
Sensor Relocation in Mobile Sensor Networks
Guiling Wang, Guohong Cao, Tom La Porta, and Wensheng Zhang

Department of Computer Science & Engineering
The Pennsylvania State University

University Park, PA 16802
Email: { guiwang,gcao.tlp, wezhang}@cse.psu.edu

Abstract- Recently there has been a great deal of research
on using mobility in sensor networks to assist in the initial
deployment of nodes. Mobile sensors are useful in this envi-
ronment because they can move to locations that meet sensing
coverage requirements. This paper explores the motion capability
to relocate sensors to deal with sensor failure or respond to new
events. We define the problem of sensor relocation and propose a
two-phase sensor relocation solution: redundant sensors are first
identified and then relocated to the target location. We propose
a Grid-Quorum solution to quickly locste the closest redundsnt
sensor with low message complexity, and propose to use cascaded
movement to relocate the redundant sensor in a timely, efficient
and balanced way. Simulation results verify that the proposed
solution outperforms others in terms of relocation time, total
energy consumption, and minimum remaining energy.

I . INTRODUCTION

Due to many attractive characteristics of sensor nodes such
as small size and low cost, sensor networks [lo], 1131. [151,
[17]. [l] have become adopted to many military and civil
applications including military surveillance, smart homes [I 81,
remote environment monitoring, and in-plant robotic control
and guidance. In order to properly sense the phenomena of
interest, sensor nodes must be deployed appropriately to reach
an adequate coverage Ievel for the successful completion of
the issued sensing tasks [5], [14].

In many potential working environments, such as remote
harsh fields or disaster areas sensor deployment cannot be
performed manually or precisely, In addition, once deployed,
sensor nodes may fail, requiring nodes to be moved to over-
come the coverage hole created by Lhe failed sensor. In these
scenarios, i t is necessary to make use of mobile sensors [20L
[21]. which can move to provide the required coverage. One
example of a mobile sensor is the Robomote [161. These
sensors are smaller than 0.000047ni3 and cost less than 150
dollars.

In this paper we address the problem of sensor relocarion,
i.e., moving previously deployed sensors to overcome the
failure of other nodes, or to respond to an occurring event
that requires that a sensor be moved to its location. This
sensor relocation i s different from existing work on mobile
sensors which concenuate on sensor deployment; i.e.. moving
sensors to provide certain initial coverage [l l] , [121, [201. [211,
1241. Compared with sensor deployment. sensor relocation
has many special difficulties. First, sensor relocation may
have a strict response time requirement. For example, if
the sensor monitoring a security-sensitive area dies, another

sensor should move to replace it as soon as possible. Second,
relocation should not affect the application currently using
the sensor network, which means that the relocation should
minimize its effect on the current sensing topology. Finally.
since movement may be much more expensive in terms of
energy than computation and communication. any algorithm
must balance energy costs with response time. In particular,
care must be taken to balance the energy costs of an individual
node with the overall network energy cost to ensure maximum
network lifetime.

In this paper, we propose a framework for relocating mobile
sensors in a timely, efficient, and balanced manner, and at the
same time. maintaining the original sensing topology as much
as possible. In our framework, sensor relocation consists of
two phases: the first is to find the redundant sensors in the
sensor network; the other is to relocate them to the target
location. For the first phase, we propose a Grid-Quorum based
solution to quickly locale the redundant sensors with low
message overhead. For the second phase, we propose efficient
heuristics to achieve good balance between energy efficiency
and relocation time when determining the sensor relocation
path. Simulation results show that the proposed heuristics are
very effective in reducing the relocation time and the energy
consumption.

The rest of the paper is organized as follows. In section II.
we introduce some related work. In section 111, we define the
sensor relocation problem and the grid-based system model.
Section IV presents the Grid-Quorum solution and Section
V presents our solution for relocating sensors. Performance
evaluations are presented in Section VI. Section VI1 concludes
this paper.

11. RELATED WORK
There have been several research efforts on deploying

mobile sensors. For example, the work in [24] assumes that a
powerful cluster head is available to collect information and
determine the target location of the mobile sensors. Sensor
deployment has also been addressed in the field of robotics
Ell], [121, where sensors are deployed one by one, utilizing
the location information of previously deployed sensors. This
method is not suitable to the relocation problem because it
will not meet response time requlrements in many cases.

Recently. we proposed three mobility-assisted sensor de-
ployment protocols where mobile sensors move from densely
deployed areas to sparse areas to increase the coverage. The

2302 0-7803-896&9/05/$20.00 (C)2005 I E E

mailto:wezhang}@cse.psu.edu

protocols run iteratively [21J In each round, sensors first
detect coverage holes around them by utilizing the Voronoi
diagram 121. If coverage holes exist, sensors decide where to
movc to heal or reduce the holes by three different distributed
algorithms called VOR, VEC and Minimax. To achieve a
good balance between sensor cost and sensor coverage, we
designed a bidding protocol for deploying mobile sedsors in
sensor networks composed of both mobile and static sensors
[20]. Because all of these algorithms take potentially several
iterations to terminate. they may not meet the response time
requirements of the relocation problem.

111. PROBLEM STATEMENT
In theory. the two protocols we previously proposed [20J

[2 1 J can be used for sensor relocation. For example, after a
sensor failure, the sensors neighboring the failed node can
execute the algorithms. After several rounds, the neighbor
sensors will move to cover the area initially covered by the
failed sensor. However, moving neighbor sensors may create
new holes in that area. To heal these new holes, more sensors
must move. This process continues until some area having
redundant sensors is reached and the sensors leaving this area
do not create new holes. Using the method, sensors may move
several times, wasting energy. In addition, since many sensors
are involved, it may take a long time for the algorithm to
terminate. Based on this observation, we propose to first find
the locations of the redundant sensors, and then design an
efficient route for them to move to the destination.

