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TUTORIAL:
Introduction to Filter Design

1.1 Objectives

In this experiment the student will become familiar with methods used to
go from a filter specification to specifying the polynomial transfer function
of the filter. Then the student will learn to translate the polynomial transfer
function into a working filter design.

1.2 Equipment Needed

• A decent scientific calculator.

• A few µA741 integrated circuit operational amplifiers, resistors and
capacitors and a prototyping board.

1.3 References

• S. Franco, Design with Operational Amplifiers and Analog Integrated
Circuits, McGraw-Hill Inc., 1988.

• M. E. Van Valkenburg, Analog Filter Design, HRW, 1982.

• A. B. Williams, Electronic Filter Design Handbook, McGraw-Hill Inc.,
1988.
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Figure 1.1: A filter specification diagram with a sketch of a Butterworth
response that exactly satisfies the specs.

1.4 Background

The assignment of designing and building analog filters can be broken up into
various tasks. We will assume that the given filter specification is presented
in the form shown in figure 1.1. The interpretation of the diagram is the
following:

• It is desired to build a low pass filter whose passband lies in the region
0 ≤ f ≤ fp. The transfer function |G(f)| is almost invariably given in
units of dB.

• Within the passband, the magnitude of the transfer function may vary
between zero and Gp.

• When it enters the stop band, the magnitude of the transfer function
should decrease to Gs or less as the frequency fs is reached.

A possible transfer function, in the form of the smooth curve, is shown
in figure 1.1. We plan on realizing the filter using a linear analog-circuit.
Such circuits have transfer functions whose magnitude squared is an even
polynomial in the frequency variable f . Therefore the first step in the design
process is to find a polynomial transfer-function that will satisfy the speci-
fications. Many different well-known polynomial transfer-functions are used
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for approximating filter specifications. Because of time constraints, how-
ever, our attention will be confined entirely to Butterworth and Chebyshev
polynomial realizations. They have the advantage of having over the years
acquired extensive tabulations. But it must be understood at the outset that
additional polynomial realizations exist, and that with each is associated a
set of advantages and disadvantages which are discussed in the literature.

We will now address the question of how to fulfill the specification of the
filter by using Butterworth and Chebyshev transfer functions.

1.5 Specifying Butterworth Filters

At the outset we observe that Butterworth filters have the magnitude char-
acteristic given by

|G(f)|2 =
1

1 + (f/fc)2n (1.1)

where n is the order of the filter and fc is the frequency at which the transfer-
function magnitude is reduced by 3 dB. This class of filters has a monotoni-
cally decreasing amplitude characteristic. It has no ripples in the passband, in
contrast to Chebyshev and some other filters, and is consequently described
as maximally flat.

In order to fully specify the filter we need an expression for determining
n as well as a method for computing the fc needed in (1.1). To reach this
goal we substitute the filter specifications at fp and fs into (1.1) to obtain

1 + (fp/fc)2n = 10−(Gp/10) (1.2)
1 + (fs/fc)2n = 10−(Gs/10) (1.3)

From the last two equations we readily get the two expressions

(fc/fp)2n =
1

10−(Gp/10) − 1
(1.4)

(fc/fs)2n =
1

10−(Gs/10) − 1
(1.5)

Taking the ratio of the last two expressions we readily find that

n =
1

2 ln(fs/fp)
ln

[

10−(Gs/10) − 1
10−(Gp/10) − 1

]

(1.6)
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The example which follows will illustrate the use of the above equations.

Example 1 — We wish to design a Butterworth filter satisfying Gp = −1 dB
at fp = 3kHz and Gs = −25 dB at fs = 8kHz.

Substituting the specifications given into (1.6), we obtain the solution

n =
1

2 ln(8/3)
ln

[

10−(−25/10) − 1
10−(−1/10) − 1

]

= 3.62 (1.7)

We need an integer exceeding that given in (1.7), so we fix the value of n
at 4. We now simply need to find the value of fc needed to finish specifying
(1.1). Since n = 4 exceeds the value of n found in (1.7) we will have some
extra latitude in choosing fc. To find fc we substitute n = 4 into (1.4) and
(1.5) to obtain the two equations

(fc/3)2×4 =
1

10−(−1/10) − 1
(1.8)

(fc/8)2×4 =
1

10−(−25/10) − 1
(1.9)

