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Abstract- Recently there has been a great deal of research 
on using mobility in sensor networks to assist in the initial 
deployment of nodes. Mobile sensors are useful in this envi- 
ronment because they can move to locations that meet sensing 
coverage requirements. This paper explores the motion capability 
to relocate sensors to deal with sensor failure or respond to new 
events. We define the problem of sensor relocation and propose a 
two-phase sensor relocation solution: redundant sensors are first 
identified and then relocated to the target location. We propose 
a Grid-Quorum solution to quickly locste the closest redundsnt 
sensor with low message complexity, and propose to use cascaded 
movement to relocate the redundant sensor in a timely, efficient 
and balanced way. Simulation results verify that the proposed 
solution outperforms others in terms of relocation time, total 
energy consumption, and minimum remaining energy. 

I .  INTRODUCTION 

Due to many attractive characteristics of sensor nodes such 
as small size and low cost, sensor networks [lo], 1131. [151, 
[17]. [l] have become adopted to many military and civil 
applications including military surveillance, smart homes [I 81, 
remote environment monitoring, and in-plant robotic control 
and guidance. In order to properly sense the phenomena of 
interest, sensor nodes must be deployed appropriately to reach 
an adequate coverage Ievel for the successful completion of 
the issued sensing tasks [5], [14]. 

In many potential working environments, such as remote 
harsh fields or disaster areas sensor deployment cannot be 
performed manually or precisely, In addition, once deployed, 
sensor nodes may fail, requiring nodes to be moved to over- 
come the coverage hole created by Lhe failed sensor. In these 
scenarios, i t  is necessary to make use of mobile sensors [20L 
[21]. which can move to provide the required coverage. One 
example of a mobile sensor is the Robomote [161. These 
sensors are smaller than 0.000047ni3 and cost less than 150 
dollars. 

In this paper we address the problem of sensor relocarion, 
i.e., moving previously deployed sensors to overcome the 
failure of other nodes, or to respond to an occurring event 
that requires that a sensor be moved to its location. This 
sensor relocation i s  different from existing work on mobile 
sensors which concenuate on sensor deployment; i.e.. moving 
sensors to provide certain initial coverage [l l] ,  [121, [201. [211, 
1241. Compared with sensor deployment. sensor relocation 
has many special difficulties. First, sensor relocation may 
have a strict response time requirement. For example, if 
the sensor monitoring a security-sensitive area dies, another 

sensor should move to replace it as soon as possible. Second, 
relocation should not affect the application currently using 
the sensor network, which means that the relocation should 
minimize its effect on the current sensing topology. Finally. 
since movement may be much more expensive in terms of 
energy than computation and communication. any algorithm 
must balance energy costs with response time. In particular, 
care must be taken to balance the energy costs of an individual 
node with the overall network energy cost to ensure maximum 
network lifetime. 

In this paper, we propose a framework for relocating mobile 
sensors in a timely, efficient, and balanced manner, and at the 
same time. maintaining the original sensing topology as much 
as possible. In our framework, sensor relocation consists of 
two phases: the first is to find the redundant sensors in the 
sensor network; the other is to relocate them to the target 
location. For the first phase, we propose a Grid-Quorum based 
solution to quickly locale the redundant sensors with low 
message overhead. For the second phase, we propose efficient 
heuristics to achieve good balance between energy efficiency 
and relocation time when determining the sensor relocation 
path. Simulation results show that the proposed heuristics are 
very effective in reducing the relocation time and the energy 
consumption. 

The rest of the paper is organized as follows. In section II. 
we introduce some related work. In section 111, we define the 
sensor relocation problem and the grid-based system model. 
Section IV presents the Grid-Quorum solution and Section 
V presents our solution for relocating sensors. Performance 
evaluations are presented in Section VI. Section VI1 concludes 
this paper. 

11. RELATED WORK 
There have been several research efforts on deploying 

mobile sensors. For example, the work in [24] assumes that a 
powerful cluster head is available to collect information and 
determine the target location of the mobile sensors. Sensor 
deployment has also been addressed in the field of robotics 
Ell], [121, where sensors are deployed one by one, utilizing 
the location information of previously deployed sensors. This 
method is not suitable to the relocation problem because it 
will not meet response time requlrements in  many cases. 

Recently. we proposed three mobility-assisted sensor de- 
ployment protocols where mobile sensors move from densely 
deployed areas to sparse areas to increase the coverage. The 
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protocols run iteratively [21J In each round, sensors first 
detect coverage holes around them by utilizing the Voronoi 
diagram 121. If coverage holes exist, sensors decide where to 
movc to heal or reduce the holes by three different distributed 
algorithms called VOR, VEC and Minimax. To achieve a 
good balance between sensor cost and sensor coverage, we 
designed a bidding protocol for deploying mobile sedsors in 
sensor networks composed of both mobile and static sensors 
[20]. Because all of these algorithms take potentially several 
iterations to terminate. they may not meet the response time 
requirements of the relocation problem. 