To determine which sensor(s) is redundant is a challenging
problem. It is hard for a single sensor to independently decide
whether its movement will generate a coverage hole. To make
such a decision, the sensor requires information about whether
its neighbors will move or not. More specifically, a number of
sensors located closely must determine the redundant sensors
among themselves.

A grid-based architecture is a natural solution for this prob-
lem. We can divide the target field into grids. The grid head is
responsible for collecting the information of its members, and
determining the existence of redundant sensors based on their
locations. For redundant sensors located on the boundary of the
grid, grid heads coordmate to make decisions. The grid head
can also monitor its group members and initiate a relocation
process in case of new event or sensor failure.

A grid-based architecture is feasible in a network in which
nodes are relatively regularly deployed, for example as would
be the case after the termination of previously proposed sensor
deployment algorithms [20], [21]. This is because, unlike the
case of a network id which nodes are randomly deployed,
the cost of organizing sensors into grids is low, Further,
this organization can facilitate data aggregation, routing, etc.
[221. in addition to finding the redundant sensors. Since many
existing techniques on grid (cluster) maintenance 161, [9], 1191
can be directly applied, we will not address these issues in this
paper.

With the grid-based model, the sensor relocation problem
can be reduced to two sub-problems: finding the redundant

Fig. 1. 7 h e system model

sensors and then relocating them to the target location. F ig1
illustrates the sensor relocation problem when grids are used;
the black nodes are used to represent grid heads. Each grid
is indexed by a tuple. whose first number is used to represent
the column and the second number is used to represent the
row, Grids (1.3), (0,3), (1,4) and (0.4) have redundant sensors.
When a sensor at grid (3.0) dies, resulting in a coverage hole,
its grid head first needs to locate the redundant sensor and
then relocate some sensor to fix the coverage hole. For the
first problem, we propose a Grid-Quorum solution to quickly
identify the redundant sensors. For the second problem, we
propose a cascaded movement solution to relocate sensors in
a timely and energy efficient way.

Iv. FINDING THE REDUNDANT SENSORS

In this section, we first give the background and motivation
of the Grid-Quorum idea. Then, we present the detailed
solution and illustrate its advantage in terms of message
complexity and response time.

A. Backgmund aad Moilvation ,

The problem of finding redundant sensors has some sim-
iIarily to the publish/subscribe problem [7], [SI, [41, where
the publisher advertises some information and the subscriber
requests the information. Mapping the terminology to our
problem, the grids that need more sensors are the subscribers,
and the grids that have redundant sensors are the publishers.
In the publishhbscnbe system, the matching of a request to
an advertisement is called matchmaking.

Generalty, there are three types of solutions for matchmak-
ing. (1) Matchmaking occurs at the subscriber, which is re-
ferred as “broadcast advertisement” [7] . In our problem, this is
similar to letting the grids having redundant sensors flood this
information. Later, when some grid needs redundant sensors,
it can get the information quickly. (2) Matchmaking occurs
at the publisher, which is referred ifs “broadcast request” 171.
In our problem. this is similar to letting the grids that need
sensors flood the request. The grid that has redundant sensors
replies after receiving the request. (3) Matchmaking happens
in the middle of the network [4], [8], [23]. In our problem, this
is similar to letting the supply grid advertlse the information to

2303

some intermediate grids from which the demand grid obtains
the information.

Different from the traditional publishhubscribe problem, the
information in our system is not reusable. The information
about the redundant sensor can only he used once, since it may
be changed after the redundant sensor moves to the requesting
place. Due to this special property, the message complexity
will be very high if we use the broadcast advertisement
approach, which requires two network-wide broadcasts for
each redundant sensor: one for advertisement and the other
for data update after the redundant sensor moves.

For the broadcast request approach, the delay is relatively
long since it is on-demand. Therefore, we prefer the third
solution, which can achieve a balance between message corn-
plexity and response time. In this type of solution, a structure
like that in [XI. [23], can be used to facilitate the matchmaking
between the advertisement and the request. Since the data may
not be re-used. this structure should be simplified compared
to that in [8], [?3]; otherwise the benefit may not be worth the
cost. Therefore, we need a simple and low-cost structure for
matchmaking.

Our solution is motivated by the concept of quorum [31.
which is defined as follows. Given a nonempty set U? a coterie
C is a set ofU's subsets. Each subset P in C is called a quorum.
The following condition must be held for quorums in a coterie
C under U:

b (VP E c ::? # 0 A P U)
Minimality Property: (b?, '2 E C :: P $! e)
Intersection Property: (V'P, '2 E C :: P n Q f 0)

By organizing grids as quorums, each advertisement and
each request can be sent to a quorum of grids. Due to the
intersection property of quorums, there must be a grid which is
the intersection of the advertisement and the request. The grid
head will be able to match the request to the advertisement.
A simple quorum can be constructed by choosing the nodes
in a row and a column. Instead of flooding the network with
advertisements or requests, the request and the advertisement
are only sent to nodes in a row or column, For example, as
shown in Fig.lt suppose grid (0,3) has redundant sensors, it
only sends the advertisement to grids in a row ((0,3), (1,3),
(2.31, (3.31, (4,3)) and a column ((O,4), (0,3), (0,2), (OJ),
(0,O)). When grid (3,O) is looking for redundant sensors, it only
needs to send a request to grids in a row ((010), (l ,O), (2,0),
(3,O), (4,011 and a column ((3,4), t3,3), (3 3 , (3J1, (3,011.
The intersection node (0,O) will be able to match the request
to the advertisement. Suppose N is the number of grids in
the network. By using this quorum based system. the message
overhead can be reduced from O(N) to O(v%). Although the
message overhead is very low compared to flooding, we can
further reduce the message overhead by observing the specialty
of our problem.

B. Die Grid-Quorum Solution
In our Grid-Quorum system, we do not require the inter-

section of any two quorums. Instead. we deploy two coterie,
called supp1y coterie and demand coferie separately, and only

'

require that the quorum belong to the supply coterie intersects
with all quorums in the demand coterie, and vice versa.