The last two equations produce the two results for fc,

fc1 = 3.55 kHz (1.10)
fc2 = 3.90 kHz (1.11)

If we choose a value of fc somewhere in the range fc1 < fc < fc2 then the
design will have some tolerance in the passband as well as in the stopband.
We use the geometric mean

fc =
√

fc1fc2 ≈ 3.7 kHz (1.12)

With n fixed at 4 and fc fixed at 3.7 kHz, we reevaluate (1.1) at fp and
fs to find

G(fp) = −0.744 dB (1.13)
G(fs) = −26.8 dB (1.14)

Comparing the above results to the original specification we find that the
specifications are exceeded. We therefore have some latitude in our design
to compensate for tolerances of component values.
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Figure 1.2: A filter specification diagram with a sketch of a Chebyshev re-
sponse that exactly satisfies the specs.

1.6 Specifying Chebyshev Filters

The filter specifications, as well as a sketch of a Chebyshev filter response,
are shown in figure 1.2. As can be seen in the diagram, this class of filters
has an amplitude characteristic which has ripple in the passband, in contrast
to the maximally flat Butterworth filters. The end of the passband, the
frequency fp, is also the cutoff frequency fc appearing in the equations which
are presented below.

Chebyshev filters have an amplitude characteristic given by

|G(f)|2 =
1

1 + ε2C2
n(f/fc)

(1.15)

The functions Cn(·) are Chebyshev polynomials. They also have the non-
polynomial forms, given below, which are very convenient for hand calcula-
tion. As can be seen from the following equations, there is one form for the
passband and one form for the stopband.

Cn(f/fc) = cos
[

n cos−1(f/fc)
]

, for |f/fc| ≤ 1 (1.16)

Cn(f/fc) = cosh
[

n cosh−1(f/fc)
]

, for |f/fc| ≥ 1 (1.17)

Examination of (1.16) shows that in the passband the Chebyshev polyno-
mials take on values between -1 and 1. As a consequence we conclude from
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(1.15) that in the passband

1
1 + ε2 ≤ |G(f)|2 ≤ 1 (1.18)

The above is the magnitude of the ripple in the passband. The upper bound
corresponds to 0 dB. The lower bound corresponds to Gp dB. From this we
obtain the expression for ε2, in terms of the ripple specification Gp, in the
form

ε2 = 10−(Gp/10) − 1 (1.19)

If we could obtain an expression for calculating the value of n needed in
(1.15), we would be in a position to fully specify the Chebyshev filter. To
attain this objective we substitute the filter specifications at fs and fp (using
fp for fc), as well as (1.19) into (1.15) to obtain

10(Gs/10) =
1

1 + [10−(Gp/10) − 1] cosh2
[

n cosh−1(fs/fc)
] (1.20)

Solving for n in the above we obtain

n =
1

cosh−1(fs/fc)
cosh−1

√

10−(Gs/10) − 1
10−(Gp/10) − 1

(1.21)

An example will be used to demonstrate the application of the theory.

Example 2 — We wish to design a Chebyshev filter satisfying the same
specifications as in the previous example, namely Gp = −1 dB at fp = 3kHz
and Gs = −25 dB at fp = 8 kHz.

Substituting the specifications given into (1.21), we obtain for n

n =
1

cosh−1(8/3)
cosh−1

√

10−(−25/10) − 1
10−(−1/10) − 1

= 2.594 (1.22)

Since n has to be an integer exceeding that given in (1.22), we fix the value
of n at 3. Since n = 3 exceeds the value of n found in (1.22), we can use the
extra freedom to provide some tolerance margin by exceeding specifications.
We can either increase fc or decrease the ripple in the passband.
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We choose, quite arbitrarily, to decrease the ripple in the passband to
0.5 dB which means that now Gp = 0.5 dB. Substituting this into (1.19), we
obtain

ε2 = 10−(−0.5/10) − 1 = 0.1220 (1.23)

When this value of ε2 is substituted into (1.15) and that in turn is eval-
uated at the stopband frequency of 8 kHz, we find that

|G(f)|2 =
1

1 + 0.122 cosh2
[

3 cosh−1(8/3)
] = 1.777× 10−3 = −27.5 dB

(1.24)
Comparing the above results to the original specification we find that the

specification at the edge of the passband is better by 0.5 dB and that the
specification in the stop band is improved by 2.5 dB. This design therefore
has some compensation for variations due to temperature and to tolerances
of component values.

