
Laboratory Manual and Supplementary
Notes

ECE 429: Communication Laboratory

Version 1.0

Dr. Joseph Frank
Dr. Sol Rosenstark

Department of Electrical and Computer Engineering
New Jersey Institute of Technology

Newark, New Jersey

c© 2003
New Jersey Institute of Technology

All rights reserved



Contents

Acknowledgements iii

Introduction and Tutorial Material 1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
The Spectrum Analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Laboratory Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Experiment 1 — Circuits and Signals in the Time and Frequency
Domains 5
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
The RC Integrating Circuit – A Tutorial . . . . . . . . . . . . . . . . . 5
The RC Integrating Circuit – The Experiment . . . . . . . . . . . . . 7
The RC Differentiating Circuit . . . . . . . . . . . . . . . . . . . . . . 8
The RC Differentiating Circuit – The Experiment . . . . . . . . . . . 11
Determination of Circuit Elements Using Square Wave Testing . . . . 11
Propagation and Reflection of Pulses on a Cable . . . . . . . . . . . . 12
Observation of the Spectrum of Signals . . . . . . . . . . . . . . . . . 13
The Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Experiment 2 — Frequency Modulation and Spectra of FM Sig-
nals 14
Frequency Modulation — A Tutorial . . . . . . . . . . . . . . . . . . . 14
Frequency Modulation — Part 1 . . . . . . . . . . . . . . . . . . . . . 17
Frequency Modulation — Part 2 . . . . . . . . . . . . . . . . . . . . . 18
Frequency Modulation — Part 3 . . . . . . . . . . . . . . . . . . . . . 19
Frequency Modulation — Part 4 . . . . . . . . . . . . . . . . . . . . . 19
Frequency Modulation — Part 5 . . . . . . . . . . . . . . . . . . . . . 19

Experiment 3 — Amplitude Modulation and Spectra of AM Sig-
nals 21
Amplitude Modulation — A Tutorial . . . . . . . . . . . . . . . . . . . 21

i



Generation of AM Signals . . . . . . . . . . . . . . . . . . . . . . . . . 23
The Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Experiment 4 — Distortion Analysis 28
Distortion Analysis — A Tutorial . . . . . . . . . . . . . . . . . . . . . 28
The Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Experiment 5 — Measurements on Noise 32
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Noise — A Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
The Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

ii



Acknowledgement

Experiments 1 and 2 are based on experiments originally written by Dr. Jacob
Klapper.

iii



Introduction and Tutorial
Material

Introduction

The purpose of this laboratory course is to give the student an opportunity to
do experiments relating to the topics studied in the communication systems and
related courses. The student will have the opportunity to observe AM and FM
signals in the time and frequency domains and to learn about the generation and
detection of modulated waveforms. The student also will be afforded a chance
to learn about measurements of distortion and noise as well as get a familiarity
with some instruments not previously encountered such as spectrum analyzers,
audio analyzers and noise generators.

The work in this laboratory will stress and agreement between theory and
measurement. It is very important that the student have a clear idea of what
to expect from each measurement, in order to immediately determine if things
are working correctly. The student should be constantly be wondering – is this
reasonable, both qualitatively and quantitatively ? If the lab observations are
not in reasonable agreement with what was expected, then further observation
or preparatory analysis are in order to determine the source of the discrepancy.
There is no point in taking data and going home to write a lab report only
to find out that the data is meaningless because there was on error in the lab
set-up or procedure.

It is very important to get in the habit of working in a logical, scientific
manner. The laboratory experience is valuable for showing us the small dis-
crepancies between theory and practice, but there must be reasonable agreement
between what we observe and what we expect to observe.

The Spectrum Analyzer

The spectrum analyzer is an important and useful tool for examining signals
in the frequency domain. As it is an instrument with which the student may
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not be familiar, a brief explanation will be given here, and part of the first lab
session will be devoted to becoming familiar with this instrument. For a more
detailed explanation of this instrument see the manual which is available in the
stockroom.

The spectrum analyzer can be thought of as a band pass filter whose center
frequency is varied linearly over a range of frequencies. The center frequency
of the filter is plotted on the horizontal axis and the output of the filter is
plotted on the vertical axis. The filter must be swept over the frequency range
slowly enough so we obtain the steady state filter output. The internal circuitry
of the analyzer automatically changes the sweep rate as the filters bandwidth
is changed to insure this condition is met. There is a default setting for the
filter bandwidth, but it can be changed using the front panel controls. A wide
bandwidth allows a more rapid sweep, but a narrow bandwidth is necessary to
resolve closely spaced signals. Suppose for example that we wanted to observe
a signal that consisted of two sine waves, one at 500 kHz and one at 505 kHz.
If we had a filter bandwidth of 30 kHz we would not be able to resolve them
as two separate signals, they would appear as one. However, if we reduced
the bandwidth to 1KHz we would be able to resolve them into two distinct
signals, and be able to measure their frequency separation and their individual
amplitudes.

In operating the spectrum analyzer there are three principal parameters
that the operator should set. These are, center frequency, span and amplitude.
The center frequency setting determines the frequency that corresponds to the
middle of the screen. The calibration of this setting is not very accurate on the
older analyzers, but this is not a serious problem in using the analyzer as we
are usually interested in frequency differences. The span determines the range
of frequencies from one side of the screen to the other. For example, if we set
the center frequency to 10MHz and the span to 2 MHz, the screen would cover
the range 9 MHz to 11 MHz and any signals in that frequency range applied to
the input would be seen on the screen. The amplitude can be set to either the
log or linear mode. The log mode is useful for looking at two or more signals
that have large differences in amplitude. In this mode the scale is calibrated in
dB/division, with a given reference value corresponding to the top line. In the
linear mode, which is good for observing small differences in amplitude, the top
line can be set to correspond to a given voltage.

Laboratory Work

To get some experience in working with the spectrum analyzer, the first thing to
observe is a single sine wave. Connect the signal generator both to the scope and
the spectrum analyzer using a T connector. Adjust the generator so the signal
frequency is 10 MHz and the peak to peak amplitude is 0.2 volts. Adjust the
center frequency of the spectrum analyzer to 10 MHz, the span to 10MHz and
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the signal amplitude so the reference level is 0 dBm and the vertical calibration
is 10 dB/div. You should see a line approximately in the middle of the screen.
Vary the frequency of the generator and check that the line moves 1 box/MHz.

