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1. INTRODUCTION

Sensing coverage is an important functional metric to a wireless sensor network
since it determines how well the sensor network can monitor the environment
and generate corresponding data. In addition, the knowledge of coverage and
redundancy is essential in developing algorithms [Heinzelman et al. 2002] to
schedule the listening/sleeping cycle of sensors for optimizing the trade-off
between coverage, communication connectivity and power consumption.

Currently the assumption of the uniform Poisson process for node distribu-
tion dominates the literature as the foundation of most algorithms designed
to optimize network performance. However, the assumption is not practical
in many situations. The nature and scale of most WSN applications makes it
difficult to arrange the nodes in regular topologies across the deployment re-
gion. Node placements for environment monitoring [Biagioni and Bridges 2002;
Mainwaring et al. 2002] or military applications [Winkler et al. 2007] is typi-
cally done through spraying nodes from an airborne device or other techniques
that result in no control over the locations of deployed nodes. A significant
consequence of this process is the clustering or clumping of nodes, where node
positions form clusters resulting in redundancy of coverage in certain area and
coverage holes or vacancy in the other area, where vacancy is defined as the
region that is not covered by any of the circular coverage disks of sensor nodes
in the deployment region. We call this scenario naturally clustered networks
as opposed to the more prevalent notion of clustering by choice. Clustering is
one of the widely prevalent topologies of nodes in random deployments of dense
networks.

To emphasize the concept of clustered topologies in wireless sensor networks,
a typical example of a clustered WSN is shown in Figure 1, as opposed to the
widely-used measure of a stationary Poisson point process of node distribution
in the deployment region (Figure 2). A quick examination of Figure 1 reveals
the inherent feature of clustered networks: varying coverage in the deployment
region. In fact, as we show in the next section, clustering has been shown to
increase the area of vacancy compared to uniformly distributed nodes, and this
preliminary observation signals the need for analysis of clustering properties
to design protocols and algorithms that optimize WSN network performance.

In addition to the increased vacancy and vacancy distribution, which re-
quires more study, the natural clustering of WSN also has impact on the de-
sign of those clustering algorithms [Heinzelman et al. 2002; Shu et al. 2005] for
routing, data aggregation and energy conservation. An understanding of clus-
tering properties can be efficiently leveraged to take advantage of the energy
conservation properties offered by the clustering approach in dense WSNs.

To sum up, there are fundamental reasons why we investigate the properties
of coverage in naturally clustered networks instead of using the widely used
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Fig. 1. Clustering of nodes in WSNs.

Fig. 2. Random distribution of nodes without clustering in WSNs.

theory of uniformly distributed nodes in a Poisson model of node distribution,
some of which we list here.

— Models for naturally clustered networks show that coverage properties in
clustered networks are significantly altered than those in Poisson models
of uniform and random node distribution. As we show in the rest of this
article, vacancy due to clustering is higher than in the widely used model of
a stationary Poisson point process used to model node distribution.
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— These models can provide a foundation for future work on placement of
nodes in randomly deployed WSNs, thus making it easier to understand and
extend the model of clustering.

— Even though clustering exhibits increased vacancy, this vacancy can be com-
pensated by mobile nodes who can travel to the region of vacancy and cover
the vacant region. Understanding the vacancy distribution can help design
mobile sensor deployment and relocation protocols [Wang et al. 2005].

— With the insights from this work, researchers can create new models of
clustering by customizing the properties that are appropriate to the WSN
application as far as the network is deployed.

The objective of this article is to investigate how to model the randomness
in the placement of nodes by examining the coverage attributes resulting from
randomness in clustering. In particular, the attributes of coverage in naturally
clustered networks are extensions of the Poisson model of node distribution
widely used in modeling the distribution of nodes in WSNs. We show how to
extend Poisson distribution of nodes to support clustering with an analytical
framework using the Poisson cluster point process (PCPP). PCPP has been
used to model natural environment, for example, the distribution of rainfall.
To the best of our knowledge, we are the first one to employ PCPP in modeling
the distribution of sensor clusters and vacancy.