111. PROBLEM STATEMENT 
In theory. the two protocols we previously proposed [20J 

[2 1 J can be used for sensor relocation. For example, after a 
sensor failure, the sensors neighboring the failed node can 
execute the algorithms. After several rounds, the neighbor 
sensors will move to cover the area initially covered by the 
failed sensor. However, moving neighbor sensors may create 
new holes in  that area. To heal these new holes, more sensors 
must move. This process continues until some area having 
redundant sensors is reached and the sensors leaving this area 
do not create new holes. Using the method, sensors may move 
several times, wasting energy. In addition, since many sensors 
are involved, it may take a long time for the algorithm to 
terminate. Based on this observation, we propose to first find 
the locations of the redundant sensors, and then design an 
efficient route for them to move to the destination. 

To determine which sensor(s) is redundant is a challenging 
problem. It is  hard for a single sensor to independently decide 
whether its movement will generate a coverage hole. To make 
such a decision, the sensor requires information about whether 
its neighbors will move or not. More specifically, a number of 
sensors located closely must determine the redundant sensors 
among themselves. 

A grid-based architecture is a natural solution for this prob- 
lem. We can divide the target field into grids. The grid head is 
responsible for collecting the information of its members, and 
determining the existence of redundant sensors based on their 
locations. For redundant sensors located on the boundary of the 
grid, grid heads coordmate to make decisions. The grid head 
can also monitor its group members and initiate a relocation 
process in case of new event or sensor failure. 

A grid-based architecture is feasible in a network in which 
nodes are relatively regularly deployed, for example as would 
be the case after the termination of previously proposed sensor 
deployment algorithms [20], [21]. This is because, unlike the 
case of a network id which nodes are randomly deployed, 
the cost of organizing sensors into grids is low, Further, 
this organization can facilitate data aggregation, routing, etc. 
[221. in addition to finding the redundant sensors. Since many 
existing techniques on grid (cluster) maintenance 161, [9], 1191 
can be directly applied, we will not address these issues in this 
paper. 

With the grid-based model, the sensor relocation problem 
can be reduced to two sub-problems: finding the redundant 

Fig. 1. 7 h e  system model 

sensors and then relocating them to the target location. F ig1  
illustrates the sensor relocation problem when grids are used; 
the black nodes are used to represent grid heads. Each grid 
is indexed by a tuple. whose first number is used to represent 
the column and the second number is used to represent the 
row, Grids (1.3), (0,3), (1,4) and (0.4) have redundant sensors. 
When a sensor at grid (3.0) dies, resulting in a coverage hole, 
its grid head first needs to locate the redundant sensor and 
then relocate some sensor to fix the coverage hole. For the 
first problem, we propose a Grid-Quorum solution to quickly 
identify the redundant sensors. For the second problem, we 
propose a cascaded movement solution to relocate sensors in 
a timely and energy efficient way. 

Iv. FINDING THE REDUNDANT SENSORS 

In this section, we first give the background and motivation 
of the Grid-Quorum idea. Then, we present the detailed 
solution and illustrate its advantage in terms of message 
complexity and response time. 

A. Backgmund aad Moilvation , 

The problem of finding redundant sensors has some sim- 
iIarily to the publish/subscribe problem [7], [SI, [41, where 
the publisher advertises some information and the subscriber 
requests the information. Mapping the terminology to our 
problem, the grids that need more sensors are the subscribers, 
and the grids that have redundant sensors are the publishers. 
In the publishhbscnbe system, the matching of a request to 
an advertisement is called matchmaking. 

Generalty, there are three types of solutions for matchmak- 
ing. (1) Matchmaking occurs at the subscriber, which is re- 
ferred as “broadcast advertisement” [7] .  In our problem, this is  
similar to letting the grids having redundant sensors flood this 
information. Later, when some grid needs redundant sensors, 
it can get the information quickly. (2) Matchmaking occurs 
at the publisher, which is referred ifs “broadcast request” 171. 
In our problem. this is similar to letting the grids that need 
sensors flood the request. The grid that has redundant sensors 
replies after receiving the request. (3) Matchmaking happens 
in the middle of the network [4], [8], [23]. In our problem, this 
is similar to letting the supply grid advertlse the information to 
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some intermediate grids from which the demand grid obtains 
the information. 

Different from the traditional publishhubscribe problem, the 
information in our system is not reusable. The information 
about the redundant sensor can only he used once, since it may 
be changed after the redundant sensor moves to the requesting 
place. Due to this special property, the message complexity 
will be very high if we use the broadcast advertisement 
approach, which requires two network-wide broadcasts for 
each redundant sensor: one for advertisement and the other 
for data update after the redundant sensor moves. 

For the broadcast request approach, the delay is relatively 
long since it is on-demand. Therefore, we prefer the third 
solution, which can achieve a balance between message corn- 
plexity and response time. In this type of solution, a structure 
like that in [XI. [23], can be used to facilitate the matchmaking 
between the advertisement and the request. Since the data may 
not be re-used. this structure should be simplified compared 
to that in [8], [?3]; otherwise the benefit may not be worth the 
cost. Therefore, we need a simple and low-cost structure for 
matchmaking. 