The formal definition is as follows. Given a nonempty set U.
there is a supply coterie C, and a demand coterie C d , which
are the sets of U's subsets. Each subset 71, in coterie Cs is
called a supply quorum and each subset Pd in coterie Cd is
called a demand quorum. Suppose coterie C, has m quorums,
and coterie c d has 11 quorums. The following condition must
be hold for quorums in coterie C, and C, under U :

7n
D Ui=r =I?-/

U,"=, l'di = U

(YP3, LZ, E C S :: F.s @ Q s)

Minimality Property:

(VPd, &d E C d :: pd @ Q d)
Intersection Property:
(vF8 E cs ,v?d E c d 1: F.q n ?d f 0)
(V P ~ E cd: vpS E c, :: lpd n P~ + 0)

To construct a Grid-Quorum, h e grid heads belong to
the grids in one row are organized into one quorum, called
supply quorum and the grid heads belong to the grids in
a column are organized into one quorum, called demand
quorum. All the supply quorums compose the supply coterie,
and the demand quorums compose the demand coterie. In
this way, the natural geographic relation ensures that every
supply quorum has intersection with all the demand quorums
and vice versa. When a grid has redundant sensors, the grid
head propagates this information through the supply quorum
to which it belongs. When any grid wants more sensors, the
grid head needs only to search its demand quorum. Since every
demand quorum has intersection with all supply quorums, the
grid head can get all the information about redundant sensors.
We can see that using the geographic information reduces the
cost of building Grid-Quorum lo almost zero.

Still using the example of Fig.1, Grids (0,4), (1,4), (0,3)
and (1,3) have redundant sensors, while grid (3,O) needs more
sensors. The grid head of (1,3) propagates its redundant sensor
information through its supply quorum ((1,4), (1,3), (1,2),
(l,l), (1:O)). The grid head in grid (3,O) searches its demand
quorum ((0,O). (LO) , (2,0), (3,0), (48)). Grid (1,O) can reply
the information about redundant sensors. Compared to using
the quorum in the last example, using grid-quorum cuts the
message by half.
Optimization: To further reduce the message complexity,
we add a stopping criteria for propagating request messages
through the demand quorum. Since we want the closest
redundant sensor, the propagation should be stopped once
we get the best solution. To implement the idea, the already
visited grid head can piggyback the information in its supply
quorum before forwarding the query message to the next
grid in the same row. Then every grid head in this demand
quorum can check whether a better result can be found for the
demanding grid. If not, this grid head can reply to the query
grid immediately without further propagating the request. For
example, in Fig.2, sensor s, dies and grid (3.2) has redundant
sensor sa. All sensors located outside the circle with center s,

2304

I (0.3) i I 3 j (2.3) j (3.3) (4.3) j
! I I I

t I

Fig. 2. Stopping criteria

and radius of the distance between sa and sc must be farther
io s, than s,. Cluster head of grid (3,O) attaches the Iocalion
of s, in the requesting message before forwarding it. When
the grid head in grid (2,O) receives the request message, it will
not forward it further since no closer redundant sensor can be
found.

Fig.3 compares the performance between the Grid-Quorum
solution and the “Broadcast Request” method in a 10* 10 grid.
The results were obtained from a simple nsZ simulation; more
details on the simulation environment are given later. Cluster
heads of neighbor grids communicate through a gateway
sensor. Suppose there is no other traffic in the network. From
the figures, we can see that the Grid-Quorum solution can
significantly reduce the message complexity compared to the
“Broadcast request” approach.

V. SENSOR RELOCATION

A . General Idea: Cascaded Movetnen!

Having obtained the location of the redundant sensor, we
need to determine how to move the sensor to the target
location (destination). Moving it direcdy to the des tination is
a possible solution. However, it may take a longer time than
the application requirement. For example, a sensor monitoring
a strategic area dies and the application specifies that the
maximum tolerable time for such a sensing hole is thirty
seconds. If h e redundant sensor is 100 meters away and it
takes at least one minute for the sensor to reach its destination,
the appIication requirement cannot be met. Moreover, moving
a sensor for a long distance consumes too much energy. If
the sensor dies shortly after i t reaches the destination, this
movement is wasted and another sensor has to be found and
relocated.

We propose to use a cascaded movernenr to address the
problem. The idea is to find some cascading (intermediate)
nodes, and use them for relocation to reduce the delay and
balance thc power. As shown in Fig.4, instead of letting the
redundant sensor s3 move directly to the destination. s1 and
sa irre chosen as cascading nodes. As a result, $3 moves to
replace sa, s2 moves to replace sl, and SI moves to the des-
tination. Since the sensors can first exchange communication
messages (Le., logically move), and ask all relevant sensors

1
&n 1 ma 15% 20% 25%

Percentage of clusters having redutxiant sensor

(a) Message complexity - GridOuorum - Broadcad request

\

8% -d 10% 15% 2 m 25V0

Percentage of cluste- having redundant sensor

8% -41---c------1 10% 15% 2 m 25V0

Percentage of cluste- having redundant sensor

(b) Response time

Fig. 3.
Request” approach

Comparison between the Grid-Quorum solution and the “Broadcast

52
h

$ 2

Fig. 4 . Cascaded mowment

to (physically) move at the same time, the relocation time is
much shorter.

A node s i which moves to replace another node Sj, is
referred to as s j ’ s successor, and si is referred to as si’s
predecessor. In Fig.4, s3 is s2’s successor and s? is sg’s
predecessor. We aIso introduce a virtual node SO, which is
used to represent the target location. It may represent the
failed sensor or the location where an extra sensor is needed
to increase the sensing accuracy. In Fig.4, we say SO is SI’S

predecessor and SI is SO’S successor.
Selecting cascading nodes is not easy since the sensor nodes

may be used by some application and their movement may
affect the sensing or communication tasks they are performing.
To ensure that this effect is within application’s requirement,
each sensor si is associated with a recovely d e l q Ti . After

2305

si’s movement, its successor must take its place within Ti. Ti
is determined by the application based on the critical level of
si’s sensing task, the size of the coverage hole generated by
si’s movement, and other application factors. We use To to
represent the recovery delay of the relocation event. It can be
the maximum recovery delay of the failed sensor or the time
limit for an additional sensor being placed at SO.