We have demonstrated how to determine the specifications for Butter-
worth and Chebyshev filters. It is seen that Chebyshev filters have the
advantage that a lower order polynomial will satisfy the specifications as
compared to Butterworth filters. But on the other hand Butterworth filters
have a more linear phase-characteristic than do Chebyshev filters, and this
may affect the choice of design for specific cases.

1.7 Conversion of Specifications

In the previous section we have shown how to specify the polynomial form of
the magnitude-squared transfer-function |G(f)|2. This is in all cases an even
polynomial in the frequency variable f . Some additional work is required
before we arrive at a factored form for the transfer function G(s).

The steps required involve replacing j2πf with the Laplace transform
variable s in equations (1.1) and (1.15), which is equivalent to replacing f 2

with −(s/2π)2 to obtain |G(s)|2. This is followed by a factorization of the
even denominator polynomial of |G(s)|2. The terms representing the left-half
s-plane poles are then used to specify the final transfer function G(s).

It is not necessary to go through the computation mentioned above, as
extensive tables of most transfer functions are available in the literature. In

7



Table 1.1: Factored forms of low-pass filter denominator-polynomials nor-
malized for a cutoff ωc = 1 rad/s.

Butterworth
Order

1 1 + s
2 1 + 1.4142s + s2

3 1 + s 1 + s + s2

4 1 + 0.7654s + s2 1 + 1.8478s + s2

5 1 + s 1 + 0.6180s + s2 1 + 1.6180s + s2

Chebyshev 0.5 dB ripple
1 2.8628 + s
2 1.5162 + 1.4256s + s2

3 0.6265 + s 1.1424 + 0.6265s + s2

4 0.6352 + 0.3507s + s2 0.3564 + 0.8467s + s2

5 0.3623 + s 1.0358 + 0.2239s + s2 0.4768 + 0.5862s + s2

Chebyshev 1.0 dB ripple
1 1.9652 + s
2 1.1025 + 1.0977s + s2

3 0.4941 + s 0.9942 + 0.4941s + s2

4 0.9865 + 0.2791s + s2 0.2794 + 0.6737s + s2

5 0.2895 + s 0.9883 + 0.1789s + s2 0.4293 + 0.4684s + s2

Chebyshev 2.0 dB ripple
1 1.3076 + s
2 0.6368 + 0.8038s + s2

3 0.3689 + s 0.8861 + 0.3689s + s2

4 0.9287 + 0.2098s + s2 0.2216 + 0.5064s + s2

5 0.2183 + s 0.9522 + 0.1349s + s2 0.3932 + 0.3532s + s2

Chebyshev 3.0 dB ripple
1 1.0024 + s
2 0.7079 + 0.6449s + s2

3 0.2986 + s 0.8392 + 0.2986s + s2

4 0.9031 + 0.1703s + s2 0.1960 + 0.4112s + s2

5 0.1775 + s 0.9360 + 0.1097s + s2 0.3770 + 0.2872s + s2
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the popular form of active filter realizations, higher order forms are realized
as cascades of second-order sections for even n, with the addition of a first
order section if n is odd. The reason for this is that second-order sections
are easy to design, adjust and debug, and lead to a standardized modular
construction of higher order filters. The parameters of second-order sections
have reasonably low sensitivity to component variations.

A limited table of the factored forms of the polynomials is given in table
1.1. The table gives the factored form of the denominator polynomial for
a filter having a cutoff of one radian per second, namely ωc = 1 rad/s. We
will first address the issue of the second-order portion of the denominator
appearing in table 1.1, which we write in the form

H(s) =
b0

s2 + b1s + b0
(1.25)

We have to determine the relationship of the parameters appearing in
the above equation and those which are found in the design equations for
second-order filters in Franco and other books. The latter are based on the
parameters f02 and Q of a second-order transfer function of the form

H(f) =
H2

1− (f/f02)2 + j(1/Q)(f/f02)
(1.26)