We analyze the properties of naturally clustered WSNs using the theory
of coverage processes [Hall 1988]. This analysis provides the foundation for
a study of varying densities of nodes and cluster heads encountered in real-
world deployment scenarios, where the densities of nodes and cluster heads
are dictated by node failure due to device failure, battery energy exhaustion or
other causes that can occur in remote and hostile deployment regions.

The article has the following contributions: (1) Study of the coverage property
of clustered WSNs and (2) to provide a foundation for the design to optimize
network performance.

The remainder of the article is organized as follows. Section 2 summarizes
relevant literature on coverage and clustering in WSNs and highlights the
differences between existing research and our work. Section 3 reviews back-
ground necessary for studying naturally clustered WSNs and explains prereq-
uisite concepts, particularly the Poisson process, extension to clustering and
coverage metrics of WSN performance. In Section 4, we discuss the applica-
tions of PCPP processes. In Section 5, we present the results of simulation.
Finally, Section 6 concludes the article.

2. RELATED WORK

In this section, we provide an overview of related work in coverage, clustering
in WSNs and coverage processes.

2.1 Coverage

General Coverage Metrics. Coverage in sensor networks has been extensively
studied, in terms of the coverage resulting from various deployment patterns

ACM Transactions on Sensor Networks, Vol. 7, No. 2, Article 13, Publication date: August 2010.



Coverage Properties of Clustered Wireless Sensor Networks • 13:5

created by node placement [Ai and Abouzeid 2006; Ahmed and Wales 2005;
Kumar et al. 2005]. The worst and best-case coverage has been studied in
Megerian et al. [2005]. With the help of techniques from computational geome-
try and graph theory, the authors study the maximal breach paths and maximal
support paths for the coverage problem, where the maximal breach path is the
path with the minimum distance to a sensor and the maximal support path
is the path with the maximum distance to a sensor. In Veltri et al. [2003],
the authors study the minimal and maximal exposure paths corresponding to
the worst and best-case coverage in WSNs. The authors propose a localized
approximation algorithm for a WSN to determine its minimal exposure path.
In Chin et al. [2005], the exposure metric has been further studied for col-
laboration in WSNs of mobile nodes in the presence of noise and obstacles.
Using the definition of exposure as the least probability of target detection, the
authors propose low-computationally intensive algorithms to obtain the upper
and lower bounds on exposure.

Directional Coverage. Directional coverage has been studied in Yu et al.
[2010], Adriaens et al. [2006], and Cai et al. [2007]. In Yu et al. [2010], the
authors study the optimal patterns that provide connectivity in WSNs. The
authors propose scheduling mechanisms to achieve higher connectivity and
full coverage in WSNs with nodes equipped with directional antennas. In Adri-
aens et al. [2006], the authors study optimal worst-case coverage with sensors
equipped with video cameras, and directionality is studied in terms of the field-
of-view of sensors. In Cai et al. [2007], the authors propose the use of directional
antennas for power-conservation and greater coverage in the WSN.

Coverage in Sensor Networks with Mobile Nodes. The coverage provided by
mobile and static nodes has been studied in Liu et al. [2005], Lazos et al. [2007],
Xing et al. [2008], and Tan et al. [2008]. The use of mobile nodes to provide
improved coverage has been studied in Liu et al. [2005] and Wang et al. [2006,
2007]. In Xing et al. [2008], the authors study collaboration of mobile and static
networks to meet stringent spatial and temporal application requirements of
sensor networks deployed for surveillance applications. The authors propose a
multi-sensor fusion and movement model to achieve three performance metrics:
bounded detection delay, high detection probability and low false alarm rate.
Collaboration and mobility in sensors has also been studied in Tan et al. [2008].
In Bisnik et al. [2006], the authors study the characteristics of mobility in a
network of both mobile and static nodes. They study the scenarios under which
the coverage provided by mobile sensors is higher than that provided by static
sensors by analyzing the mobility framework of node velocity, mobility pattern,
number of mobile sensors and dynamics of the phenomenon being sensed. The
authors study this quality of coverage problem and propose motion planning
algorithms to bound the probability of event loss in the network.