It is worthwhile to note that the spectrum analyzer is calibrated in dBm.
The dBm is a unit of power which is defined as,

PdBm = 10 log10
P

1milliwatt

The input resistance of the spectrum analyzer is 50 Ω. A signal that has
an amplitude of 0.1 volt has an rms value of 0.0707 volts and a peak to peak
voltage of 0.2 volts. Its power is calculated from its rms value below

P =
(0.0707)2

50
= .0001watts = 0.1milliwatts

When this power is referred to 1 milliwatt, we get

PdBm = 10 log10
0.1
1

= −10 dBm

If the spectrum analyzer amplitude settings are adjusted so that the reference
is 0 dBm and the vertical scale is at 10 dB/div, then the height of the line on the
screen should be one box below the top of the screen. If you turn the attenuator
knob on the generator, the height of the line on the screen should decrease one
box for each additional 10 dB of attenuation. If you change the amplitude mode
to linear, then you should be able to measure the rms value of the signal. In this
case, the original 0.2 volt peal to peak signal should measure 70.7 millivolts.

Now try to repeat this measurement using a 1MHz signal. Adjust the center
frequency and span to appropriate values. You will probably notice a line on
the screen that corresponds to what the analyzer thinks is zero frequency. This
is the zero marker.

When measuring low frequency signals you have to be careful not
to confuse the zero marker with the signal. This is a very common error.
It is very easy to tell the difference. If you make a change in the amplitude or
frequency of the signal and the line does not move, then it is the zero marker.
Another quick check is to just remove the input cable from the spectrum analyzer
and see if the line disappears.

Having mastered the observation of a single sinusoidal signal on the spec-
trum analyzer we are ready to try the observation of closely spaced sinusoidal
signals. An easy way to obtain three closely spaced sinusoidal signals is to use
an amplitude modulated signal. Use the Wavetek generator with internal AM
modulation to produce an AM signal with a 5 MHz carrier frequency modulated
by a 10 kHz tone with a modulation index of 0.5. The equation of this signal is

x(t) = (1 + 0.5 cos 2π104t) cos 2π5× 106t
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Before you proceed you should sketch the waveform of x(t) to get an idea
of how it should appear on an oscilloscope. When displaying this signal, it
is helpful to use the modulating signal on the external sync terminal of the
oscilloscope to obtain a steady picture.

To see what kind of spectrum the above will produce, we use trigonometric
identities in the above expression, to obtain

x(t) = cos 2π5× 106t + 0.25 cos 2π(5× 106 + 104)t + 0.25 cos 2π(5× 106 − 104)t

It is now clear that on the spectrum analyzer you should see 3 lines separated
by 10KHz, with the outer two lines having an amplitude 1

4 of the amplitude
of the center line. On the log scale this corresponds to a 12 dB difference in
amplitude.

What are sensible settings for center frequency and span to observe the
amplitude modulated wave ?
Try slowly reducing the modulating frequency – noting that the lines come closer
together.

What is the closest spacing of the lines that allows you to see them as indi-
vidual lines ?
Reduce the resolution bandwidth of the spectrum analyzer when trying to re-
solve closely spaced signals.

There are many other interesting and useful features of the spectrum ana-
lyzer that you can investigate. Using the manual that is available in the stock-
room is very helpful. One especially useful feature is the system of markers.

4



Experiment 1 — Circuits
and Signals in the Time and
Frequency Domains

Introduction

The description of signals used in communication systems, and the performance
of circuits used in these systems can be described in either the time domain or
the frequency domain. The domain to use is the one that is convenient for the
specific situation. There is a mathematical relationship between the description
in the two domains which is given by the Fourier transform or, in the case
of periodic functions, by the Fourier series. Thus, if we have a description of
a signal in one domain we can calculate its description in the other domain.
In this experiment we will look at some signals in the time domain using the
oscilloscope and in the frequency domain using the spectrum analyzer. This will
help the student develop a “feel” for the relationship between these domains.

References

References to all the material covered in this experiment can be found in the
textbooks you used in ECE 231, ECE 232, ECE 368 and in ECE 421. This ma-
terial is covered in a large number of texts on circuit and systems analysis, and
is also usually covered in the introductory chapters of communication system
texts.

The RC Integrating Circuit – A Tutorial

The RC integrating circuit shown in figure 1.1a is also very simple low-pass filter.
Its performance parameters can be established by performing measurements in
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Figure 1.1: The basic RC integrating circuit (a) and a variant thereof (b).

either the time of the frequency domains. We will now examine the theoretical
basis for these laboratory observations.

If the input to the integrating circuit is a step voltage, namely vi(t) = V u(t),
then the output vo(t) is the step response of the circuit. The step response of
this circuit is well known to be

vo(t) = V
(

1− e−t/RC
)

u(t) (1.1)

A sketch of this waveform will reveal that in RC seconds the voltage reaches
within 36.8% of its final value. It is the RC time constant

τ = RC (1.2)

that determines the speed of response of this circuit.
When the signal approaches V volts it is very difficult to determine accu-

rately how close it has come to the steady state since the signal changes very
slowly in that region. It is therefore best to perform time observations on the
waveform substantially away from the steady state values. One of the methods
of establishing experimentally the time constant of this is to measure the rise
time, tr, of its step response. By definition the rise time is the time required for
the step response to go from 10% to 90% of its final value.

To determine the rise time of the RC integrating circuit, we evaluate (1.1)
at the two desired values, subtract the two and discover that

tr = 2.2RC (1.3)

We can analyze the integrator circuit for the AC steady state and obtain its
transfer function as a function of frequency. When that is done we find that

H(f) =
Vo(f)
Vi(f)

=
1

1 + jf/fh
(1.4)

This equation tells us that the integrator is also a low-pass filter. The mag-
nitude of H(f) is unity at frequencies at which f � fh. The magnitude of the
transfer function decreases as f increases. At f = fh, |H(h)| = 1/

√
2, conse-

quently fh is considered the half power, or 3 dB, frequency of the circuit. This
frequency is given by

fh =
1

2πRC
(1.5)

6



Multiplying (1.3) by (1.5) gives the result

fh =
0.35
tr

(1.6)

The last relation is very interesting. It tells us that the 3 dB bandwidth of
this circuit is inversely related to its rise time. Short rise times require large
bandwidths. Narrow bandwidths lead to long rise times. We might say that
fast circuits require substantial bandwidth.