Different books on the subject of filter design differ in their presentation
of the design polynomials. Our difficulty arises from the fact that the poly-
nomials appearing in table 1.1, and as a consequence (1.25), are scaled for
filters normalized to have ωc = 1, whereas (1.26) and the tables appearing in
Franco are scaled for filters normalized to fc = 1. The rescaling is performed
by replacing the variable s in (1.25) with a new variable s′/2π. This produces

H(s) =
b0

(s′/2π)2 + b1(s′/2π) + b0
(1.27)

Substituting s′ = j2πf into the above

H(f) =
1

1− (f/
√

b0)2 + j(b1/
√

b0)(f/
√

b0)
(1.28)

and comparing with (1.26) we obtain

f02 =
√

b0 (1.29)
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and

Q =
√

b0

b1
(1.30)

We will now address the issue of the first-order portion of the denominator
appearing in table 1.1, which we write in the form

H(s) =
a0

s + a0
(1.31)

Again we rescale by replacing the variable s in the above with s′/2π

H(s) =
a0

(s′/2π) + a0
(1.32)

and then substituting s′ = j2πf into the above

H(f) =
1

1 + j(f/a0)
(1.33)

which is the equation for a standard first order low pass filter with the cutoff
frequency

f01 = a0 (1.34)

An example will make clear the use of table 1.1 and the above equations.

Example 3 — In example 2 it was determined that we wish to realize a
0.5 dB ripple Chebyshev filter with n = 3. From table 1.1 we find that the
filter should have the transfer function given by

G(s) =
(0.6265)(1.1424)

(s + 0.6265)(s2 + 0.6265s + 1.1424)
(1.35)

The transfer functions are customarily written in a form that produces a
transfer function of unity at zero frequency. That is the reason for the strange
looking numerator in the above expression.

Inspection of the above equation tells us that a0 = 0.6525. Hence from
(1.34) we have for the first order section

f01 = a0 = 0.6265 (1.36)
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By further inspection of (1.35) we determine that b0 = 1.1424 and b1 =
0.6265. Using (1.29) and (1.30), we obtain

f02 =
√

b0 =
√

1.1424 = 1.0688 (1.37)

and

Q =
√

b0

b1
= 1.7060 (1.38)

The results of (1.36–1.38) are correct for an fc = 1Hz. To rescale for the
desired fc = 3 kHz, we simply multiply the above frequencies by 3000.

We therefore wish to build a filter containing a first order section with
cutoff frequency

f01 = 1.880 kHz (1.39)

and a second-order section specified by the two parameters

f02 = 3.206 kHz (1.40)

and

Q =
√

b0

b1
= 1.7060 (1.41)

The remaining task is to realize the Butterworth and Chebyshev filters
which were specified at the beginning of the tutorial discussion.

1.8 Examples of Filter Realizations

When we select circuits to realize the transfer functions, we have a number of
choices. For the first-order section we can use a simple passive RC circuit or a
first order active circuit. The latter has the advantage that loading problems
are avoided. For the second-order section we have a very wide choice includ-
ing the well known Sallen-Key, KRC, state variable, and the biquad filter.
The choice among them is based on such factors as simplicity, ease of adjust-
ment, sensitivity to the variation of the values of the resistors and capacitors,
and non-ideality of the Op Amp. If 4Qf0 � ft, the gain-bandwidth product
of the Op Amp, then the frequency response of the Op Amp does not have
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to be considered [see Franco p. 182]. In example 3, with f02 = 3.206 kHz and
Q = 1.706, the 4Qf0 product is equal to 21.9 kHz. This is much less than the
ft of a µA741 Op Amp, which is 1MHz. So the Op Amp frequency response
should have a negligible effect on the performance of the filter.

Example 4 — We will continue with the realization of the Chebyshev fil-
ter whose specifications were obtained in example 3. The specifications of
this filter are reiterated here for convenience. We need a first order section
with f01 = 1.880 kHz as well as a second-order section specified by the two
parameters f02 = 3.206 kHz, Q = 1.7060.