Our solution is motivated by the concept of quorum [31. 
which is defined as follows. Given a nonempty set U? a coterie 
C is a set ofU's subsets. Each subset P in C is called a quorum. 
The following condition must be held for quorums in a coterie 
C under U: 

b (VP E c ::? # 0 A P U )  
Minimality Property: (b?, '2 E C :: P $! e) 
Intersection Property: (V'P, '2 E C :: P n Q f 0) 

By organizing grids as quorums, each advertisement and 
each request can be sent to a quorum of grids. Due to the 
intersection property of quorums, there must be a grid which is 
the intersection of the advertisement and the request. The grid 
head will be able to match the request to the advertisement. 
A simple quorum can be constructed by choosing the nodes 
in a row and a column. Instead of flooding the network with 
advertisements or requests, the request and the advertisement 
are only sent to nodes in a row or column, For example, as 
shown in Fig.lt suppose grid (0,3) has redundant sensors, it 
only sends the advertisement to grids in a row ((0,3), (1,3), 
(2.31, (3.31, (4,3)) and a column ((O,4), (0,3), (0,2), (OJ), 
(0,O)). When grid (3,O) is looking for redundant sensors, it only 
needs to send a request to grids in a row ((010), (l ,O),  (2,0), 
(3,O), (4,011 and a column ((3,4), t3,3), ( 3 3 ,  (3J1, (3,011. 
The intersection node (0,O) will be able to match the request 
to the advertisement. Suppose N is the number of grids in 
the network. By using this quorum based system. the message 
overhead can be reduced from O( N )  to O( v%). Although the 
message overhead is very low compared to flooding, we can 
further reduce the message overhead by observing the specialty 
of our problem. 

B. Die Grid-Quorum Solution 
In our Grid-Quorum system, we do not require the inter- 

section of any two quorums. Instead. we deploy two coterie, 
called supp1y coterie and demand coferie separately, and only 

' 

require that the quorum belong to the supply coterie intersects 
with all quorums in  the demand coterie, and vice versa. 

The formal definition is as follows. Given a nonempty set U. 
there is a supply coterie C, and a demand coterie C d ,  which 
are the sets of U's subsets. Each subset 71, in coterie Cs is 
called a supply quorum and each subset Pd in coterie Cd is 
called a demand quorum. Suppose coterie C, has m quorums, 
and coterie c d  has 11 quorums. The following condition must 
be hold for quorums in coterie C, and C, under U :  

7n 
D Ui=r =I?-/ 

U,"=, l'di = U 

(YP3, LZ, E C S  :: F.s @ Q s )  

Minimality Property: 

(VPd, &d E C d  :: pd @ Q d )  
Intersection Property: 
(vF8 E cs ,v?d  E c d  1: F.q n ?d f 0) 
( V P ~  E cd: vpS E c, :: lpd n P~ + 0) 

To construct a Grid-Quorum, h e  grid heads belong to 
the grids in one row are organized into one quorum, called 
supply quorum and the grid heads belong to the grids in 
a column are organized into one quorum, called demand 
quorum. All the supply quorums compose the supply coterie, 
and the demand quorums compose the demand coterie. In 
this way, the natural geographic relation ensures that every 
supply quorum has intersection with all the demand quorums 
and vice versa. When a grid has redundant sensors, the grid 
head propagates this information through the supply quorum 
to which it belongs. When any grid wants more sensors, the 
grid head needs only to search its demand quorum. Since every 
demand quorum has intersection with all supply quorums, the 
grid head can get all the information about redundant sensors. 
We can see that using the geographic information reduces the 
cost of building Grid-Quorum lo almost zero. 

Still using the example of Fig.1, Grids (0,4), (1,4), (0,3) 
and (1,3) have redundant sensors, while grid (3,O) needs more 
sensors. The grid head of (1,3) propagates its redundant sensor 
information through its supply quorum (( 1,4), (1,3), (1,2), 
(l,l),  (1:O)). The grid head in grid (3,O) searches its demand 
quorum ((0,O). (LO) ,  (2,0), (3,0), (48)). Grid (1,O) can reply 
the information about redundant sensors. Compared to using 
the quorum in the last example, using grid-quorum cuts the 
message by half. 
Optimization: To further reduce the message complexity, 
we add a stopping criteria for propagating request messages 
through the demand quorum. Since we want the closest 
redundant sensor, the propagation should be stopped once 
we get the best solution. To implement the idea, the already 
visited grid head can piggyback the information in its supply 
quorum before forwarding the query message to the next 
grid in the same row. Then every grid head in this demand 
quorum can check whether a better result can be found for the 
demanding grid. If not, this grid head can reply to the query 
grid immediately without further propagating the request. For 
example, in Fig.2, sensor s, dies and grid (3.2) has redundant 
sensor sa. All sensors located outside the circle with center s, 
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Fig. 2. Stopping criteria 

and radius of the distance between sa and sc must be farther 
io s, than s,. Cluster head of grid (3,O) attaches the Iocalion 
of s, in  the requesting message before forwarding it. When 
the grid head in grid (2,O) receives the request message, it will 
not forward it  further since no closer redundant sensor can be 
found. 

Fig.3 compares the performance between the Grid-Quorum 
solution and the “Broadcast Request” method in a 10* 10 grid. 
The results were obtained from a simple nsZ simulation; more 
details on the simulation environment are given later. Cluster 
heads of neighbor grids communicate through a gateway 
sensor. Suppose there is no other traffic in the network. From 
the figures, we can see that the Grid-Quorum solution can 
significantly reduce the message complexity compared to the 
“Broadcast request” approach. 

V. SENSOR RELOCATION 

A .  General Idea: Cascaded Movetnen! 