We can measure the rise time of the integrator by putting in place of vi(t) a
square wave and observe the output vo(t) on an oscilloscope. The frequency of
the square wave has to be low enough so that we can see the final steady state
values of the pulse train when observing vo(t), but not so low that it is difficult
to discern the rise time of the square wave. The rise time will then determine
the 3 dB frequency of the circuit.

Another test that can be performed is to put a sine-wave generator in place
of vi(t) and simultaneously observing the input vi(t) and the output vo(t) on an
oscilloscope. The frequency of the sine wave is then varied to permit the mea-
surement of the transfer function of (1.4). At the frequency fh a 3 dB reduction
in transfer function should be observed. That means that the magnitude of
the transfer function should be reduced to 1/

√
2 and the phase shift should be

−45◦.
Now that the cutoff frequency fh and the rise time tr have been measured,

the relationship (1.6) can be verified.

In your report answers the questions below.

1. Derive (1.1) using Laplace transforms.

2. Determine how (1.3) was derived from (1.1).

3. Derive (1.4) using basic AC steady state analysis and show that (1.5) is
the correct expression for fh.

4. Derive the equivalent of (1.1 – 1.6) for the circuit shown in figure 1.1b.

The RC Integrating Circuit – The Experiment

Construct an RC integrating circuit of the type shown in figure 1.1a. Apply a
square wave to the input and sketch both input and output waveforms for the
three conditions below.

(a) τ � T (b) τ ≈ T (c) τ � T (1.7)

Choose the value of τ so you will be able to do this using square waves hav-
ing frequencies that are easy to work with, those in the range 100Hz – 100 kHz.
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Figure 1.2: The basic RC differentiating circuit (a) and a variant thereof (b).

Note: The sketching should be done with great care and should in-
clude numerical values on amplitude and time scales.

Case (c) corresponds to conditions for approximate integration – the output
waveform should be a good approximation to a triangular wave. The output is
related to the input by

vo(t) =
1

RC

∫

vi(t)dt (1.8)

Using this idea, calculate the peak to peak amplitude you expect to observe
for the triangular wave knowing R, C and the period T for the square wave.
Compare with the measured value.

Choose a convenient frequency for the square wave input and measure the
rise time of the output.

Using a sinusoidal signal, take data to plot the magnitude of the transfer
function of your circuit. Plot 20 log10[Vo/Vin] (which is the gain of the circuit
expressed in dB) as a function of frequency using semi-log paper. Find the
frequency fh for which the gain is -3 dB. Your plot should cover the frequency
range fh/10 to 50fh

The theoretical relationship between tr and fh is given in (1.6). Using your
measured values for fh and tr check how closely your results agree with the
theoretical value.

The RC Differentiating Circuit

The RC differentiating circuit shown in figure 1.2a is also a very simple high-
pass filter. In this case too, the performance of this circuit can be established
by performing measurements in either the time of the frequency domains. The
theoretical basis for these laboratory observations will now be presented.

If the input to the differentiating circuit is a step voltage, namely vi(t) =
V u(t), then the step response of this circuit is well known to be

vo(t) = V e−t/RCu(t) (1.9)

It is worthwhile to sketch this waveform and to observe that in RC seconds
the voltage reaches within 36.8% of its final zero value. As before, the RC time
constant of (1.2) determines the speed of response of this circuit.
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Figure 1.3: Output of the differentiating circuit when the input is a square wave.

If the input to this circuit is a rectangular pulse of duration T , then this
input can be described as the difference of two step waves, namely

vi(t) = V [u(t)− u(t− T )] (1.10)

The response is then the superposition of two exponential pulses of (1.9) given
by

vo(t) = V
[

e−t/RCu(t)− e−(t−T )/RCu(t− T )
]

(1.11)

When the above is sketched, it is found that if the RC time constant of this
circuit is very short in comparison with the duration of the rectangular pulse,
then the output looks like two spikes. One spike at t = 0 and another at t = T .
Indeed, the derivative of a rectangular pulse consists of two delta functions, one
at t = 0 and another at t = T . This demonstrates the differentiating property
of this circuit.

To test this circuit with a square wave, we would have to use one of very low
frequency if we wanted to observe its full behavior at the output, from the initial
value of V to the final value near 0. If the differentiating circuit is used in an
amplifier interstage then it may well be that this device might have distortion
and other problems at such a very low frequencies. Accordingly we prefer to
perform the test with square waves of a somewhat higher frequency.

For the input vi(t) use a square wave with a peak to peak amplitude V .
Select a frequency so that the output waveform will have the appearance of the
one demonstrated in figure 1.3.

Since the circuit of figure 1.2a cannot pass DC, the output waveform must
be symmetrical with respect to the horizontal axis. The voltage on a capacitor
cannot change instantaneously, hence any sudden jumps in the input must ap-
pear at the output. So the vertical transitions in the output waveform are of
magnitude V , which correspond to the vertical transitions in the input waveform
vi(t).
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The tilt of the waveform is defined as the sag shown in figure 1.3 normalized
with respect to V1. It is given by

tilt =
sag
V1

=
V1 − V2

V1
(1.12)

But V2 is the consequence of V1 which has decayed exponentially over a time
duration T/2, so it is given by

V2 = V1e−
T

2RC (1.13)

which permits substitution of (1.13) into (1.12) to get the result

tilt = 1− e−
T

2RC (1.14)

The above can be used to accurately determine the value of the RC time
constant from observations of the tilt of the output waveform. The resultant
equation is

RC = − t
2 ln(1− tilt)

(1.15)

When slide-rules were in use, the above ln(·) was approximated by its two
term Taylor series expansion, replacing the above with

RC ≈ T
2 · tilt

(1.16)

This expression produced errors of less than 10% for values of tilt below 20%.
Now that calculators are widely used, there is no particular reason to use the
above approximation.

The differentiator circuit can be analyzed for the AC steady state to obtain
its transfer function as a function of frequency. The result is

H(f) =
Vo(f)
Vi(f)

=
1

1− jfl/f
(1.17)

The magnitude of H(f) is unity at frequencies at which f � fl. The
magnitude of the transfer function decreases as f decreases. This leads us
to the conclusion that the differentiator is also a high-pass filter. At f = fl,
|H(f)| = 1/

√
2, consequently fl is the half power, or 3 dB, frequency of the

circuit, given by

fl =
1

2πRC
(1.18)

We see that both the integrator and differentiator have two methods that
can be used to evaluate the RC time constant. One method is square wave
testing to observe the time response, the other is testing with a sequence of sine
waves to determine the frequency response.
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Figure 1.4: An RC coupling circuit (a). Its low frequency equivalent circuit (b)
and its high frequency equivalent circuit (c).