The T value imposes restrictions on the spatial relationship
and departure time of the cascading nodes. We use ti to denote
the departure time of si and d,; to denote the distance between
si and s j . The following Inequality must be satisfied if s j is
si’s successor.

&/speed - (t i - t3) 5 Ti (I)

For simplicity. f i is normalized to be the time period after
the relocation request is sent and t o (for SO) is set to be 0.

Based on Inequality (I) , whether s j can be the the successor
of s i is not determined solely by its distance to sl , but also
si’s departure time. If si moves at t o (O), s j must be within
speed * Ti from s i : if si moves after another t minutes, s j
can be farther away from si as long as dji 5 speed * (Ti + t) ,
Whether si can stay at its place for this t minutes or must
move immediately is determined by its own predecessor. For
example, if si is the successor of so, and dio is shorter than
speed* TO, si can flexibly move between (0, To -&/speed) .
In this case, we normally let si move at TO - &/speed (the
upper limit) such that more sensors can be chosen as si’s
successor and we can choose the best one.

The set of cascading nodes for a relocation and their
departure time together is defined by a cascading schedide. For
example, in Fig.4, Choice 2, ss(t3) + ~ ~ (t a) -, ~ ~ (t l) + so
is a cascading schedule. which can be used to recover a sensor
failure. Certainly, h e cascading scheduling should make sure
that the recovery delay is satisfied; i.e., Inequality (1) is
satisfied. For example, Choice 1 is not a cascading schedule
since the sensor failure cannot be recovered within the required
time.

B. ?he Metrics to Choose Cascading Nodes

Choicel
--R Y

Fig. 5 . Cascaded movement

The cascading schedule should minimize the total energy
consumption and maximize the minimum remaining energy so
that no individual sensor is penalized. However, in most cases,
these two goals cannot be satisfied at the same time. As shown
in FIg.5, suppose all sensors have the same amount of power.
Choicel consumes less energy, but the involved sensors will

have lower remaining energy. Sensors in Choice2 have higher
remaining energy. but the total energy consumption of Choice
2 is higher than that in choice]. There is a tradeoff between
minimizing the total energy consumption and maximizing the
minimum remaining energy. and we want to find a balance
between them.

total energy consumption --f . l -

0: 2 3 4 5 6 7 k
Cascading Schedule

Fig. 6 . Tradeoff

Before presenting our solution, we first show some obser-
vations. Based on the sensor deployment result generated by
running VOR [211, we randomly choose some sensor and
deplete its energy. Then, all cascading schedules to recover
the failed sensor are. enumerated and compared in terms of
the total energy consumption and the minimum remaining
energy. Here, the recovery delay (Ti,i # 0) is relaxed for
better observation, but the relocation time is calculated for
reference. The cascading schedules which are worse than some
other schedule in both metrics (total energy consumption and
minimum remaining energy) will be ignored; that is, we only
keep the cascading schedules which perform better than others
at least in terms of one metric.

Fig.6 shows the total energy consumption and the minimum
remaining energy of these schedules in an increasing order. As
shown in the figure, the total energy consumption is almost
flat at the beginning and then significantly increased, whereas
the minimum remaining energy has a steep increase at the
beginning and then becomes flat. This observation motivates
us to achieve a good balance between minimizing the total
energy consumption and maximizing the minimum remaining
energy.

From the observation, we can see that it is possible to
continuously spend a little more energy for a much higher min-
imum remaining energy until a turning point after which the
cost is higher but the gain is less. The cascading schedule just
before this turning point should be the best schedule. In other
words, the best schedule is the schedule with the niinirnlam
difference between the total energ?’ consurnption and the min-
insiirn remaining power. This new metric can be explained in a
mathematical way. Suppose there are two cascading schedules
with El and E2 as their total energy consumption, and Fminl
and Emin2 as their minimum remaining energy. Schedule 1
is chosen since E1 - Enzinl 5 E2 - Enzin,~. This inequality

2306

can also be expressed as E1 - -Ea 5 Em.inl- Emin?; i.e., the
cascading schedule with more advantage and less disadvantage
should be chosen.

sz

ModifiedDijkstru(Graph G(I?EI, Vena SO)
Initialization: S = {so}, Q = 1’
DeleteEdge(s0 ,O)
while not Empty (Q)

1. LetF’={(sn- , s i) I { S ~ . S Z } E S X Q !

2.
3. sj.predecessor = si
4.

dri; 5 (Ti; + ti;) * speed)
Find {si, s j) E F such that ‘ d (s k ! si) E 7: dji 5 dlk

t , = Ti + t i - d j i / speed
5 .
6. Add sj to S

< = Pj - d j ;

7. DeletedEdge(sj! t,)
end

Fig. 7. An example
Fig. 8. Modified Dijkstra’s algorithm

Fig.7 uses an example to further explain the reason. In Fig.7,
moving s3 directly to the target location is the most energy ef-
ficient solution. However, in this way, s3 will be penalized. and
its minimum remaining energy will be significantly reduced.
If s1 is added as a cascading node, the load of s3 can be
shared and the minimum remaining energy can be improved.
Since the totai length of the zigzag line ~ 3 ~ 1 ~ 0 is only a little
bit longer than the length of ~ 3 ~ 0 , only a slightty more power
is needed. If more sensors close to the line S3SO are chosen
as cascading nodes, the load can be further shared and the
minimum remaining power can be further improved. Certainly,
if some sensor close to this line has very IOW energy, it should
not be selected for cascading. When all eligible sensors close
to this line have been chosen as cascading nodes, a balanced
and efficient schedule is obtained. Starting from this point, if
we want to further improve the minimum remaining energy,
faraway Sensors such as s4, s5 and sg, have to be chosen.
However, in this way, the total energy consumption will be
significantly increased, and then it may not be a good solution.