Application-Specific Coverage. In [Luo et al. 2009], the authors study self-
adjusting networks that provide surface coverage for sea-surface sensing appli-
cation. The authors study two types of node mobility: Uncontrollable mobility
(U-mobility) and Controllable mobility (C-mobility). U-mobility occurs when ex-
ternal forces, in this case, waves disrupt the coverage pattern in the networks
which can be re-installed using the mobility of nodes provided by C-mobility.
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The authors study this double mobility in terms of the coverage provided by
the mobility of nodes, and propose a distributed algorithm using dominating
sets that guarantees coverage on the sea surface.

The study of coverage in WSNs for surveillance applications has also been
studied in Xing et al. [2008] and Amaldi et al. [2008]. In Amaldi et al. [2008],
the authors study the problem of positioning sensors for optimal detection of
mobile targets. The authors propose an optimization framework, wherein the
distance of a node to the target is minimized for maximal exposure. The qual-
ity of coverage has also been studied in terms of the quality of surveillance in
Gui and Mohapatra [2004], where the network topology has been exploited to
achieve power-saving algorithms for nodes to track mobile targets. In Lazos
et al. [2007], the authors study wireless sensor deployment for detection of
mobile targets. They study the problem of detecting target presence in a Field
of Interest (FoI). Specifically, the authors address the issue of maximum target
detection probability in a FoI by N sensors. The authors study this problem
in the context of deployment of a deterministic WSN with homogeneous and
heterogeneous WSNs, where heterogeneity is explored in the form of varying
sensing coverage areas of individual nodes. The authors study the target de-
tection problem with the help of a line-set intersection problem and provide
bounds on the detection probability. The authors show that sensor mobility can
provide increased coverage and detection probability of targets.

2.2 Clustering

We provide an overview of clustering-related coverage studies in WSNs and
clustering phenomena studied in other areas.

Clustering by Choice in WSNs. This section surveys related work on cluster-
ing to achieve energy efficiency, better organization and to suit the application
needs in WSNs. First we review clustering by choice to achieve energy efficiency
in WSNs. One of the earliest literature on clustering in WSNs is LEACH (Low
Energy Adaptive Clustering Hierarchy) [Heinzelman et al. 2002], where cluster
formation is designed to achieve prolonged network lifetime by local data pro-
cessing, rotation of the cluster head (CH) position among nodes and low energy
MAC access. The probability of becoming a CH is a function of the node energy
level relative to the total residual energy level in the network. Since the CH is
responsible for data aggregation and data transmission to the sink (communi-
cation and computation tasks) that are more energy-intensive than the tasks
of sensing and communication to a CH that occur at a regular node, rotation
of the CH position relative to node energy levels achieves distribution of the
computation and communication as well as cluster maintenance tasks of the
CH. Power balancing in clustered WSNs has been studied in Shu et al. [2005]
in terms of maximizing the coverage time of CHs. In Younis and Fahmy [2003],
the authors propose HEED (Hybrid Energy Efficient Distributed clustering), a
distributed clustering protocol that uses residual node energy, cluster size and
available power levels at a node for communication with the CH as parameters
for CH selection and cluster formation. Clustering has also been employed to
achieve better organization in WSNs. In Cha et al. [2007], the authors propose

ACM Transactions on Sensor Networks, Vol. 7, No. 2, Article 13, Publication date: August 2010.



Coverage Properties of Clustered Wireless Sensor Networks • 13:7

a clustering algorithm, SNOWCLUSTER that creates a 3-tiered hierarchy
of nodes, clusters and regions. Clustering has also been studied based on
application needs, for example, grouping nodes into clusters based on higher
correlation in sensed data resulting form geographical proximity. In Vlajic
and Xia [2006], the authors provide analytic results to validate the need for
clustering in WSNs. They show that when the monitored phenomenon can be
grouped as isoclusters (areas within the sensing field that have similar values
of the monitored phenomenon), clustering nodes to lie within such isoclusters
helps in achieving network objectives such as prolonged network lifetime.