In your report answers the questions below.

1. Derive (1.9) using Laplace transforms.

2. Determine how (1.16) was derived from (1.15).

3. Derive (1.17) using basic AC steady state analysis and show that (1.18)
is the correct expression for fl.

4. Derive the equivalent of (1.9 – 1.18) for the circuit shown in figure 1.2b.

The RC Differentiating Circuit – The Experiment

Construct an RC differentiating circuit of the type shown in figure 1.2a. Apply a
square wave to the input and sketch both input and output waveforms the three
conditions mentioned in (1.7). Determine which one of these cases corresponds
to the circuit acting as an approximate differentiator ?

Using a sinusoidal signal, take data to plot the magnitude of the transfer
function of your circuit. Plot 20 log10[Vo/Vin], which is the gain of the circuit
expressed in dB, as a function of frequency using semi-log paper. Find the
frequency fl for which the gain is -3 dB. Your plot should cover the frequency
range fl/50 to 10fl

Determination of Circuit Elements Using Square
Wave Testing

The circuit shown in figure 1.4a is enclosed in a box which has only four terminals
available for applying signals and making measurements. This circuit happens
to be the equivalent circuit of the coupling section for AC coupled amplifier
stages. It can therefore be assumed that Cs has been selected to be much larger
than Cp, the latter being the parasitic capacitance of the amplifier, that we
would get rid of if we could.
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It is known that Rs = 10 kΩ. It is desired to determine the values of Cs, Rp

and Cp by performing some tests at the terminals. Since

Cs � Cp (1.19)

it means that Cp will have a negligible effect on the performance of the coupling
circuit at low frequencies. The coupling circuit of figure 1.4a can therefore
be represented by the equivalent circuit of figure 1.4b for the purpose of low
frequency measurements.

Because of the inequality of (1.19), we know that Cs will have a negligible
effect on the performance of the coupling circuit at high frequencies. The cou-
pling circuit of figure 1.4a can therefore be represented by the equivalent circuit
of figure 1.4c when measurements are performed at high frequencies.

We see that we have in fact reduced the coupling circuit to the differentiating
and integrating circuits investigated previously. To test it, it only remains for us
to apply a square wave to the input, at some well chosen frequencies, and make
suitable measurements on the output signal. This will produce the information
needed to determine the values of Cs, Rp and Cp.

Propagation and Reflection of Pulses on a Cable

Some of the pieces of equipment available in this laboratory are spools of 1000
feet of RG58 cable fitted with BNC connectors at both the sending and receiving
ends.

Apply a pulse train to the 1000 foot cable using a pulse generator, Choose
a pulse width such that the reflected pulses do not overlap the transmitted
pulses. To see the association of reflected pulses to their corresponding trans-
mitted pulses, vary the oscillator pulse repetition frequency. Since the two-way
transmission delay on the transmission line is fixed, you should be able to rec-
ognize the transmitted and reflected pulse pairs, as their time spacing remains
fixed.

To determine the characteristic impedance, Z0, of the cable, terminate the
cable in a variable resistor. Observe the waveform at the sending end of the
cable as the resistor is varied. When the load resistor equals Z0 the cable is
matched and no reflections should take place. Compare the value of Z0 thus
determined to the theoretical value for this cable.

Terminate the cable with an open circuit, a short circuit and with 25 Ω, 50 Ω
and 100 Ω resistors. Sketch the waveforms observed at the input to the cable.
Compare with what you would expect theoretically. From you observations
determine the speed of signal propagation on RG58 cable.
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Observation of the Spectrum of Signals

1. Apply a rectangular pulse train to the spectrum analyzer and the oscillo-
scope. Choose a convenient frequency for easy viewing on the spectrum
analyzer. Vary the pulse width so the ratio of the period to the width
takes on values in the range from 3 to 6. Sketch the spectrum for two
values of pulse width. Do your results agree with theory?

2. Observe the spectrum of a square wave and a triangular wave of a con-
venient frequency. Record the amplitude of the first few lines in each
spectrum. Do the relative amplitudes of the lines agree with theory?

The Report

There were two places in this chapter where you were asked to answer a number
of questions to put in your report. In addition you will have to address the
following engineering design problem, in which you will utilize the knowledge
and experience you have acquired about RC circuits.

A system has available a source of a 2 kHz square wave having levels of 0
and +10 volts. The source has an output impedance of 100Ω. At another point
in the system, a 2 kHz square wave is required having voltage levels of ±2 volts.
The input impedance at that point is 30K Ω. The tilt of the ±2 volt square
wave should be ≤ 10%.

Design a circuit to be connected between the two points which will satisfy
the above requirements.
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Experiment 2 — Frequency
Modulation and Spectra of
FM Signals

Frequency Modulation — A Tutorial

A frequency modulated (FM) wave is most readily described by the carrier signal

xc(t) = Ac cos
[

ωct + 2πkf

∫ t

−∞
x(λ)dλ

]

(2.1)

The instantaneous angle, θ(t), of the above cosine wave is the value in the
brackets,

θ(t) = ωct + 2πkf

∫ t

−∞
x(λ)dλ (2.2)

The derivative of θ(t) is the instantaneous radian frequency ω(t) of the FM
signal. Dividing that by 2π produces the instantaneous frequency f(t), given
by

f(t) =
1
2π

dθ(t)
dt

= fc + kfx(t) (2.3)

It is now clear that the instantaneous frequency of the FM signal varies
around the carrier frequency fc by an amount kfx(t), where kf is the modulation
constant. Positive values of x(t) produce increases in f(t), whereas negative
values of x(t) produce decreases in f(t). If x(t) is restricted by

|x(t)| ≤ xmax (2.4)

then the frequency of the FM wave varies around fc by ±kfxmax. This is the
reason that kfxmax is referred to as the maximum frequency deviation of the
FM wave

(∆f)max = kfxmax (2.5)
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It is nearly impossible to find the spectrum of an FM wave except for special
waveforms of x(t). The simplest is the sinusoidal case, given by

x(t) = Am cos ωmt (2.6)

and we observe that for this sinusoid xmax = Am, hence the maximum frequency
deviation in this case is

(∆f)max = kfAm (2.7)

For this modulating waveform, (2.1) becomes

xc(t) = Ac cos
(

ωct +
kf

fm
Am sin ωmt

)

(2.8)

The notation can be simplified by defining

β =
kf

fm
Am (2.9)

so that
xc(t) = Ac cos(ωct + β sinωmt) (2.10)

It is obvious from the last equation that the parameter β is the peak phase
deviation of the signal. It is also referred to as the modulation index. It is
noteworthy that the modulation index is inversely related to the modulation
frequency fm.