For the realization of the second-order section, we will choose an equal-
component-value KRC low-pass filter realization [see Franco pp. 125-127].
The configuration is shown in the second Op Amp section of figure 1.3. The
equations which produce the component values are the following.

f0 =
1

2πQRC
(1.42)

Q =
√

m (1.43)

Substituting into (1.43) we get m = 2.91. Choosing (quite arbitrarily)
C = 0.001 µF, we find upon substitution into (1.42) that R = 29.1 kΩ. For
the latter we choose the nearest available 5% resistance value to get R =
30 kΩ. This gives us the value of mR = 87.3 kΩ, with the closest 5% choice
being mR = 91 kΩ. The complete design is shown in figure 1.3. For RA we
chose 240 kΩ, so that the resistance to ground from the negative terminal of
the Op-Amp will equal that from the positive terminal. This is done in order
to minimize the DC offset at the input terminals (and consequently at the
output terminal.)

For the first order section we will choose a low-pass filter with gain [see
Franco p. 106]. The design equation is merely

f0 =
1

2πR2C
(1.44)

Choosing C = 0.001µF and using f01 = 1.880 kHz we find that R2 =
84.7 kΩ. The closest 5% value is R2 = 82 kΩ. Since the low-frequency gain
of the second-order section is 2, we will make the gain of the first-order
section 1/2. To do this we need R1 = 164 kΩ. The closest 5% value that we
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Figure 1.3: Realization of the 3rd order 0.5 dB ripple Chebyshev low-pass
filter.

choose for our design is R1 = 160 kΩ. Figure 1.3 shows the realization of the
entire 3rd order 0.5 dB ripple Chebyshev low-pass filter. We chose to make
R3 = 27 kΩ to minimize the DC offset at the input terminals.

The effect of component tolerances on the overall frequency response of
the filter can be estimated by looking at the design equations. Using compo-
nent values with a 5% tolerance we could have a worst case cutoff frequency
variation of ±10 % from its design value. If this is not acceptable then the
design can be reexamined with the idea of using 1% tolerance component
values. The detailed study of the changes in the shape of the filter response
curve can be done using a computer simulation program such as PsPice. The
simulation can also be useful for determining the effect of the non-ideality
of the Op-Amp on the frequency response. By running the simulation twice,
once using an ideal Op Amp and a second time using a realistic model from
the PsPice library, the effect of the Op Amp frequency response on the filter
becomes evident.

The biquad or Tow-Thomas filter circuit uses more components than the
Sallen-Key type circuit. In return it offers some significant advantages that
make it popular. Some of these are:

• The values of f0, Q, and gain can be adjusted using variable resistors.
The adjustment of each parameter can be made independently, that is,
without affecting the values of any other parameters.

• High Qs of the order of one hundred can be achieved in practice.
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• There are no large gains to cause saturation problems.

• Equal Cs can be used.

We will now explore an alternative method for the realization of the second-
order filter section.

Example 5 — We turn attention entirely to the low-pass second-order filter
section whose specifications were obtained in example 3. The specifications
of this second-order section are reiterated here for convenience. They are
f0 = 3.206 kHz and Q = 1.7060. We simplify the design equations [see
Franco, p. 142] by setting R4 = R5 = R and C1 = C2 = C, to obtain

H0LP =
R
R1

(1.45)

f0 =
1

2πRC
(1.46)

Q =
R2

R
(1.47)

Choosing, arbitrarily, the convenient value C = 0.001 µF, we find from
(1.46) that R = 49.6 kΩ. We choose the closest standard 5% value of 51 kΩ.
Using this value in (1.47), we find that R2 = 87 kΩ. We again choose the
closest standard 5% value, which is 91 kΩ. If we wish to make the gain of
this section at DC unity, then we assign R1 = 51 kΩ. The complete circuit
is shown in figure 1.4. When designing the first order section, like the one
shown in figure 1.3, we have to keep in mind that it needs to have a gain of
unity since the second-order section has a gain of unity.

If it is necessary to adjust the values of f0, Q, and gain very precisely,
adjustable resistors can be used for R5, R2 and R1 respectively. To obtain
good resolution in the adjustment it is sensible to reduce the resistor’s value
by about 10% and to add a series variable-resistor whose value is about 20%
of the total value required. The order of adjustment is: first adjust f0 using
R5 (which will affect Q, then adjust the gain using R1 (which will not affect
f0 and Q), and finally to adjust Q using R1 (which will not affect f0 and the
gain).

A practical way to adjust f0 is to make use of the fact that at f = f0

there is a 90◦ phase shift between the output and the input voltages. The
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Figure 1.4: Tow-Thomas realization of the 2nd order section specified in
example 3.

gain can be adjusted at a frequency much lower than f0 (e.g f0/100). The
value of Q can be adjusted by setting the input frequency to f0 and using
the fact that at f = f0, Vo/Vi = H0LP Q.