In the remaining of the paper, the cascading schedule with
minimum difference between the total energy consumption and
minimum remaining power is referred to as the best cascading
schedule. The cascading schedule with the least total energy
consumption is referred to as the shortest schedule.

C. ne Algorithm

Before presenting the algorithm for calculating the best
cascading scheduk, we first introduce some notations, and
describe how to modify Dijksua’s algorithm to calculate the
shortest cascading schedule.

The sensor network can be modeled as a complete weighted
graph G(V, E) , where vertices correspond to the sensor nodes.
There are edges between any pair of nodes, and the weight of
edge sisi is the distance between s i and s j . The remaining
power of s i before relocation and after relocation is denoted by
Pi and P,! separately. We represent the energy a3 the distance
that the sensor can move with this energy. In this way. if si
moves to sj in the relocation, P,! = Pi - d,j .

To calculate the shortest cascading schedule, we cannot
simply apply Dijkstra’s algorithm due to the constraint of the
recovery delay. Different from the shortest path problem, not
all the edges with a finite weight in ,the graph can be selected
as a segment of the path. Also, we cannot set the weight

Initialization: E = 0, Emin. = -2, E’ = 0, Emin‘ = -1
while (1)

1.

2.
3.
4

find the shortest cascading schedule using
the Modified Dijkstra’s algorithm
record the minimum remaining power as Emin’
delete all edges s ;s j if Pi - di j 5 Emin’
if E’ - Emin’ < E - Emin then

E = E’, Emin = Emin’
else

return the previously calculated schedule

Algorithm to calculate the best cascading schedule Fig. 9.

of an edge to be infinity because its length solely can not
determine whether or not these two nodes can be successor
and predecessor of each other. To solve the problem, we add a
Delete Edge operation to Dijkstra’s algorithm to guarantee the
delay constraint. DeEereEdge(si, ti) deletes edge s j s i if s j cm
not become the successor of si; i.e., dj i > (c + ti) * speed.
The new algorithm, as shown in Fig.&, is referred to as the
Modified Dijkstra ’s algorithm.

To calculate the best cascading schedule, we first calculate
the shortest cascading schedule and record its total energy
consumption E and its minimum remaining energy Emin.
Then, we delete all the edges sis j if Pi. - di j 5 Emin.
and a new graph is generated. This process continues and
a new shortest cascading schedule is calculated as long as
the difference between the total energy consumption and the
minimum remaining energy is increased compared to the
previously calculated cascading schedule. When the process
terminates, the schedule calculated before the last schedule is
the best schedule, i.e., the schedule with the smallest difference
between Ihe last two schedules. As shown in Fig.6, schedule 1
is calculated iirst, and then 2, ..., 5 and 6. The energy difference
of schedule 6 is larger than schedule 5. Thus, the algorithm
stops and schedule 5 is chosen as the best cascading schedule.
Fig.9 shows the formal description of the algorithm.

D. Disfribuled Prolocol

In this section, we describe how to implement the algorithm
presented above in a distributed way. We first present a dis-
tributed protocol to calculate the shortest cascading schedule

2307

Fig. 10. The distributed protocol

and then describe how to use it to get the best cascading
schedule.

To calculate the shortest cascading schedule, the grid head
of SO initiates a dynamic programming computation by broad-
casting a request message. which includes TO, to. [he redun-
dant sensor sr. EO. and Emino, where EO and t o are set
to 0: and Enxino is set to infinity. A node s i receiving the
request first determines if it can be the successor of the sender
s j . If the answer is yes. it sets E, = c!,.~ + Ej$ Emini =
mzn(Pi - 4j: Emiraj), and ti = Tj + tj - dtj/speed. Then,
it rebroadcasts Ti, ti, sr , Ei and Emini, and remembers its
predecessor s j . If a node sj receives several such messages,
i t will choose the one from s k which can minimize E j , which
is the energy consumption of the shortest cascading schedule
from s j to SO. Then, sj calculates the other fields of the
message, broadcasts the message and sets its predecessor to be
sk. Finally, when the request arrives at the redundant sensor
si., the distributed calculation terminates.

To make the broadcast-based protocol work, we have to
address one issue: how can a node determine it has received
the message which can minimizc the total energy consumption
before broadcasting it? There are two intuitive solutions. In the
first method, when a node receives a request, it calculates those
fieids. If E is lower than that calculated from the previously
received message, i t rebroadcasts the updated version, This
method has relatively high message complexity since each
nodes may broadcast several times. In another method, each
node waits for a period of time before broadcasting the
message. However, if the time threshold is low, there may
not be enough information to decide the lowest E value; if
rhe time threshold is high, the delay may be increased.

We propose to use the geographic information to ensure
that nodes make correct decisions before broadcasting with a
high probability. As a result, in most cases, each sensor only
broadcasts once. Our solution needs two data structures: the
primary search area and the wailing lis?. The primary search
area is determined based on the location of the redundant
sensor and the event, and it should have a high probability to
encompass a11 the cascading nodes. The primary search area
in Fig.10 i s elliptic. It can also be other shapes like rectangle.
Recall that the cascading nodes should be close to the line
connecting the redundant sensor and the event location. There-
fore, it is not necessary to involve nodes faraway. Each sensor
node determines a wuaifing list after it receives the relocation

request for the first time. Only after receiving all the messages
from the nodes in h e waiting list, a sensor can broadcast the
message. The waiting list of si includes all the neighbors of si
which are within the primary search area and are further away
from the redundant sensor than s i . As shown in Fig.10, sa’s
waiting list includes s 1 and s3. It only broadcast7 the message
after receiving the message of SI and sg.