Clustering in Other Areas: Clustering has been studied in other areas. The
use of models to study environmental phenomena has been suggested in Cox
and Isham [1980], Kingman [1993] and has been studied for modeling air tem-
perature and rainfall in Onof et al. [2004], Kilsby et al. [2007], and Bilgin and
Camurcu [2005]. A detailed study of applications of PCPP models to ecologi-
cal modeling can be found in Cox and Isham [1980]. Various ecological models
display clustering in the spatial and temporal domains. Many spatial cluster
processes have been described and modeled in Neyman and Scott [1972]. Also,
realistic deployment models result in clustering of nodes. One of the particular
strengths of this article is that it can be used to pre-determine the degree of
coverage required to study an ecological model that has been shown to dis-
play clustering [Onof et al. 2004; Kilsby et al. 2007; Bilgin and Camurcu 2005;
Neyman and Scott 1972]. Since the spatial distribution of the phenomenon
demonstrates clustering, deploying random topologies in a clustered pattern
can help in effectively isolating and capturing the phenomenon.

2.3 Coverage Processes

The focus of coverage studies in WSNs deployed for environmental modeling
has been on random topologies, and the model of choice for the topology is that
of Poisson distributed nodes. The coverage properties of random topologies in a
WSN have been studied with the help of coverage processes previously in Saito
et al. [2008]. In Saito et al. [2008], the authors study the coverage in a Poisson
process of node topology, where the WSN is deployed for target detection. They
consider the scenario of Boolean model of coverage, where a target point is
considered to be sensed if it lies within the coverage area of a sensor node
and considered to be un-sensed otherwise. They extend this analysis to the
interesting case of an expanding target, for example detecting oil spills or
infected animals in a herd. Variations of the Poisson process in the study of
coverage in WSNs have also been considered in Manohar et al. [2006]. The
coverage problem has also been studied in terms of a set intersection problem
using results from integral geometry in Lazos and Poovendran [2006].

Variations of the PCPP process, for example, Cox processes can be used to
study networks of mobile sensor nodes. In this article, we use the results from
coverage processes, specifically, Poisson cluster point processes (PCPP) to study
random topologies of WSNs. For fixed networks of sensor nodes as we consider
in this article, the PCPP process can accurately model the coverage properties
of the WSN. Most real world deployments of random WSNs display clustering
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due to the deployment phenomenon and hence a PCPP is more appropriate to
study the coverage properties in such topologies. Though the assumption of a
Boolean model (Poisson process) offers ease of calculation, it is not reflective of
the coverage and connectivity properties of a real-time random topology. The
key assumptions in our article are the following:

— We study naturally clustered networks, where clustering is not facilitated
by choice. We use the PCPP model to study coverage in naturally clustered
networks. Rather, it is a consequence of the deployment process in large-
scale, dense networks created by scattering/spraying of nodes.

— To investigate clustering, we leverage the concept of a Poisson cluster point
process (PCPP) [Hall 1988] as opposed to the widely used Boolean model
(Poisson process).

3. COVERAGE PROPERTIES OF CLUSTERED WSNS

3.1 Problem Statement and Motivation

The properties of coverage and vacancy in a 2-dimensional region R due to
clustering processes vary significantly from that of the widely used Boolean
model of node placement. As we show in the rest of this article, clustering
results in increasing the expected vacancy per unit area of the region R. We
study the properties of a Poisson Cluster Point Process (PCPP) [Hall 1988],
which possesses a degree of clustering not present in a Boolean model. Salient
attributes of using PCPP models to study coverage in random topologies are
evident, and help us to see the need for using cluster point processes. Our
research is the first known work that analyzes the interaction between points
of the coverage process resulting from a clustered topology. In this section, we
present the problem statement for coverage in clustered topologies and study
it with PCPP processes.