Having obtained the location of the redundant sensor, we 
need to determine how to move the sensor to the target 
location (destination). Moving it direcdy to the des tination is 
a possible solution. However, it may take a longer time than 
the application requirement. For example, a sensor monitoring 
a strategic area dies and the application specifies that the 
maximum tolerable time for such a sensing hole is thirty 
seconds. If h e  redundant sensor is 100 meters away and it 
takes at least one minute for the sensor to reach its destination, 
the appIication requirement cannot be met. Moreover, moving 
a sensor for a long distance consumes too much energy. If 
the sensor dies shortly after i t  reaches the destination, this 
movement is wasted and another sensor has to be found and 
relocated. 

We propose to use a cascaded movernenr to address the 
problem. The idea is to find some cascading (intermediate) 
nodes, and use them for relocation to reduce the delay and 
balance thc power. As shown in Fig.4, instead of letting the 
redundant sensor s3 move directly to the destination. s1 and 
sa irre chosen as cascading nodes. As a result, $3 moves to 
replace sa, s2 moves to replace sl, and SI moves to the des- 
tination. Since the sensors can first exchange communication 
messages (Le., logically move), and ask all relevant sensors 

1 
&n 1 ma 15% 20% 25% 

Percentage of clusters having redutxiant sensor 

(a) Message complexity - GridOuorum - Broadcad request 

\ 

8% -d 10% 15% 2 m  25V0 

Percentage of cluste- having redundant sensor 

8% -41---c------1 10% 15% 2 m  25V0 

Percentage of cluste- having redundant sensor 

(b) Response time 

Fig. 3. 
Request” approach 

Comparison between the Grid-Quorum solution and the “Broadcast 

52 
h 

$ 2  

Fig. 4 .  Cascaded mowment 

to (physically) move at the same time, the relocation time is 
much shorter. 

A node s i  which moves to replace another node Sj, is 
referred to as s j ’ s  successor, and si is referred to as si’s 
predecessor. In Fig.4, s3 is s2’s successor and s? is sg’s 
predecessor. We aIso introduce a virtual node SO, which is 
used to represent the target location. It may represent the 
failed sensor or the location where an extra sensor is needed 
to increase the sensing accuracy. In Fig.4, we say SO is SI’S 

predecessor and SI is SO’S successor. 
Selecting cascading nodes is not easy since the sensor nodes 

may be used by some application and their movement may 
affect the sensing or communication tasks they are performing. 
To ensure that this effect is within application’s requirement, 
each sensor si is associated with a recovely d e l q  Ti .  After 
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si’s movement, its successor must take its place within Ti. Ti 
is determined by the application based on the critical level of 
si’s sensing task, the size of the coverage hole generated by 
si’s movement, and other application factors. We use To to 
represent the recovery delay of the relocation event. It can be 
the maximum recovery delay of the failed sensor or the time 
limit for an additional sensor being placed at SO. 

The T value imposes restrictions on the spatial relationship 
and departure time of the cascading nodes. We use ti to denote 
the departure time of si and d,; to denote the distance between 
si and s j .  The following Inequality must be satisfied if s j  is 
si’s successor. 

&/speed  - (t i  - t3 )  5 Ti ( I )  

For simplicity. f i  is normalized to be the time period after 
the relocation request is sent and t o  (for SO) is set to be 0. 

Based on Inequality (I) ,  whether s j  can be the the successor 
of s i  is not determined solely by its distance to sl ,  but also 
si’s departure time. If si moves at t o  (O), s j  must be within 
speed * Ti from s i :  if si moves after another t minutes, s j  
can be farther away from si as long as dji  5 speed * (Ti + t ) ,  
Whether si can stay at its place for this t minutes or must 
move immediately is determined by its own predecessor. For 
example, if si is the successor of so, and dio is shorter than 
speed* TO, si can flexibly move between (0, To -&/speed) .  
In this case, we normally let si move at TO - &/speed (the 
upper limit) such that more sensors can be chosen as si’s 
successor and we can choose the best one. 

The set of cascading nodes for a relocation and their 
departure time together is defined by a cascading schedide. For 
example, in Fig.4, Choice 2, ss(t3) + ~ ~ ( t a )  -, ~ ~ ( t l )  + so 
is a cascading schedule. which can be used to recover a sensor 
failure. Certainly, h e  cascading scheduling should make sure 
that the recovery delay is satisfied; i.e., Inequality (1) is 
satisfied. For example, Choice 1 is not a cascading schedule 
since the sensor failure cannot be recovered within the required 
time. 

B. ?he Metrics to Choose Cascading Nodes 

Choicel 
--R Y 

Fig. 5 .  Cascaded movement 

The cascading schedule should minimize the total energy 
consumption and maximize the minimum remaining energy so 
that no individual sensor is penalized. However, in most cases, 
these two goals cannot be satisfied at the same time. As shown 
in FIg.5, suppose all sensors have the same amount of power. 
Choicel consumes less energy, but the involved sensors will 

have lower remaining energy. Sensors in Choice2 have higher 
remaining energy. but the total energy consumption of Choice 
2 is higher than that in choice]. There is a tradeoff between 
minimizing the total energy consumption and maximizing the 
minimum remaining energy. and we want to find a balance 
between them. 

total energy consumption --f . l -  

0: 2 3 4 5 6 7 k 
Cascading Schedule 

Fig. 6 .  Tradeoff 

Before presenting our solution, we first show some obser- 
vations. Based on the sensor deployment result generated by 
running VOR [211, we randomly choose some sensor and 
deplete its energy. Then, all cascading schedules to recover 
the failed sensor are. enumerated and compared in terms of 
the total energy consumption and the minimum remaining 
energy. Here, the recovery delay (Ti,i # 0) is relaxed for 
better observation, but the relocation time is calculated for 
reference. The cascading schedules which are worse than some 
other schedule in both metrics (total energy consumption and 
minimum remaining energy) will be ignored; that is, we only 
keep the cascading schedules which perform better than others 
at least in terms of one metric. 