We are now in a position to find the spectrum of the signal in (2.10). The
easiest way to proceed is to write (2.10) in the exponential form

xc(t) = AcRe ej(ωct+β sin ωmt) (2.11)

which can be recast into

xc(t) = AcRe ejωctejβ sin ωmt (2.12)

In the above we use a well known mathematical identity in terms of Jn(β),
the Bessel functions of the first kind,

ejβ sin ωmt =
∞
∑

n=−∞
Jn(β)ejnωmt (2.13)

to obtain

xc(t) = AcRe ejωct
∞
∑

n=−∞
Jn(β)ejnωmt (2.14)

or

xc(t) = AcRe
∞
∑

n=−∞
Jn(β)ej(ωct+nωmt) (2.15)
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Table 2.1: A short table of Bessel Functions.

n Jn(0.1) Jn(0.2) Jn(0.5) Jn(1.0) Jn(2.0) Jn(5.0) Jn(10)
0 1.00 0.99 0.94 0.77 0.22 −0.18 −0.25
1 0.05 0.10 0.24 0.44 0.58 −0.33 0.04
2 0.03 0.11 0.35 0.05 0.25
3 0.02 0.13 0.36 0.06
4 0.03 0.39 −0.22
5 0.26 −0.23
6 0.13 −0.01
7 0.05 0.22
8 0.02 0.32
9 0.29

10 0.21
11 0.12
12 0.06
13 0.03
14 0.01

The above is identical to

xc(t) = Ac

∞
∑

n=−∞
Jn(β) cos(ωct + nωmt) (2.16)

We finally have the result that allows us to plot the spectrum of the FM
wave for a sinusoidal modulating signal. Some values of Jn(β) can be found
in table 2.1 as well as in figure 2.1. Very thorough listings can be found in E.
Jahnke, F. Emde and F. Lösch, Tables of Higher Functions, McGraw-Hill Book
Company, 1960. A very affordable (but older) paperback version, by the first
two authors, is available from Dover Books.

The procedure that was used to find the spectrum of the single tone mod-
ulated FM wave described in (2.10) can be used to find the spectrum of the
multitone modulated signal

xc(t) = Ac cos(ωct + β1 sin ω1t + β2 sin ω2t) (2.17)

to obtain the result

xc(t) = Ac

∞
∑

n=−∞

∞
∑

m=−∞
Jn(β1)Jm(β2) cos(ωct + nω1t + mω2t) (2.18)

The above procedure can be extended to more than two tones, but it can
become rather messy. The above equation tells us that this wave contains four
different kinds of frequency components.
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Figure 2.1: Curves of Bessel functions.

1. There is the carrier of magnitude AcJ0(β1)J0(β2).

2. There are sidebands lines at fc ± nf1 due to the first tone.

3. There are sidebands lines at fc ±mf2 due to the second tone.

4. There are sidebands lines at fc ± nf1 ± mf2 due to both tones. This is
somewhat surprising when compared to linear modulation schemes, such
as AM, DSB-SC and SSB, where such lines would not appear at all. But
FM is a non-linear modulation scheme, so this is not surprising after all.

In your report address the item below.

1. Derive the result in (2.18) by starting with (2.17) and using (2.13).

Frequency Modulation — Part 1

The Wavetek generator can be used as an FM modulator by applying a modu-
lating signal to the external input. This signal will change the frequency of the
oscillator from the nominal value shown on the dial. To use this feature intelli-
gently we have to know the change in frequency produced by a given external
voltage.
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Table 2.2: Values of β for zeros of Bessel functions.

J0(β) = 0 J1(β) = 0 J2(β) = 0
β for 1st zero 2.40 3.83 5.14
β for 2nd zero 5.52 7.02 8.42
β for 3rd zero 8.65 10.17 11.62
β for 4th zero 11.79 13.32 14.80
β for 5th zero 14.93 16.47 17.96

Obtain data for a plot of output frequency as a function of input voltage, for
DC input voltages in the range of approximately 1 volt. Set the frequency with
zero input voltage to approximately 1 Mhz. Use a frequency counter for accurate
determination of frequency. Use a power supply for the DC input voltage. (A
10÷ 1 voltage divider across the power supply will make it easier to adjust the
voltage.) Draw a best fit straight line through your data. Since the slope of this
straight line is the modulation constant kf in kHz/volt, you can now determine
kf when the Wavetek is used as an FM modulator.

Frequency Modulation — Part 2

The measurement of frequency deviation for a time varying modulating signal
is not an easy thing to do in general. However, if the modulating signal is
sinusoidal and we have a spectrum analyzer available, there is a nice method
available for making accurate deviation measurements. This is based on the fact
that at certain values of the modulation index some of the spectral components
go to zero. We will use this method to measure the deviation of an FM signal
produced by the Wavetek generator for a sinusoidal modulating signal and will
compare our results with those of part 1. This will determine if the sensitivity
of this modulator is the same for AC signals as it is for DC signals.

Apply a sinusoidal signal of some convenient frequency (10 kHz) to the mod-
ulation input (you can use the counter to measure the frequency accurately) and
slowly increase the amplitude of the signal, starting with zero, until the carrier
component goes to zero, or reaches a minimum. Measure the amplitude of the
10 kHz signal at this point.

Table 2.2 contains zeros of the Bessel functions. Using this table calculate
the frequency deviation. Repeat this procedure using nulls of the first side band
and other nulls of the carrier until you reach a deviation in the neighborhood of
100 kHz. Using this data you can plot peak deviation as a function of the peak
value of the modulating signal on the same sheet as the plot of part 1. How do
the two curves compare ?
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Frequency Modulation — Part 3

Using the values for the sidebands given in table 2.1, adjust the amplitude of
the modulating signal to produce modulation indices of 0.2, 1.0 and 5.0. Sketch
the spectra for these values. Approximately how many sidebands are needed to
represent the signals in each case ?

Frequency Modulation — Part 4

Using the same amplitude square waves as the sine wave amplitudes in part 3,
sketch the spectrum for a square wave modulating signal. This will give you
an idea of what the spectrum looks like when transmitting data using the FSK
(frequency shift keying) method.