We study the problem where for a given placement pattern for wireless sen-
sor nodes in a deployment region, we have to find the probability that every
point in the deployment region is covered by m nodes with probability p, where
0 < p < 1. We assume that the deployment process results in k-redundancy of
nodes, and we find the probability that a given point (x, y) in the region is cov-
ered by m-redundancy, where m < k. The decrease in the degree of redundancy
can be attributed to power management that turns off redundant sensors or to
sensors that have run out of battery energy or suffered device failure. We as-
sume nodes are randomly turned off to obtain m-redundancy of active coverage
in the k-redundancy of nodes deployed at any given point. However, this work
can be easily extended to incorporate power control algorithms for switching
nodes in power-saving states.

3.2 Definition of a PCPP Process

Before we describe the PCPP model, we provide a brief introduction to the
notation of the commonly used Poisson process.
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A process P is said to be a stationary or homogenous Poisson point process
P with intensity λ if:

(1) the number of points ξi in any Borel subset [Hall 1988] S of R is Poisson
distributed with mean λ ‖S‖ and

(2) the numbers of points in any number of disjoint Borel subsets are indepen-
dent random variables.

A process is called stationary if and only if the function λ(x) is constant
almost everywhere. For the rest of this article, we denote λ(x) as λ. A Boolean
model in k-dimension Euclidean space is just the coverage pattern created by a
Poisson-distributed sequence of random sets. Specifically, let P ≡ {ξi, i ≥ 1} be
a stationary Poisson process of intensity λ in R, the points ξi being indexed in
any systematic order. Let S1, S2, . . . be independent and identically distributed
random sets, independent of P. Then

C ≡ {ξi + Si, i ≥ 1} (1)

is a Boolean model, where the Poisson process P drives the Boolean model and
the shapes Si are said to generate the model.

Definition of a PCPP Process. We now introduce the PCPP model for clustered
topologies. In a PCPP P, the points of P are the children of parent points [Hall
1988]. The parent points form a stationary Poisson process P ′ in R with in-
tensity λ0 given by {ηi, i ≥ 1}. Each parent point produces progeny represented
by points in space in an independent and identically distributed manner. The
number Ni of progeny born to a parent point ηi which is independent of i. Let
pn = Pr (N = n).

The jth child of ηi is the point ηi + ηi j , 1 ≤ j ≤ Ni. Conditional on all Ni

and η j and on the locations of all progeny of all parents other than the ith,
the vectors ηi j are independent and identically distributed with density h(x)
defined on R. The points

{
ηi + ηi j, i ≥ 1, 1 ≤ j ≤ Ni

}
comprise a PCPP R

≡ {
ξi, i ≥ 1

}
. Since the points ηi comprise a stationary Poisson point process

P ′ with intensity λ0, the number M of points ηi which have at least one child
lying inside −S must be Poisson distributed with mean λ0, where −S is the
complement of the region S in R. We assume the particular case where the
progeny N has a Poisson distribution with mean μ. The total density of random
sets in C per unit content of R2 equals μλo, which we henceforth call the clump
factor. This is also the average intensity of the driving point process P. A point
(x, y) in the deployment region is said to be covered if the point lies within the
circular sensing region of a node. We assume that the sensing disk is a closed
set. The total density of random coverage disks in the coverage process per
unit area of the deployment region equals the clump factor times the intensity
of distribution of the original Poisson process for parent points. Therefore, the
expected vacancy of the Boolean model has the same type of set and the same
density of sets in the Poisson cluster point process as the Poisson point process.
Hence, we extend this definition to obtain the vacancy in PCPP process.