Another issue of this broadcast-based protocol is that the
potential successor node may be out of the communication
range of the sender. Due to the limitation of the commu-
nication range, the successor may not be a communication
neighbor. For example. in Fig.10, the redundant sensor s,
should be the successor of s5. but they are not within each
other’s communication range. sT may not know the existence
of s; and can not get the shortest schedule. To address this
problem. s7 piggybacks s5’s message when broadcasting its
own message if it finds that s, may use it. In general, if
si receives some message from .Sk. it will check whether
other node may need it. If so, it piggybacks T k , t k , Ek,

and Emin+ in its message. The formal description of the
distributed calculation of the shortest cascading schedule is
shown in Fig1 1.

To calculate the best cascading schedule, we only need to
execute the distributed calculation of the shortest schedule
iteratively similar to the atgorithm shown in Fig9 after the
following modifications: (1) The minimum remaining energy
calculated in the previous iteration, Emin’ is attached. When
si receives message from sj, it will check whether P, -
L $ ~ 5 Emin‘. If yes, si and .sj cannot be the successor and
predecessor of each other. This change is similar to step 3 in
Fig.9. (2) In addition to the current predecessor. each node
also needs to record the predecessor i n the previous iteration.

E. Optimize tion: Prepositioning
In some situations, the recovery delay constraint may result

in a bad relocation schedule in terms of energy efficiency. F ig5
shows such an example. If the recovery delay is too strict.
we have EO use choice2. Also, letting each cascading node
move synchronously may result in temporary coverage holes
though Ulese holes may be within the application’s tolerance.
These problems can be addressed if the relocation request
can be predicted. For example, if the grid head detects that
a group member has very low remaining energy, it can initiate
a relocation request to the redundant sensor. In this way, a
best relocation schedule in terms of energy efficiency can be
found, and the recovery delay constraint can be relaxed. If time
permits, the redundant sensor can first move to its predecessor
node. After it arrives there, its predecessor starts to move. In
this way, nci temporary coverage hole will be introduced.

VI. PERFORMANCE EVALUATION

The evaluation includes three parts: First, the effectiveness
of the proposed solution is compared with the VOR scheme
[21]. Second, the effectiveness of the cascaded movement is
evaluated. Finally, the effectiveness of the metric for choosing
the cascading schedule is evaluated.

2308

qotatinns:
Iistwi: waiting list of si
listoi: list of nodes from which si has received messages
L O G : focaiion of s1
AI,: {tj.Tj:lo~j. Ej:Eminj)
listmi: list of AT

U cluster head
Jpon receiving the information of redundant sensor sr

1 . add lLIo(to.T~,locx~~O,O) to listmo
2. broadcast requesf(listmol s r , loc,..luco}

i t node -5,

Jpon receiving reqzLest(lzstmj, s r , lo&, loco) from s j
1 . if receive such message for the first time then

determine listwi. Ei = CG

2.
3.

add sJ to listoi if it is in /.istwi
for each A & { t k l Tk,lock, Ek, Emink} in listnij

if (d i k 5 (Ti, + t k) * speed) then
add A4k to l2stm.i
if (Ei 2 Ek +- dit) then

3.1 dik = d i s t ~ n m (l o ~ , l o ~ k)
3.2

Ei = El; + d i k
Emini = min{Emink, Pi - d , k]

sipedecessor = Sk

4.1 add lMt{t i ,Ti , loc, ,~~,Emini) to li,ptmi
4.2

ti = T k + t k - dik/speed

3. if (listwi = listoi) then

broadcast request {listmi, s,, loc, , loco)

$t redundant sensor sr
Jpon receiving requestjlistm,, s r , l o o , loco) from s j

1 .

2.
3 ,

if receive such message for the first time then
determine listw,, E = ou

add s j to /istor if it is in lzstw',
for each b!!k(tk,TkllOCk.Ek> Emink} in listmj

3.1 drk = distance(loc?, lock)
3.2 if (drk 5 (Tk + t k) * speed A E 2 Ek + d r k)

E = E k + drk
Emin = min(Emink, Pv - drk}
s,.predecessor = sk

4. if (listwr = listor) then
return the shortest cascadmg schedule

Fig. 1 I . Distributed calculation of the shortest schedule

A. Eflectiveness of our sensor reiocatioa solution

The sensor relocation solution presented in this paper first
searches the closest redundant sensor and then relocates it
to the taget location. Other solutioy can be based on the
idea of relocating the nearby sensor to the target location. The
representative scheme is VOR [21]. VOR runs round by round.
In each round, it detects the coverage hole and moves nearby
sensors to heal it. This process continues until the target field
is well covered.

We use sensor failure recovery as an example to evaluate the
proposed solution and the VOR scheme. The simulation envi-
ronment is set as follows. 48 sensors are randomly deployed
in a - 6 0 ~ 1 * 60nz target field. VOR is used to deploy them
into a well-covered sensor network. The sped of the mobile
sensor is 2771/s and the recovery delay is 10s. The energy
consumption per meter is 37.96J, which is calculated based
on a mobile sensor prototype [16]. Each sensor is randomly

455 40

e 35- w
f 30-
$ 2 5 -

f 20-

TI

c

B
5 ' 5 - z

10-

5 -

(a) Number of sensors moved

- 2 2500

I Y -

'0 5 10 15 20 25 30
Clslatm between the dead sensor and the dosasr reddani senaor(i

(b) Total energy consumption

i la1 ~ V o ~ , I , ,, , I , 1
f Cascaded Movement

Distance betwnen the dead sensor and h e dwert redmdent sensor(m)
leMO 5 10 15 20 25 30 35

i la1 ~ V o ~ , I , ,, , I , ,
f Cascaded Movement

Distance betwnen the dead sensor and h e dwert redmdent sensor(m)
leMO 5 10 15 20 25 30 35

(c) Minimum remaining energy

Fig. 12 . Comparison between our solution and VOR

assigned a remaining energy between 19005 and 20OOJ. We
randomly choose a sensor, deplete its energy. and generate
a coverage hole. Then, the proposed sensor .relocation and
VOR are executed to recover the sensor failure. We measure
the performance of both approaches by three metrics: the
number of sensors moved. the total energy consumption, and
the minimum remaining energy.