1.9 Student’s Filter Specification

Table 1.2 will be used by the students to select the specifications of the filters
to be built and tested for the duration of this laboratory. Each group will use
the last four digits (designated M) of one social security number to determine
the specifications of the filter which it needs to build. The following example
explains how this is done.

Suppose the social security number of one member of the group is XXX-
YY-3194, hence M = 3194. (M mod 3) + 1 = 3, determines column III for
selecting the filter specification. M , expressed in hexadecimal form, equals
0C7AH. The last digit of this number determines the row of the table for
selecting the filter specification, in this case row A.
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Table 1.2: Filter specifications. In all cases Ap ≤ 1 dB.

I II III
fp fs As fp fs As fp fs As

0 2.0 7.0 30 2.2 7.7 30 2.4 8.4 30
1 2.5 8.8 30 2.6 9.1 30 2.8 9.8 30
2 2.0 8.2 35 2.2 9.0 30 2.4 9.8 35
3 2.5 10.3 35 2.6 10.7 35 2.8 11.5 35
4 3.0 10.5 30 3.2 11.2 30 3.4 11.9 30
5 3.5 12.3 30 3.6 12.6 30 3.8 13.3 30
6 3.0 12.3 35 3.2 13.1 35 3.4 13.9 35
7 3.5 14.4 35 3.6 14.8 35 3.8 15.6 35
8 4.0 14.0 30 4.2 14.7 30 4.4 15.4 30
9 4.5 15.8 30 4.6 16.1 30 4.8 16.8 30
A 4.0 16.4 35 4.2 17.2 35 4.4 18.0 35
B 4.5 18.5 35 4.6 18.9 35 4.8 19.7 35
C 5.0 17.5 30 5.2 18.2 30 5.4 18.9 30
D 5.5 19.3 30 5.6 19.6 30 5.8 20.3 30
E 5.0 20.5 35 5.2 21.3 35 5.4 22.1 35
F 5.5 22.6 35 5.6 23.0 35 5.8 23.8 35
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Experiment 1 — Realization of
a Butterworth Filter using
Sallen-Key Type Sections

1. Following the Butterworth design tutorial, determine the specifications
for the sections needed for your filter.

2. Following the design procedures in Franco, design the sections needed
to build the filter.

3. Simulate the filter using PSpice, or an equivalent computer simulation
program, and determine that the filter will indeed meet your specifica-
tions. Obtain plots using PROBE for both the amplitude and phase
characteristics. Obtain a detailed plot of the amplitude characteris-
tic for |G(f)| ≤ 1 dB. Be prepared to show your instructor the neatly
prepared results of your work to this point.

4. Prototype the filter and verify that it meets your specifications. Ask
your instructor to witness this (climactic) event. Take data to plot the
amplitude response of your filter. On the same plot draw the response
predicted by theory. All of the above should be included in the report.
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Experiment 2 — Realization of
a Chebyshev Filter using
Biquad Sections

1. Following the Chebyshev design tutorial, determine the specifications
for the sections needed for your filter.

2. Following the design procedures in Franco, design the sections needed
to build the filter.

3. Simulate the filter using PSpice, or an equivalent computer simulation
program, and determine that the filter will indeed meet your specifica-
tions. Obtain plots using PROBE for both the amplitude and phase
characteristics. Obtain a detailed plot of the amplitude characteris-
tic for |G(f)| ≤ 1 dB. Be prepared to show your instructor the neatly
prepared results of your work to this point.

4. Prototype the filter and verify that it meets your specifications. Ask
your instructor to witness this event. Take data to plot the amplitude
response of your filter. On the same plot draw the response predicted
by theory. All of the above should be included in the report.
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Experiment 3 — Realization of
a Butterworth Filter using the
MF10 Switched-Capacitor
Filter Chip

1. This design is the same as that performed for experiment 1.

2. Following the design procedures in chapter 13 of Franco, design the
sections needed to build the filter.

3. Prototype the filter and verify that it meets your specifications. Ask
your instructor to witness this event. Take data to plot the amplitude
response of your filter. On the same plot draw the response predicted
by theory. All of the above should be included in the report.
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