Fig.6 shows the total energy consumption and the minimum 
remaining energy of these schedules in an increasing order. As 
shown in the figure, the total energy consumption is almost 
flat at the beginning and then significantly increased, whereas 
the minimum remaining energy has a steep increase at the 
beginning and then becomes flat. This observation motivates 
us to achieve a good balance between minimizing the total 
energy consumption and maximizing the minimum remaining 
energy. 

From the observation, we can see that it is possible to 
continuously spend a little more energy for a much higher min- 
imum remaining energy until a turning point after which the 
cost is higher but the gain is less. The cascading schedule just 
before this turning point should be the best schedule. In other 
words, the best schedule is the schedule with the niinirnlam 
difference between the total energ?’ consurnption and the min- 
insiirn remaining power. This new metric can be explained in a 
mathematical way. Suppose there are two cascading schedules 
with El and E2 as their total energy consumption, and Fminl 
and Emin2 as their minimum remaining energy. Schedule 1 
is chosen since E1 - Enzinl 5 E2 - Enzin,~. This inequality 
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can also be expressed as E1 - -Ea 5 Em.inl- Emin?; i.e., the 
cascading schedule with more advantage and less disadvantage 
should be chosen. 

sz 

ModifiedDijkstru( Graph G(I?EI, Vena SO) 
Initialization: S = {so}, Q = 1’ 
DeleteEdge(s0 ,O) 
while not Empty (Q) 

1. LetF’={(sn- , s i )  I { S ~ . S Z } E  S X Q !  

2. 
3. sj.predecessor = si 
4. 

dri; 5 (Ti; + ti;) * speed) 
Find {si, s j )  E F such that ‘ d ( s k !  si) E 7: dji 5 dlk 

t ,  = Ti + t i  - d j i / speed  
5 .  
6. Add sj to S 

< = Pj - d j ;  

7. DeletedEdge(sj! t, ) 
end 

Fig. 7. An example 
Fig. 8. Modified Dijkstra’s algorithm 

Fig.7 uses an example to further explain the reason. In Fig.7, 
moving s3 directly to the target location is the most energy ef- 
ficient solution. However, in this way, s3 will be penalized. and 
its minimum remaining energy will be significantly reduced. 
If  s1 is added as a cascading node, the load of s3 can be 
shared and the minimum remaining energy can be improved. 
Since the totai length of the zigzag line ~ 3 ~ 1 ~ 0  is only a little 
bit longer than the length of ~ 3 ~ 0 ,  only a slightty more power 
is needed. If more sensors close to the line S3SO are chosen 
as cascading nodes, the load can be further shared and the 
minimum remaining power can be further improved. Certainly, 
if some sensor close to this line has very IOW energy, it should 
not be selected for cascading. When all eligible sensors close 
to this line have been chosen as cascading nodes, a balanced 
and efficient schedule is obtained. Starting from this point, if 
we want to further improve the minimum remaining energy, 
faraway Sensors such as s4, s5 and sg, have to be chosen. 
However, in this way, the total energy consumption will be 
significantly increased, and then it may not be a good solution. 

In the remaining of the paper, the cascading schedule with 
minimum difference between the total energy consumption and 
minimum remaining power is referred to as the best cascading 
schedule. The cascading schedule with the least total energy 
consumption is referred to as the shortest schedule. 

C. ne Algorithm 

Before presenting the algorithm for calculating the best 
cascading scheduk, we first introduce some notations, and 
describe how to modify Dijksua’s algorithm to calculate the 
shortest cascading schedule. 

The sensor network can be modeled as a complete weighted 
graph G(V, E ) ,  where vertices correspond to the sensor nodes. 
There are edges between any pair of nodes, and the weight of 
edge sisi is the distance between s i  and s j .  The remaining 
power of s i  before relocation and after relocation is denoted by 
Pi and P,! separately. We represent the energy a3 the distance 
that the sensor can move with this energy. In this way. if si 
moves to sj in the relocation, P,! = Pi - d,j .  

To calculate the shortest cascading schedule, we cannot 
simply apply Dijkstra’s algorithm due to the constraint of the 
recovery delay. Different from the shortest path problem, not 
all the edges with a finite weight in ,the graph can be selected 
as a segment of the path. Also, we cannot set the weight 

Initialization: E = 0, Emin. = -2,  E’ = 0,  Emin‘ = -1 
while (1 ) 

1. 