Simulation results are shown in Fig.12. Since the distance
between the failed sensor and the redundant sensor directly
affect the energy consumption, we use the distance as the x-
axis. From the figure, we can see that our solution outperforms

2309

VOR in all three metrics. In VOR, nearby sensors move to
heal the coverage hole. Since their movement results in new
holes. more and more sensors are involved. The propagation of
the sensor movement is not directed to the redundant sensor,
but to all directions. resulting in moving oscillation. From
Fig.l?(a). we can see that many sensors are involved in the
relocation although the redundant sensor i s nearby. As a result,
the total energy consumption is very high (see Fig.lZ(b))
since a lot of movement is wasted. Also, in VOR. when a
coverage hole is detected, nearby sensors are moved even
when their remaining energy is low. This results in a much
lower minimum remaining energy as shown in Fi@.12(c).

The simulation results verified the advantage of our solution,
where only a minimum number of nodes are involved and
many other sensors are not affected. The energy consumption
is low and the remaining energy is high. In summary, although
VOR is effective in deploying mobile sensors. first finding the
redundant sensor and then relocating it to the target location
is much better for sensor relocation.

0 Cascnded Movement

B. Cascaded Movement lis Direct Moverneat
In this section, with the same simulation setup, we compare

the cascaded movement approach with he direct movement
approach, which moves the redundant sensor directly to the
target location.

Simulation results are shown in Fig.13. As can be seen
(Fig. 13(a)). the relocation time can be significantly reduced in
the cascaded movement approach. As for energy consumption.
direct movement is better, but its advantage over cascaded
movement is very limited (Fig.l3(b)). This proves that cas-
caded movement is energy efficient. On the other hand, the
minimum remaining energy of using cascaded movement is
much better than that of direct movement. If the redundant
sensor has relatively high power, moving it directly to the
target location may not affect the minimum remaining power:
otherwise, it may significantly reduce the minimum remaining
power. especially when rhe moving distance is long. This
explains why the minimum remaining energy drops propor-
tionally as the distance increases in the direct movement
approach (see Fig.l3(c)l.

C. The metric to choose the cascading schedule

In our solution, the metric used to get the best cascading
schedule is to minimize h e difference between the total energy
consumption and the minimum remaining power. Since there
are other objective metrics existing, we compare our solution
to other allernatives. Since we have shown (see Fig.l3(b))
thar the total energy consumption of our approach is similar
to the direct movement approach, which is optimal, we only
compare our approach with another alternative that maximizes
the minimum remaining power.

The simulation setup is the same as before except €or
the energy level before relocation. Two cases are considered.
One is that sensors have similar remaining power, which is
randomly distributed between 199UJ and 2000J. The max-
imum difference df the remaining power among sensors is

5

Oistance between the h a d sehsor and me dosest redinden1 sensor(m)

(b) Total energy consumption

- 3 tQmr-------l
6 1 I

0 Cascaded Movemsnt . Direct movement
r

0 5 10 15 20 '25 30 35
1875

Distance beiween the dead w o r RI% ~ h e doses1 retmdent s%nsor(m)

(c) Minimum remaining energy

Fig. 13. Comparison between cascaded movement and duect movement

1OJ and the variance is about 11.8J2. In the other case,
the remaining power is very different. The sensor remaining
power is randomly distributed between 19006 and 20005. The
maximum difference of the remaining power among sensors
is l0OJ and and the variance is about 8.55J2.

As shown in Fig.14 and Fig.15, for both settings, our solu-
tion has much lower total energy consumption compared to the
approach of maximizing the minimum remaining energy. In
the extreme case, our solution saves about 2000J. Meanwhile,
the minimum remaining energy is at most 1 O J lower than its
a1 ternative.

2310

i I
‘0 5 10 15 20 25 30 35

hstance behveen me desd sellsor and the dosest redundant samor(m)

(a) Total energy consumption
1620, I

o Mnimze me d~narenfa
Manmlze W m m m remairung power

E l I

1

1870

s 3000
2500

a
5 2000”
F

: looo-

z.,

1500- -

500

0 5 10 15 20 25 30 35
‘
hstance behveen me #ad sensor and th4 dosest c e m e n t sensor(m)

1850

-

-
X I

s 7 n o = * =
r r 8 4

*+ “8 moo
-

”0

(b) Minimum remaining energy

Fig. 14. Comparisons when the remaining energy is very dlffereni

Between these two settings, our approach saves more energy
when the remaining energy is similar. The reason is as follows.
Sensors with reIatively more energy must be involved to max-
imize the minimum remaining energy. When the remaining
energy is similar, it is not likely to find nearby sensors with
high energy. Then, fasaway sensors are more likely to be
involved, and more energy will be consumed compared to our
solution. On the other hand, when the remaining energy is
similar, the disadvantage of our solution is a little bit larger
since only nearby sensors are involved in the relocation. These
sensors may become the sensors with minimum remaining
energy after relocation and the minimum remaining energy
among all the sensors is reduced consequently.

When the remaining energy is very different, bath ap-
proaches have similar minimum remaining energy since a
sensor with minimum remaining energy is more likely not
involved in the relocation and the minimum remaining energy
of the network does not change after the relocation.

VII. CONCLUSIONS

In this paper, we defined the problem of sensor relocation,
which can be used to deal with sensor failure or response
to new events. To effectively relocate sensors and minimize
the effect on the application, we proposed a two-phase sensor
relocation solution: redundant sensors are first identified and

(a) Total energy consumption
ZMX)

7 0 19701

1950
P

0 Minimizethe dlflemnce
x

$ 1930

Maximize the minimum remaining Power

5 10 15 20 25 30 35
1 9200

olstance between the dead sensor and the dosest r-nt sensorjm)

(t?) Minimum remaining energy

Fig. IS. Comparisons when the remaining energy is similar

then relocated to the target location. We proposed a Grid-
Quorum solution to quickly locate the closest redundant sensor
with low message complexity, and proposed to use cascaded
movement to relocate the redundant sensor. Since the sensors
can first exchange communication messages (i.e., logically
move), and ask all relevant sensors to (physicaIly) move at the
same time, the cascaded movement solution can significantly
reduce the relocation time. Further, a distributed protocol has
been proposed to find the best cascading schedule to minimize
the difference between the total energy consumption and the
minimum remaining power. Simulation results verified that the
proposed solution outperforms others in terms of relocation
time, total energy consumption, and minimum remaining en-
ergy.