In dense networks, for any point that is sensed by k (k>1) nodes, it results
in k-redundancy. However, power management or node failure can result in
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decreased quality of sensing such that any m, (m<k) sensors are sensing that
point resulting in actual m-redundancy of coverage in the region. A Boolean
model of coverage in 2-dimensional Euclidean space R is just the coverage
pattern created by a Poisson-distributed sequence of random sets. Similarly,
k-connectivity exists when for any given two nodes, a and b, multiple k paths
exist between them. Dense networks through their topology create conditions
for both k or m-redundancy and connectivity. A systematic evaluation of the
maximum likelihood estimation for a PCPP and demonstration of the conver-
gence of the procedure with a sample small data set has been presented in
Castelloe and Zimmerman [2002]. We refer the interested reader to Castelloe
and Zimmerman [2002] for an analysis of empirical quantification of similarity
in actual node distribution to the one predicted by the PCPP. In the rest of
this article, we will obtain analytical solutions for the probability of coverage
in both k- or m-redundancy and expected number of connected sensors in the
WSN of PCPP process.

3.3 Vacancy Estimation in a Clustered Network

We obtain the analytical solution of the coverage in a clustered topology of
nodes in a 2-D deployment region. Suppose λ is the intensity of the Poisson
point process for nodes. Then, the expected vacancy within a region R denoted
by E(V ) [Hall 1988] is

E (V ) = ‖R‖ exp (−λ ‖S‖) , (2)

where λ is the intensity of the Poisson point process for nodes, ‖R‖ is the
area of the deployment region and ‖S‖ is the Lebesgue measure of the node
coverage disk S. This vacancy denotes that part of deployment region that is
not covered by any node. Let v (So) be the mean number of coverage disks of
nodes intersecting any fixed coverage disk So in the deployment region R. Let
μ(So, S) be the mean area of the region into which centers of coverage disks
intersecting So must fall. Consider the set A of all points x, x ∈ R such that
x+ S intersects So. The expected value of the quantity μ(So; S) is the expected
number of random sets intersecting So and is used to estimate the vacancy. If
the coverage disks distributed as S are centered at points of a stationary point
process with intensity λ, then expected number of random sets intersecting So

equals

v (So) = λE
{∫

R
f (x, S) dx

}
, (3)

where f (x, S) is a coverage function denoted as

f (x, S) =
{

1 if (x + S) ∩ S0 
= φ

0 otherwise

Hence,

v (So) = λE {μ (So, S)} .

Let α = E‖S‖2 be the area of the coverage disk and β = E (‖∂S‖1) denote the
perimeter of the coverage disk. Then, the probability that no disks intersect
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Fig. 3. Pattern of clumps of coverage areas of sensor nodes and coverage voids due to absence of
sensors.

the coverage disk So is

e−v(So) = e−αλ exp[−λ{‖So‖2 + (2π )−1‖∂So‖1β}]. (4)

In this article, we study clustering of nodes in random deployments with the
help of the PCPP process. Modifying this analysis to account for the PCPP
process, we substitute the intensity λ for the intensity of the PCPP process
μλ0, which we call the clump factor, the probability that no disks intersect the
coverage disk So is

λ{‖So‖2 + E‖S‖2 + (2π )−1‖∂So‖1 E(‖∂S‖1)}. (5)

Hence, in a PCPP with average intensity μλ0, the expected vacancy is given by
[Hall 1988]

E (V ) = ‖R‖ e−μλ0 E[exp{−λoμ‖S‖2 + (2π )−1β‖∂S‖1}], (6)

where S is a disk of sensing radius r. E(‖S‖2) is area of S and is equal to π E(r2).
We use α to denote E(‖S‖2). E(‖∂S‖1) is perimeter of S and is equal to 2π E(r).
We use β to denote π E(r2).