Frequency Modulation — Part 5

In this part we will examine the spectrum of an FM signal where the modulating
signal is the sum of two sinusoidal signals. This will illustrate the non-linear
nature of FM. The mathematical expression for such a signal is given in (1.15)
and (1.16). gives insight into the spectrum that can be expected. The sum of
two signals can be obtained as shown in figure 2.2.

Choose the two audio frequencies so that the sum f1 + f2 and the difference
f1− f2 will not fall on harmonics of f1 or f2. For example choosing f1 = 20 kHz
and f2 = 10 kHz would not be a good choice as f1 − f2 would fall on top of f2.

With generator #2 disconnected adjust amplitude of generator #1 to make
β1 = 1. Now do the same backwards to adjust for β2 = 1. Now connect both
generators.
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Note the appearance of spectral lines at fc± (f1−f2) and fc± (f1 +f2) that
were not present when either generator #1 or generator #2 was connected alone.
Record the amplitudes and frequencies of terms large enough to be measurable.
Identify them as the carrier, lines at fc ± nf1 due to the first tone, lines at
fc±mf2 due to the second tone and lines at fc±nf1±mf2 due to both tones.

Compute the theoretical amplitude of these terms using (1.16), and compare
measured and calculated values by tabulating the results neatly. Discuss how
these results indicate that FM is a non-linear type of modulation.
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Experiment 3 — Amplitude
Modulation and Spectra of
AM Signals

Amplitude Modulation — A Tutorial

The objective of this experiment is to become familiar with a method of gener-
ating an amplitude modulated (AM) signal and with a method of demodulating
the AM signal to recover the original modulating signal.

The mathematical description of an ordinary AM signal is given by

xc(t) = Ac[1 + x(t)] cos ωct (3.1)

Where Ac is the carrier amplitude, x(t) is the modulating or message signal and
fc is the carrier frequency. To avoid overmodulation it is required that

|x(t)| ≤ 1 (3.2)

To facilitate both comprehension and testing, the modulating signal x(t) is
taken to be a sinusoidal signal, of the form

x(t) = m cos ωmt (3.3)

so that (3.1) becomes

xc(t) = Ac[1 + m cosωmt] cos ωct (3.4)

The above waveform is illustrated in figure 3.1. In (3.4), fm is the modulating
frequency and m is the modulation index. Following the restriction of (3.2), the
modulation index is fixed so that

|m| ≤ 1 (3.5)

By multiplying out (3.4) and using the trigonometric identity

2 cos A cos B = cos(A + B) + cos(A−B) (3.6)
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we obtain

xc(t) = Ac[cos ωct +
m
2

cos(ωc + ωm)t +
m
2

cos(ωc − ωm)t (3.7)

This shows that the AM signal consists of the sum of three sinusoidal signals,
one at the carrier frequency fc, a sideband at fc + fm and another sideband at
fc − fm. If the highest frequency contained in the signal x(t) is W Hz, then it
is clear that to transmit an AM signal it is necessary to have a bandwidth of
2W Hz centered at the carrier fc.

The waveform corresponding to (3.4) is illustrated in figure 3.1. Figure 3.2
shows the spectrum corresponding to (3.7). This is the display the we should
see on a spectrum analyzer when the input is the AM wave of (3.4).

The value of m can be obtained from either display. It is obvious from
3.2 how this is done using the spectrum analyzer display. To do it from the
oscilloscope display, we observe that in figure 3.1 the maximum value of the
AM waveform is Amax, and from (3.4) we note that this equals Ac(1 + m). In
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other words
Amax = Ac(1 + m) (3.8)

Similarly for the minimum value we get

Amin = Ac(1−m) (3.9)

Solving the last two equations for m, we obtain

m =
Amax −Amin

Amax + Amin
(3.10)

We will now pass to the practical aspects of the subject of amplitude mod-
ulation.

Generation of AM Signals

By examining (3.1) we see that the essence of the amplitude modulation process
is the multiplication operation between x(t) and the sinusoid cos ωct. There-
fore any amplitude modulator must in some way incorporate the multiplication
operation. The method we will use in this experiment is illustrative of what is
done in many sophisticated multipliers.

From figure 3.3 we see that the small signal collector current in a transis-
tor operating in the active region depends on the product of gm and V . The
transconductance gm is dependent on the operating point DC collector current.
At room temperature gm can be approximated by

gm = 40Ic (3.11)

where Ic is the DC collector current in Amperes. We also have an idea of the
value of rπ, since

rπ =
β
gm

(3.12)

Working with the amplifier of figure 3.3, we use voltage division to find

V =
rπ

Rs + rx + rπ
vi(t) (3.13)
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Multiplying V by gm gives the collector current Ic. This current passes in a
negative sense through Rc. Accordingly, the gain of this stage is given by

Av =
vo(t)
vi(t)

= − rπ

Rs + rx + rπ
gmRc (3.14)

We are trying to create a circuit in which the gain Av can be varied by con-
trolling the collector current Ic. In the above expression gm is directly propor-
tional to Ic. Unfortunately rπ is inversely related to Ic which offsets somewhat
the dependence of Av on Ic. We are aided by the fact that the leading volt-
age divider term in the above expression can be dispensed with once we take
into consideration the relative magnitudes of the terms which appear in it. An
example will be helpful to make the point.

As an example we take a transistor which has a typical β = 200. Assume that
it is biased at Ic = 5 mA. Then from (3.11) we get gm = 200 m0. From (3.12)
it follows that this transistor has rπ = 1 kΩ. It is usual for small transistors
to have rx = 50 Ω. If Rs is of the same order of magnitude, then the effect of
Rs+rx on the voltage V is quite small, so it causes only a small error to consider
V ≈ vi(t). This approximation allows us to rewrite (3.14) in the simpler form

Av =
vo(t)
vi(t)

≈ −gmRc = −40IcRc (3.15)

In conclusion, we have established that it is possible to build amplifiers whose
voltage gains are approximately proportional to Ic. It remains for us to use this
principle to build an effective AM wave modulator.

A practical form of a circuit that can be used to carry out this operation
is the difference amplifier shown in figure 3.4. In this circuit transistor Q3
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Figure 3.6: A simple envelope detector circuit.

functions as a fairly high impedance current source. Depending on how closely
matched are the characteristics of transistors Q1 and Q2, the collector current
of Q3 splits almost equally between them. Q3 has almost no effect on the gain
V0/Vs, as the impedance seen looking into the collector of Q3 is very large. The
gain, from the base of Q1 to the output, is given by

gain =
V0

Vs
≈ gm

2
RC2 (3.16)

Since the above gain is dependent on gm, which in turn is dependent on Ic,
then by controlling the collector current of Q3 it is possible to get multiplication
of the signal at A with Vs.