2. 
3.  
4 

find the shortest cascading schedule using 
the Modified Dijkstra’s algorithm 
record the minimum remaining power as Emin’ 
delete all edges s ;s j  if Pi - di j  5 Emin’ 
if E’ - Emin’ < E - Emin then 

E = E’, Emin = Emin’ 
else 

return the previously calculated schedule 

Algorithm to calculate the best cascading schedule Fig. 9. 

of an edge to be infinity because its length solely can not 
determine whether or not these two nodes can be successor 
and predecessor of each other. To solve the problem, we add a 
Delete Edge operation to Dijkstra’s algorithm to guarantee the 
delay constraint. DeEereEdge(si, ti) deletes edge s j s i  if s j  cm 
not become the successor of si; i.e., dj i  > (c + ti) * speed. 
The new algorithm, as shown in Fig.&, is referred to as the 
Modified Dijkstra ’s algorithm. 

To calculate the best cascading schedule, we first calculate 
the shortest cascading schedule and record its total energy 
consumption E and its minimum remaining energy Emin. 
Then, we delete all the edges sis j  if Pi. - di j  5 Emin. 
and a new graph is generated. This process continues and 
a new shortest cascading schedule is calculated as long as 
the difference between the total energy consumption and the 
minimum remaining energy is increased compared to the 
previously calculated cascading schedule. When the process 
terminates, the schedule calculated before the last schedule is 
the best schedule, i.e., the schedule with the smallest difference 
between Ihe last two schedules. As shown in Fig.6, schedule 1 
is calculated iirst, and then 2, ..., 5 and 6. The energy difference 
of schedule 6 is larger than schedule 5. Thus, the algorithm 
stops and schedule 5 is chosen as the best cascading schedule. 
Fig.9 shows the formal description of the algorithm. 

D. Disfribuled Prolocol 

In this section, we describe how to implement the algorithm 
presented above in  a distributed way. We first present a dis- 
tributed protocol to calculate the shortest cascading schedule 

2307 



Fig. 10. The distributed protocol 

and then describe how to use it to get the best cascading 
schedule. 

To calculate the shortest cascading schedule, the grid head 
of SO initiates a dynamic programming computation by broad- 
casting a request message. which includes TO, to. [he redun- 
dant sensor sr. EO. and Emino, where EO and t o  are set 
to 0: and Enxino is set to infinity. A node s i  receiving the 
request first determines if it can be the successor of the sender 
s j .  If the answer is yes. it sets E, = c!,.~ + Ej$  Emini = 
mzn(Pi - 4j: Emiraj), and ti = Tj + tj  - dtj/speed. Then, 
it rebroadcasts Ti, ti, sr ,  Ei and Emini, and remembers its 
predecessor s j .  If a node sj receives several such messages, 
i t  will choose the one from s k  which can minimize E j ,  which 
is the energy consumption of the shortest cascading schedule 
from s j  to SO. Then, sj calculates the other fields of the 
message, broadcasts the message and sets its predecessor to be 
sk. Finally, when the request arrives at the redundant sensor 
si., the distributed calculation terminates. 

To make the broadcast-based protocol work, we have to 
address one issue: how can a node determine it has received 
the message which can minimizc the total energy consumption 
before broadcasting it? There are two intuitive solutions. In the 
first method, when a node receives a request, it calculates those 
fieids. If E is lower than that calculated from the previously 
received message, i t  rebroadcasts the updated version, This 
method has relatively high message complexity since each 
nodes may broadcast several times. In another method, each 
node waits for a period of time before broadcasting the 
message. However, if the time threshold is low, there may 
not be enough information to decide the lowest E value; if 
rhe time threshold is high, the delay may be increased. 

We propose to use the geographic information to ensure 
that nodes make correct decisions before broadcasting with a 
high probability. As a result, in most cases, each sensor only 
broadcasts once. Our solution needs two data structures: the 
primary search area and the wailing lis?. The primary search 
area is determined based on the location of the redundant 
sensor and the event, and it should have a high probability to 
encompass a11 the cascading nodes. The primary search area 
in  Fig.10 i s  elliptic. It can also be other shapes like rectangle. 
Recall that the cascading nodes should be close to the line 
connecting the redundant sensor and the event location. There- 
fore, it is not necessary to involve nodes faraway. Each sensor 
node determines a wuaifing list after it receives the relocation 

request for the first time. Only after receiving all the messages 
from the nodes in h e  waiting list, a sensor can broadcast the 
message. The waiting list of si includes all the neighbors of si 
which are within the primary search area and are further away 
from the redundant sensor than s i .  As shown in Fig.10, sa’s 
waiting list includes s 1  and s3. It only broadcast7 the message 
after receiving the message of SI and sg. 

Another issue of this broadcast-based protocol is that the 
potential successor node may be out of the communication 
range of the sender. Due to the limitation of the commu- 
nication range, the successor may not be a communication 
neighbor. For example. in Fig.10, the redundant sensor s,  
should be the successor of s5. but they are not within each 
other’s communication range. sT may not know the existence 
of s; and can not get the shortest schedule. To address this 
problem. s7 piggybacks s5’s message when broadcasting its 
own message if it finds that s, may use it. In general, if 
si receives some message from .Sk. it will check whether 
other node may need it. If so, it piggybacks T k ,  t k ,  Ek, 

and Emin+ in its message. The formal description of the 
distributed calculation of the shortest cascading schedule is 
shown in Fig1 1. 

To calculate the best cascading schedule, we only need to 
execute the distributed calculation of the shortest schedule 
iteratively similar to the atgorithm shown in Fig9 after the 
following modifications: (1) The minimum remaining energy 
calculated in the previous iteration, Emin’ is attached. When 
si receives message from sj, it will check whether P, - 
L $ ~  5 Emin‘. If yes, si and .sj cannot be the successor and 
predecessor of each other. This change is similar to step 3 in 
Fig.9. (2) In addition to the current predecessor. each node 
also needs to record the predecessor i n  the previous iteration. 