3.4 Impact of Clustering on Coverage Properties

In this section, we obtain the properties of clumping of the nodes scattered as a
PCPP. This information can be used to obtain the redundancy in deployment,
and then use the redundancy to selectively turn sensors in the sleep mode
for power management. A PCPP model is a pattern of voids and clumps. We
denote clumps as the coverage area of a pattern of redundant nodes sensing
a given point in the region, the shape of which is shown in Figure 3. We
define the m-redundancy for a given point as the order of the clump, where the
order of the clump is the expected area of a clump divided by the number of
coverage disks that overlap to form the clump. In a perfect Poisson process of
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nodes, nodes are deployed throughout the sensing region to achieve uniformity
of coverage properties. Though this assumption offers ease of calculation, it
does not accurately model the increased vacancy resulting from clustering.
Since a random deployment can easily result in cluster formation of clumps
(redundancy) and voids (sensing holes) in the region, the PCPP process readily
yields the m-redundancy resulting from clustering. The voids denote coverage
voids due to sensors that are no longer sensing due to possible battery energy
exhaustion, sensor nodes in power-saving sleep states or sensors that have
stopped working due to device failure. Since k-redundancy denotes the number
of sensors present at any point in the deployment region, it also contains the
voids due to absence of sensor nodes at that point. However, the m-redundancy
studies the coverage properties in the presence of newly generated voids due
to battery failure or power management.

Since the coverage disks might overlap due to the clustering process, one way
to calculate the m-redundancy is by using the Euler characteristic of a clump
and using it to find the visible curvature of the clump. The Euler characteristic
of a figure is a simple topological invariant that describes the properties of a
shape [Kinsey 1997]. It is a number that describes the topological properties
by considering the number of clumps and voids in the figure.

Once again, we start with the derivation for a Poisson model for the nodes and
then extend it to a PCPP model to reflect the clumping. The Euler characteristic
of a figure equals the number of disjoint components minus the number of
voids. In a deployment region, the Euler characteristic is thus the number
of isolated (disjoint) coverage disks (those that do not intersect with other
disks due to overlapping coverage areas) minus the number of areas that are
vacant and bounded by the perimeters of the coverage disks of surrounding
nodes. The Euler characteristic is helpful in determining if the active coverage
can be increased by deploying mobile sensors, or by turning nodes in the on
state.

Assuming that the coverage areas are isotropic, we now obtain the expected
curvature per unit area resulting from the Euler characteristic of the Boolean
model. Since the intensity of coverage disks is Poisson with intensity λ, the
expected visible curvature of the coverage disks per unit area is

2πλχe−αλ, (7)

where χ = x (S) denotes the expected value of Euler characteristic of the set
S. This value of expected curvature does not consider uncovered crossings. For
our model of coverage disks of sensor nodes, uncovered crossings denote the
intersection of perimeter of two coverage disks, that is not covered by another
coverage disk. If we know that the coverage disks have smooth boundaries,
then any discontinuities in the Boolean model can be identified as an uncov-
ered region (sensing void) which can be removed from the calculation of total
curvature. The expected total curvature of clumps in the deployment region is
given by

χλ, (8)
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The expected total curvature from uncovered crossings of random coverage
disks centered in the deployment region R is given by,

−1
2

(βλ)2 e−αλ. (9)

Thus the expected number of clumps minus voids in the deployment re-
gion of Boolean model of nodes following the Poisson distribution is given by
subtracting (9) from (8),

2π (χλ − (4π )−1 (βλ)2) e−αλ. (10)

So the expected number of clumps minus voids (m-redundancy) in the deploy-
ment region with PCPP distributed nodes is a straightforward extension of
the above equation by substituting the clump factor μλ0 for λ. The expected
m-redundancy per unit area in the coverage in a deployment region with PCPP
distribution of nodes is given by

[χμλ0 − (4π )−1 (βχλ0)2]e−αχλ0 . (11)

For a 2-D region R populated with PCPP nodes, expected area of coverage
α, perimeter of node coverage β, and binary function for coverage χ denoting
the presence/absence of a node that covers a point (x, y), and λ is the intensity
of the Poisson process of Boolean model denoted by C (δ, λ), where δS is the
distribution of coverage areas and η, δ and λ are related as η = δ2λ.