The Experiment

1. Complete the design of the circuit. Make RC1 = RC2 = 1 kΩ. Use small
values of 51 Ω or 100 Ω for RB1 and RB2. Design the values of RE , R1

and R2 for a collector current in Q3 of approximately 8 ma. Keep VCE3

around 8 volts and R1 and R2 in the 3 kΩ to 10 kΩ range.

2. Build the circuit of figure 3.4 using your design values. You can use
2N3904 for the transistors. Check and record the currents in the three
transistors. This task is most easily performed by using a DVM to mea-
sure the voltages across RC1, RC2 and RE and then using Ohm’s law to
get the currents. You can switch transistors to equalize IC1 and IC2.
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Note: One side of the DVM must be connected to ground.

3. When you are satisfied that the circuit is biased properly, apply a small
signal Vs from the Wavetek generator at a frequency of about 100 kHz. A
small signal is one that will produce an AC output about 2 volts peak to
peak. Measure and record the gain V0/Vs. Does this value agree with the
result predicted by equation (3.16) ? Increase the frequency of Vs until
the gain decreases by 3 dB. Record this frequency. This last measurement
indicates the useful frequency range of this amplifier.

4. Connect a power supply, as shown in figure 3.5a to the difference amplifier
at point A. Vary the power supply voltage, in the positive and negative
direction, over a range sufficient to vary the current through Q3 over the
range 2 ma to 14 ma. Take data so you can plot the collector current IC3

and the peak to peak value of V0 as a function of power supply voltage. At
all times make sure that Vs is small enough that no clipping takes place. Is
the peak to peak AC output voltage a linear function of the power supply
voltage ?

5. Replace the power supply in the previous part with the audio oscillator
circuit shown in figure 3.5b. Adjust the frequency of the audio oscillator
to some convenient value between 1 kHz and 5Khz. Adjust its amplitude
so that IC3 will vary between 4 ma and 12ma. Observe V0 on the scope.
Does it look like an AM signal ? What is wrong ?

6. The difficulty in the previous part can be cleared up by making RC2 a
parallel tuned circuit. Put an coil L = 100 µH and a capacitor C in
parallel with RC2. Choose the capacitor and carrier frequency so that L
and C are resonant at the frequency of the carrier. Observe and sketch
the output voltage V0. What is the maximum index of modulation for
which the circuit works without appreciable distortion ?

7. Design an envelope detector as shown in figure 3.6. To avoid diagonal
clipping the RC product should satisfy

RC ≤
√

1−m2

2πmW
(3.17)

where W is the highest frequency contained in the AM signal. The equiva-
lent input resistance is ≈ R/2. Use this fact and (3.17) to select reasonable
values of R and C. The detector input resistance should be high enough
so it will not load down excessively the modulator when doing part 8.

Test your detector using the Wavetek generator as a source of an amplitude
modulated signal.
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Over what range of signal levels does the circuit function as a good de-
tector ? Choose a value of m in the range 0.5 ≤ m ≤ 0.8, a modulating
frequency in the range 1 to 5 kHz, and a carrier frequency of about 100 kHz.

8. Try detecting the output of your modulator with the detector you have
built. Is the output of your detector a reasonable looking sinusoidal signal ?
Check the linearity of the system by plotting the amplitude of the AC
signal output of the detector against the amplitude of the AC modulating
signal into the modulator for 0.1 ≤ m ≤ 0.8.

9. If you have time, check the performance of your system by measuring the
percent distortion of the signal at the output of your detector.
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Experiment 4 — Distortion
Analysis

Distortion Analysis — A Tutorial

The object of this experiment is to become familiar with the concept of dis-
tortion and to get some practical experience in the performance of distortion
measurements. Before proceeding, a short review will be undertaken.

A distortionless device is one that produces an output v(t) which is a scaled
and delayed version of an input x(t). We could summarize the relationship by

v(t) = kx(t− td) (4.1)

where k is the scale factor and td is the delay of the device.
You might argue that a telephone conversation that is scaled in amplitude,

provided it is audible and not earshattering, is equally as comprehensible as the
unscaled version. Within reasonable bounds, a short delay in the reception of
a message will not change anything. After all, we tolerate delays of more than
15 milliseconds in coast to coast conversations without taking notice.

If a device is not linear then it causes distortion. In (4.1), we will leave the
delay td out of the discussion without losing any generality. So a distortionless
device should obey the linear relation

v(t) = kx(t) (4.2)

Any device in which the output is not linearly related to the input causes
distortion. For example

v(t) = k1x(t) + k2x2(t) + k3x3(t) + . . . (4.3)

will cause distortion.
The easiest way of quantifying distortion is to use a sinusoidal test signal.

If we use
x(t) = A cos ω0t (4.4)
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in (4.2) then we get an output

v(t) = kA cos ω0t (4.5)

which is a scaled replica of the sinusoidal input.
If, on the other hand, we use (4.4) in (4.3) then we get the output

v(t) = k1A cos ω0t + k2(A cosω0t)2 + k3(A cos ω0t)3 + . . . (4.6)

To the above we apply some trigonometric identities to obtain

v(t) = A1 cos ω0t + A2 cos 2ω0t + A3 cos 3ω0t + . . . (4.7)

which indicates that at the output we have signals that we did not have at the
input. The excessive signals represent distortion.

For a periodic signal, which can always be written as a Fourier expansion,
the distortion is defined as the ratio of the rms value of all components other
than the fundamental to the rms value of the fundamental. The distortion D,
of the signal in (4.7), is

D =

√

A2
2 + A2

3 + . . .
A1

(4.8)

The analyzer at our disposal does not measure the above quantity, but rather

DM =

√

A2
2 + A2

3 + . . .
√

A2
1 + A2

2 + A2
3 + . . .

(4.9)

It uses as a definition of distortion the ratio of the rms value of all components
other than the fundamental to the rms value of the entire signal.

It is very easily verified that the measured and defined distortion are related
by

D =
DM√

1−DM2
(4.10)

and
DM =

D√
1−D2

(4.11)

For small values of distortion, D and DM are very close to each other. For
values of measured distortion greater than 0.1 it is worthwhile to use (4.10) to
find the true distortion, particularly if greater accuracy is desired.