REFEREHCES

I. E Aky~ldrz, W. Su, Y. Sanhrasubramaniam and E. Caylrcl, “A Survey
on Sensor Networks,” IEEE Communicurions Magazine, pp. 102-1 14.
August 2002.
E Aurenhammer. “Voronoi dagrams - a survey of a fundamental
geometric data srmcture,” .4CM Cumpitting Snrvqs, vol. 23, pp. 345-
406,1991.
G . Cao and M. Singhal, “A Delay-Optimal Quorum-Based Mutual
Exclusion Algorithm for Distributed Systems,” lEEE Trumucrions on
Parallel and Disrribured Systems, vol. 12. no. 12, pp. 1256-1268, 2001-

231 1

[J] A. Carzaniga. D. Rosenhlum and A. Wolf. “Design and Evaluation of a
Wide-area Event Notification Service.” .4CM Tmnsocrions on Corprrer-
System. vol. 19. August 2001.

151 T. Clouqueur, V. Phipatanasuphorn. P. Ramanathan and K. k. Saluja.
“Sensor Deployment Strategy for Target Detection.“ First ACM Inter-
national Worlrshop on Wireless Sensor Nemorks arid Applications, 2002.

161 D. Estrin. R. Govindan, J. Heidemann and S. Kumar, “Next Century
Challenges: Scalable Coordination in Sensor Networks.” ACMMolricon~,
August 1999.

[7] P. Eugster, P. Felber. R. Fuerraoui. and A. Kermarrec. “Thz Many
Faces of PublishlSubscribe.” ACM Cornpuring Sirnqs. vol. 35. no. 2,
pp. 114-131, June 2003.

(81 2. Ge. P. Ji. J. Kurosa and D. Towsley, ”Matchmaker: Si_enaling for
Dynamic Publish/Subscribe Applications.” llrh IEEE lnteninrionol
CurlJerence oft Network Pmtocols(ICNP). Novemkr 2003.

[91 W. Heinzelman. A. Chandrakasan and W. Balakrishnan. “An
Application-Specific Protocol Architecture for Wireless Microsensor
Networks:‘ IEEE Transaciions on WT.ireless Communicarions, vol. 1,
Octobzr 2002.

[lo] W. R. Heinzelman. I. Kulik and H. Balaknshnan. “Adaptive Protocols
for Information Dissemination in Wireless Sensor Network.” ACM
Mobicom, August 1999.

[l l] A. Howard, M. 1. Mataric and G. S . Sukhatme. “An Incremental
Self+Deploymeni Algorithm for Mobile Sensor Networks ,” .4lclonomous
Robots, Special Issue on Intelligenr Embedded Sysrems. September 2002.

1121 A. Howard. M. I. Mataric and G. S . Subatme. ”Mobile Sensor
Networks Deployment Using Potential Fields: A Distributed, Scalable
Solution to the Area Coverage Problem.” the drh Infemarional Sympo-
sium on Distributed Auiommous Robotics Syems, June 2002.

(131 C. Intanagonwiwat. R. Govindan and D. Estnn. “Directed Diffusion: A
Scalable and R o h t Communication.” Mobicom. August 2000.

[Id] S. Meguerdichian. E Koushanfx. M. Potkonjak and M. B. Srivastava.
“Coverage Problem in Wireless Ad-hoc Sensor Network.” INFOCOM.
April 2001.

[15] G. J. Pottiz and W. J. Kaiser. “Wireless Integrated Network Sensors.”
Communications of the ACM. May 2000.

[16] G . T. Sibley. M. H. Rahinu and G. S. Sukhaime. “Robmote: A Tiny
Mobile Robot Platform for Large-Scale Sensor Networks.” Pmceedings
of The IEEE Intenlntional Conference on Robotics a d .ktiomiinn
(ICRA). 2002.

[17] K. Sohrabi. J. Gao, V. Ailawadhi and G. J. Pottie. “Protocols for
Self-Organization of A Wireless Sensor Network.” IEEE PerJonul
Commmicalinn. vol. 7, no. 5 , pp. 16-27. October 2ooO.

[18] M. Srivastava. R. Muntz and M. Potkonjak. “Smart Kindergaazn:
Sensor-based Wireless Networks for Smart Developmental Problem-
solving Environments.” Mobicom. 2001.

[I91 M. Steenslrup, B. Beranek and Newman. Ad hoc Networking. chapter
Clusreer-Bused Nelworkr, Addison-Wesley Longman Publishing Co.? Inc.
Boston. MA. USA. 2001.

L20] G. Wang. G . Cao and T. La Porta. “A Bidding Protocol for Deploying
Mobile Sensors.” The 1 It11 IEEE Inrenratiorml Conferenre on Network
Proroculs (ICNP). Novemkr 2003.

1211 G. Wang. G. Cao and T. La Porta. “Movement-Assisted Sensor
Deployment,” INFOCOM. March 200-1.

[22] W. Zhang and G. Cao. “Optimizing Tree Reconfiguration for Mobile
Target Tracking in Sensor Networks.” IEEE INFOCOM. 2004.

[23] W. Zhang. G. Cao and T. La Porta. “Data Dissemination with h n g -
Based Index for Wireless Sensor Networks:’ f i e 11th IEEE Intemu-
tional Conference on Nerwork Pmtocals (ICNP), November 2003.

[24] Y. &U and K. Cha!-xabarty, “Sensor Deployment and Target Localiration
Based on Virtual Forces:’ II1IFOCOM. 2003.

2312

