta, \phi)$

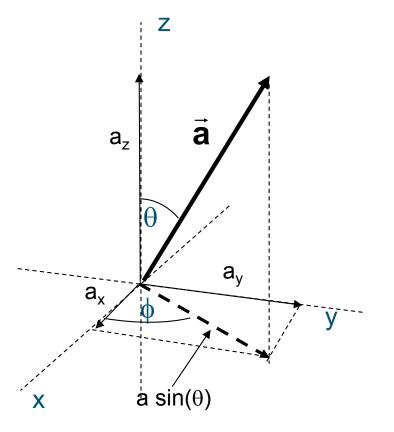
Conversion into x, y, z components

 $a_{x} = a \sin\theta \cos\phi$ $a_{y} = a \sin\theta \sin\phi$ $a_{z} = a \cos\theta$

Conversion from x, y, z components

$$a = \sqrt{a_x^2 + a_y^2 + a_z^2}$$
$$\theta = \cos^{-1} a_z / a$$
$$\phi = \tan^{-1} a_y / a_x$$

Rene Descartes 1596 - 1650

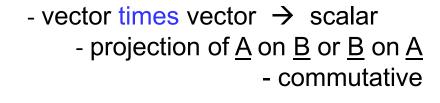


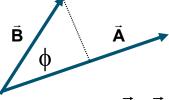
There are 3 Forms of Vector Multiplication

Multiplication of a vector by a Scalar: $\vec{sA} = \vec{sA_x}\hat{i} + \vec{sA_v}\hat{j}$

vector times scalar \rightarrow vector whose length is multiplied by the scalar

Dot product (or Scalar product or Inner product):





 $\vec{A} \circ \vec{B} \equiv ABcos(\phi) = \vec{B} \circ \vec{A} = A_x B_x + A_y B_y + A_z B_z$

 $\hat{\mathbf{i}} \circ \hat{\mathbf{j}} = \mathbf{0}, \quad \hat{\mathbf{j}} \circ \hat{\mathbf{k}} = \mathbf{0}, \quad \hat{\mathbf{i}} \circ \hat{\mathbf{k}} = \mathbf{0}$

 $\hat{\mathbf{i}} \circ \hat{\mathbf{i}} = \mathbf{1}, \quad \hat{\mathbf{j}} \circ \hat{\mathbf{j}} = \mathbf{1}, \quad \hat{\mathbf{k}} \circ \hat{\mathbf{k}} = \mathbf{1}$

unit vectors measure perpendicularity:

Vector multiplication, continued

Cross product (or Vector product or Outer product): - Vector times vector \rightarrow another vector perpendicular to the plane of <u>A</u> and <u>B</u> - Draw <u>A & B</u> tail to tail: right hand rule shows direction of <u>O</u> $\vec{C} = \vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$ (not commutative) magnitude : $|\mathbf{C}| = \mathbf{ABsin}(\phi)$ Ā where ϕ is the smaller angle from \overline{A} to \overline{B} - If <u>A</u> and <u>B</u> are parallel or the same, <u>A x B</u> = 0 - If <u>A</u> and <u>B</u> are perpendicular, <u>A x B</u> = AB (max) distributive rule : $\vec{A} \times (\vec{B} + \vec{C}) = \vec{A} \times \vec{B} + \vec{A} \times \vec{C}$ Algebra: associative rules : $\vec{SA \times B} = (\vec{SA}) \times \vec{B} = \vec{A} \times (\vec{SB})$ $(\vec{A} \times \vec{B}) \times \vec{C} = \vec{A} \times (\vec{B} \times \vec{C})$ Unit vector $\hat{i} \times \hat{j} = \hat{k}$, $\hat{j} \times \hat{k} = \hat{i}$, $\hat{i} \times \hat{k} = -\hat{j}$ representation: $\hat{i} \times \hat{i} = 0$, $\hat{j} \times \hat{j} = 0$, $\hat{k} \times \hat{k} = 0$ $\vec{A} \times \vec{B} = (A_x \hat{i} + A_y \hat{j} + A_z \hat{k}) \times (B_x \hat{i} + B_y \hat{j} + B_z \hat{k})$ $= (A_vB_z - A_zB_v)\hat{i} + (A_zB_x - A_xB_z)\hat{j} + (A_xB_v - A_vB_x)\hat{k}$ Applications: $\vec{\tau} = \vec{r} \times \vec{F}$ $\vec{L} = \vec{r} \times \vec{p}$ $\vec{F} = q\vec{E} + q\vec{v} \times \vec{B}$ Copyright © 2012 Pearson Edu

Example:

A force F = -8i + 6j Newtons acts on a particle with position vector r = 3i + 4j meters relative to the coordinate origin. What are a) the torque on the particle about the origin and b) the angle between the directions of r and F.

a) Use:
$$\vec{\tau} = \vec{r} \times \vec{F}$$

 $\vec{\tau} = \vec{r} \times \vec{F} = (3\hat{i} + 4\hat{j}) \times (-8\hat{i} + 6\hat{j})$
 $= -(3 \cdot 8)\hat{i} \times \hat{i} + (3 \cdot 6)\hat{i} \times \hat{j} - (4 \cdot 8)\hat{j} \times \hat{i} + (4 \cdot 6)\hat{j} \times \hat{j}$
 $= 18\hat{k} + 32\hat{k}$
 $\therefore \hat{\tau} = 50\hat{k} \text{ N.m } |\hat{\tau}| = 50 \text{ along z axis}$
b) Can Use: $|\vec{\tau}| = r \text{ F sin}(\phi)$
 $r = [3^2 + 4^2]^{1/2} = 5 \quad F = [8^2 + 6^2]^{1/2} = 10$
 $r \text{ F sin}(\phi) = 50 \text{ sin}(\phi) \therefore \text{ sin}(\phi) = 1$
 $\therefore \phi = 90^\circ \text{ that is } \vec{F} \perp \vec{r}$
Better to Use: $\vec{r} \circ \vec{F} = r \text{ F cos}(\phi) = 50 \text{ cos}(\phi)$
 $\vec{r} \circ \vec{F} = -(3 \cdot 8)\hat{i} \circ \hat{i} + (3 \cdot 6)\hat{i} \circ \hat{j} - (4 \cdot 8)\hat{j} \circ \hat{i} + (4 \cdot 6)\hat{j} \circ \hat{j}$
 $\therefore 50 \text{ cos}(\phi) = 0 \text{ so } \phi = 90^\circ \text{ that is } \vec{F} \perp \vec{r}$

Copyright © 2012 Pearson Education Inc.