When dealing with a periodic waveshape of known form we may use a short-
cut in calculating the distortion. We base this method on the idea that the
mean square value of the waveform is the sum of the mean square values of all
of its harmonics. Thus

V 2
rms =

A2
1

2
+

A2
2

2
+

A2
3

2
+ . . . (4.12)
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where we used Vrms to represent the rms value of the signal in (4.7).
We rearrange the last equation into

mean square value of distortion =
A2

2

2
+

A2
3

3
+ . . . = V 2

rms −
A2

1

2
(4.13)

Taking the square root of both sides we obtain

rms value of distortion =

√

A2
2

2
+

A2
3

2
+ . . . =

√

V 2
rms −

A2
1

2
(4.14)

The left hand side of the above equation is the rms value of all the distortion
harmonics. This value divided by Vrms is the reading that the audio analyzer
should display.

These ideas will be illustrated with an example. Consider the 25% duty
cycle rectangular wave shown in figure 4.1. We wish find the expected reading
of the analyzer in terms of DM .

For this example the rms value can be calculated by simply looking at the
wave. The result is

Vrms =

√

1
4
(3)2 +

3
4
(−1)2 =

√
3 (4.15)

For a rectangular pulse train with pulse height V , period T and duty cycle
τ/T we find that the Fourier coefficients are given by

An = V
τ
T

sin(nπτ/T )
nπτ/T

(4.16)

In our example V = 4 and τ/T = 1/4. Therefore the above reduces to

An =
sin(nπ/4)

nπ/4
(4.17)
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and we only need to know A1, which is

A1 =
sin(π/4)

π/4
= 0.9003 (4.18)

According to (4.14)

rms value of distortion =

√

A2
2

2
+

A2
3

2
+ . . . =

√

3− (0.9003)2

2
= 1.61 (4.19)

The measured value of DM should therefore be close to

DM =
1.61√

3
= 0.93 (4.20)

Now we know what we could expect for a distortion measurement of the
rectangular wave of figure 4.1.

In your report answers the questions below.

1. What is the relationship of the coefficients of (4.7) to those in (4.6) ?

2. Derive (4.11) from (4.10) and vice versa.

The Experiment

The required equipment is an HP 8903B audio analyzer and instruction manual,
which are available in the stockroom.

1. Measure the distortion of the internal source of the analyzer. (This is just
a check of the instrument.)

2. Measure the distortion of the sine wave output of the Wavetek generator
at several frequencies between 100 Hz and 10 kHz.

3. Repeat for a triangle wave and a square wave at a frequency of 1 kHz.
In your report, compare the measured valves and what you would expect
from theoretical considerations.

4. Build a one stage transistor or OP-AMP amplifier with a voltage gain of
≈ 40. Increase the input signal so the output signal is barely showing
signs of distortion. Measure the distortion using the distortion analyzer
so that you can answer the question which follows.

What is the approximate value of the minimum distortion you are able to
observe visually on the oscilloscope ?

31



Experiment 5 —
Measurements on Noise

Introduction

The ultimate limitations on the performance of communication systems are due
to noise. Thermal noise, which is caused by the random motion of electrons
in resistors cannot be eliminated and must be considered by designers of com-
munication systems. These thermal noise voltages are typically in the order
of microvolts and are not noticed when working with voltages in the order of
volts. At the input of communication receivers, however, where the received
signal powers may be on the order of 10−12 watts, thermal noise power cannot
be neglected. For this reason engineers working with communication systems
should have some knowledge of the properties of noise.

Noise — A Tutorial

The thermal noise produced by a resistor has an rms value that is given by

Vrms =
√

4kTRB volts (5.1)

The variables appearing in the above equation are defined below

T = temperature in degrees Kelvin (◦K) (5.2)

k = Boltzmann’s constant = 1.38× 10−23 joules/◦K (5.3)

R = resistance in Ohms (5.4)

B = bandwidth in Hz over which the noise voltage is measured (5.5)

As an example take a 100 kΩ resistor at a room temperature of 300◦K. When
measured with an ideal rms voltmeter having a bandwidth of 1 MHz, it would
have a noise voltage of 20 µV.
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Figure 5.1: Noise measurement setup.

The two properties of an electrical noise signal we are most interested in are:

1. How its power is distributed in the frequency domain, namely we would
like to know its Power Special Density.

2. How its amplitude is distributed in a statistical sense, namely the proba-
bility density function of its amplitude.

The thermal noise we deal with in communication systems is closely modeled
as White Gaussian Noise (WGN), which means that its power spectral density is
uniform over a large frequency range and the probability density function of its
amplitude is Gaussian. The noise generator we will use in this experiment has
an output which approximates WGN over the frequency range 0 ≤ f ≤ 500 kHz.

The relation between the power spectral density at the input and output of
a linear system is given by

So(f) = Sin(f)|H(f)|2 (5.6)

Power is related to the one sided spectral density S(f) by

P =
∫ ∞

0
S(f)df (5.7)

In this experiment we will not measure power, but rms voltage, which is
more convenient to measure. Power is related to Vrms by

P =
V 2

rms

R
(5.8)

The Experiment

The experiment will attempt to verify that the output of the noise generator
has a constant power spectral density (V 2

rms/Hz) over a frequency range from
DC to several hundred kilohertz. It should also familiarize the student with the
appearance of Gaussian noise when viewed on an oscilloscope.

Set up the circuit shown in figure 5.1. Choose R to be some convenient value
such as 1 kΩ. Use 5 or 6 different values of C chosen such that the bandwidth of
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the RC lowpass filter varies from a few hundred hertz to a few hundred kilohertz.
For each value of C measure the rms voltage across the capacitor and observe
it on the scope. Make rough sketches, showing height of peaks, for one value of
C.

Plot the V 2
rms as a function of the bandwidth of the filter. Since the band-

width will vary over a range of a few thousand, as will V 2
rms, so a log-log plot

would be desirable. From your plot determine V 2
rms/Hz for the generator.

In your report answer the following questions. Use your communica-
tion systems book or any other communication systems book as a reference.

1. What is meant by the noise bandwidth of a filter ? For the RC lowpass
filter used in this experiment how are the 3 dB bandwidth and the noise
bandwidth related ?

2. Why is it necessary to use a “true rms meter” when measuring noise if
you are to obtain accurate results ?

3. How is the height of “fairly frequently seen” peaks related to the rms value
of a signal. (This is meant to be a rough approximation as this term is
not well defined.)
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