E. Optimize tion: Prepositioning 
In some situations, the recovery delay constraint may result 

in a bad relocation schedule in terms of energy efficiency. F ig5  
shows such an example. If the recovery delay is too strict. 
we have EO use choice2. Also, letting each cascading node 
move synchronously may result in temporary coverage holes 
though Ulese holes may be within the application’s tolerance. 
These problems can be addressed if the relocation request 
can be predicted. For example, if the grid head detects that 
a group member has very low remaining energy, it can initiate 
a relocation request to the redundant sensor. In this way, a 
best relocation schedule in terms of energy efficiency can be 
found, and the recovery delay constraint can be relaxed. If time 
permits, the redundant sensor can first move to its predecessor 
node. After it arrives there, its predecessor starts to move. In 
this way, nci temporary coverage hole will be introduced. 

VI. PERFORMANCE EVALUATION 

The evaluation includes three parts: First, the effectiveness 
of the proposed solution is compared with the VOR scheme 
[21]. Second, the effectiveness of the cascaded movement is 
evaluated. Finally, the effectiveness of the metric for choosing 
the cascading schedule is evaluated. 
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qotatinns: 
Iistwi: waiting list of si 
listoi: list of nodes from which si has received messages 
L O G :  focaiion of s1 
AI,: {tj.Tj:lo~j. Ej:Eminj)  
listmi: list of AT 

U cluster head 
Jpon receiving the information of redundant sensor sr 

1 .  add lLIo(to.T~,locx~~O,O) to listmo 
2. broadcast requesf(listmol s r ,  loc,..luco} 

i t  node -5, 

Jpon receiving reqzLest(lzstmj, s r ,  lo&, loco) from s j  
1 .  if receive such message for the first time then 

determine listwi. Ei = CG 

2. 
3. 

add sJ to listoi if it is in /.istwi 
for each A & { t k l  Tk,lock, Ek, Emink} in listnij 

if ( d i k  5 (Ti, + t k )  * speed) then 
add A4k to l2stm.i 
if (Ei 2 Ek +- dit) then 

3.1 dik = d i s t ~ n m ( l o ~ , l o ~ k )  
3.2 

Ei = El; + d i k  
Emini = min{Emink, Pi - d , k ]  

sipedecessor = Sk 

4.1 add lMt{t i ,Ti , loc, ,~~,Emini)  to li,ptmi 
4.2 

ti = T k  + t k  - dik/speed 

3. if (listwi = listoi) then 

broadcast request {listmi, s,, loc, , loco) 

$t redundant sensor sr 
Jpon receiving requestjlistm,, s r ,  l o o ,  loco) from s j  

1 .  

2. 
3 ,  

if receive such message for the first time then 
determine listw,, E = ou 

add s j  to /istor if it is in lzstw', 
for each b!!k(tk,TkllOCk.Ek> Emink} in listmj 

3.1 drk = distance(loc?, lock) 
3.2 if (drk 5 (Tk + t k )  * speed A E 2 Ek + d r k )  

E = E k  + drk 
Emin = min(Emink, Pv - drk} 
s,.predecessor = sk  

4. if (listwr = listor) then 
return the shortest cascadmg schedule 

Fig. 1 I .  Distributed calculation of the shortest schedule 

A. Eflectiveness of our sensor reiocatioa solution 

The sensor relocation solution presented in this paper first 
searches the closest redundant sensor and then relocates it 
to the taget location. Other solutioy can be based on the 
idea of relocating the nearby sensor to  the target location. The 
representative scheme is VOR [21]. VOR runs round by round. 
In each round, it detects the coverage hole and moves nearby 
sensors to heal it. This process continues until the target field 
is well covered. 

We use sensor failure recovery as an example to evaluate the 
proposed solution and the VOR scheme. The simulation envi- 
ronment is set as follows. 48 sensors are randomly deployed 
in a - 6 0 ~ 1  * 60nz target field. VOR is used to deploy them 
into a well-covered sensor network. The sped  of the mobile 
sensor is 2771/s and the recovery delay is 10s. The energy 
consumption per meter is 37.96J, which is calculated based 
on a mobile sensor prototype [16]. Each sensor is randomly 
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Fig. 12 .  Comparison between our solution and VOR 

assigned a remaining energy between 19005 and 20OOJ. We 
randomly choose a sensor, deplete its energy. and generate 
a coverage hole. Then, the proposed sensor .relocation and 
VOR are executed to recover the sensor failure. We measure 
the performance of both approaches by three metrics: the 
number of sensors moved. the total energy consumption, and 
the minimum remaining energy. 

Simulation results are shown in Fig.12. Since the distance 
between the failed sensor and the redundant sensor directly 
affect the energy consumption, we use the distance as the x- 
axis. From the figure, we can see that our solution outperforms 
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VOR in all three metrics. In VOR, nearby sensors move to 
heal the coverage hole. Since their movement results in new 
holes. more and more sensors are involved. The propagation of 
the sensor movement is not directed to the redundant sensor, 
but to all directions. resulting in moving oscillation. From 
Fig.l?(a). we can see that many sensors are involved in the 
relocation although the redundant sensor i s  nearby. As a result, 
the total energy consumption is very high (see Fig.lZ(b)) 
since a lot of movement is wasted. Also, in VOR. when a 
coverage hole is detected, nearby sensors are moved even 
when their remaining energy is low. This results in a much 
lower minimum remaining energy as shown in Fi@.12(c). 

The simulation results verified the advantage of our solution, 
where only a minimum number of nodes are involved and 
many other sensors are not affected. The energy consumption 
is low and the remaining energy is high. In summary, although 
VOR is  effective in deploying mobile sensors. first finding the 
redundant sensor and then relocating it to the target location 
is much better for sensor relocation. 

0 Cascnded Movement 

B. Cascaded Movement lis Direct Moverneat 
In this section, with the same simulation setup, we compare 

the cascaded movement approach with he  direct movement 
approach, which moves the redundant sensor directly to the 
target location. 

Simulation results are shown in Fig.13. As can be seen 
(Fig. 13(a)). the relocation time can be significantly reduced in 
the cascaded movement approach. As for energy consumption. 
direct movement is better, but its advantage over cascaded 
movement is very limited (Fig.l3(b)). This proves that cas- 
caded movement is energy efficient. On the other hand, the 
minimum remaining energy of using cascaded movement is 
much better than that of direct movement. If the redundant 
sensor has relatively high power, moving it directly to the 
target location may not affect the minimum remaining power: 
otherwise, it may significantly reduce the minimum remaining 
power. especially when rhe moving distance is long. This 
explains why the minimum remaining energy drops propor- 
tionally as the distance increases in the direct movement 
approach (see Fig.l3(c)l. 

C. The metric to choose the cascading schedule 

In our solution, the metric used to get the best cascading 
schedule is to minimize h e  difference between the total energy 
consumption and the minimum remaining power. Since there 
are other objective metrics existing, we compare our solution 
to other allernatives. Since we have shown (see Fig.l3(b)) 
thar the total energy consumption of our approach is similar 
to the direct movement approach, which is optimal, we only 
compare our approach with another alternative that maximizes 
the minimum remaining power. 

The simulation setup is the same as before except €or 
the energy level before relocation. Two cases are considered. 
One is that sensors have similar remaining power, which is 
randomly distributed between 199UJ and 2000J. The max- 
imum difference df the remaining power among sensors is 

5 

Oistance between the h a d  sehsor and me dosest redinden1 sensor(m) 

(b) Total energy consumption 

- 3 tQmr-------l 
6 1  I 

0 Cascaded Movemsnt . Direct movement 
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Distance beiween the dead w o r  RI% ~ h e  doses1 retmdent s%nsor(m) 

(c) Minimum remaining energy 

Fig. 13. Comparison between cascaded movement and duect movement 

1OJ and the variance is about 11.8J2. In the other case, 
the remaining power is very different. The sensor remaining 
power is randomly distributed between 19006 and 20005. The 
maximum difference of the remaining power among sensors 
is l0OJ and and the variance is about 8.55J2. 

As shown in Fig.14 and Fig.15, for both settings, our solu- 
tion has much lower total energy consumption compared to the 
approach of maximizing the minimum remaining energy. In 
the extreme case, our solution saves about 2000J. Meanwhile, 
the minimum remaining energy is at most 1 O J  lower than its 
a1 ternative. 
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Fig. 14. Comparisons when the remaining energy is very dlffereni 

Between these two settings, our approach saves more energy 
when the remaining energy is similar. The reason is as follows. 
Sensors with reIatively more energy must be involved to max- 
imize the minimum remaining energy. When the remaining 
energy is similar, it is not likely to find nearby sensors with 
high energy. Then, fasaway sensors are more likely to be 
involved, and more energy will be consumed compared to our 
solution. On the other hand, when the remaining energy is 
similar, the disadvantage of our solution is a little bit larger 
since only nearby sensors are involved in the relocation. These 
sensors may become the sensors with minimum remaining 
energy after relocation and the minimum remaining energy 
among all the sensors is reduced consequently. 

When the remaining energy is very different, bath ap- 
proaches have similar minimum remaining energy since a 
sensor with minimum remaining energy is more likely not 
involved in the relocation and the minimum remaining energy 
of the network does not change after the relocation. 

VII. CONCLUSIONS 

In this paper, we defined the problem of sensor relocation, 
which can be used to deal with sensor failure or response 
to new events. To effectively relocate sensors and minimize 
the effect on the application, we proposed a two-phase sensor 
relocation solution: redundant sensors are first identified and 
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Fig. IS. Comparisons when the remaining energy is similar 

then relocated to the target location. We proposed a Grid- 
Quorum solution to quickly locate the closest redundant sensor 
with low message complexity, and proposed to use cascaded 
movement to relocate the redundant sensor. Since the sensors 
can first exchange communication messages (i.e., logically 
move), and ask all relevant sensors to (physicaIly) move at the 
same time, the cascaded movement solution can significantly 
reduce the relocation time. Further, a distributed protocol has 
been proposed to find the best cascading schedule to minimize 
the difference between the total energy consumption and the 
minimum remaining power. Simulation results verified that the 
proposed solution outperforms others in terms of relocation 
time, total energy consumption, and minimum remaining en- 
ergy. 
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