Finally, we obtain the expected number of clumps of coverage disks of sensors
per unit area (denoting the k-redundancy in the region). The expected number
of coverage disks in a Boolean model C that intersect a fixed coverage disk S is
given by Eq. (3). The probability that no sets from C intersect S is given by

exp
{
−1

2
v (S)

}
.

Hence, the mean number of coverage disks per unit area with no sets inter-
secting them is given by the expected number of clumps per unit area is given
by

v1 = λe−0.5αη E[exp{−0.5η(‖S‖2 + (2π )−1β‖∂S‖1)}]. (12)

Once again, we extend this analysis to that of the PCPP model for clustered
nodes and present the formula for the k-redundancy in a region with the clump
factor given by

v1 = μλ0e−0.5αη E[exp{−0.5η(‖S‖2 + (2π )−1β‖∂S‖1)}]. (13)

Next, we obtain the number of neighbors of a node to obtain the connectivity
properties of PCPP process of nodes. The expected number of neighbors of
a node is a useful measure of the connectivity of the network. The expected
number of neighbors of a node N is given by the mean number of coverage
area disks of other nodes intersecting a given node’s coverage area (Eq. (3)).
Modifying it for the PCPP process, the number of neighbors is given by

N = μλ0{‖S‖2 + α + (2π )−1
β ‖∂S‖1}. (14)
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With N neighbors, the probability that a sensor has at least k neighbors, where
1 ≤ k ≤ N is given by 1-Pr (no neighbors) = 1− Pr(N = 0). Here, N = 0 implies

N = μλo{‖S‖2 + α + (2π )−1
β ‖∂S‖1} = 0. (15)

This implies that a) λ0 = 0 representing only one sensor in the entire region
or b){‖S‖2 + α + (2π )−1

β ‖∂S‖1} denoting that the coverage area of a node is a
point. This verifies the connectivity properties of the clustered WSN.

4. APPLICATIONS

In this section, we describe applications of the measures of coverage and con-
nectivity obtained in this article for clustered topologies.

4.1 Density Control

Random deployment of dense networks through node scattering or spraying
has the advantage of eliminating the overhead of planning for deterministic
placement of nodes. However, the clustering resulting from such topologies cre-
ates redundancy and sensing holes in the deployment region. The knowledge
of redundancy in node deployment and node coverage helps in implementing
network density control. Network density control satisfies sensing objectives
such as extending network lifetime and increasing the reliability of operation by
selectively increasing the density of awake sensors. With the help of the analyt-
ical framework described in this article, the k-redundancy and m-redundancy
can be used to determine parameters such as level of active coverage for vari-
ous monitoring applications. Knowing the redundancy can also help us deploy
additional sensors in regions that need increased coverage for target tracking
applications.

4.2 Routing

Energy efficiency in WSNs can be implemented in various ways such as rout-
ing, transceiver efficiency, power saving states for the node and efficient data
processing. The expected number of neighbors of a node can be used to compute
optimal routing tables at individual nodes for objectives such as lower latency
of data transfer from nodes to the central sink, or finding the most energy
efficient path from the set of known neighbors.

4.3 Extensions to Tiered Architectures for WSNs

Although this article studied coverage and connectivity in a WSN of homoge-
nous nodes, the results can readily be extended to multi-tiered models in WSNs.
For example, in heterogeneous networks of sensor nodes and stronger process-
ing nodes, the coverage results can be used to optimize the ratio of number of
nodes to the number of processing nodes for optimum cluster size. The knowl-
edge of coverage in clustered topologies can also be used to set up optimization
problems of maximizing coverage versus network lifetime in both homogeneous
and heterogeneous [Machado et al. 2010] networks.
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Fig. 4. Expected vacancy in Poisson and PCPP distributions of 300 nodes.

4.4 Edge Effects in Channel Access and Routing

Dense randomly deployed networks exhibit edge effects in channel access, due
to known problem of lesser interference [Durvey et al. 2008] from fewer neigh-
bors in the edge of the deployment region. Similar edge effects occur at the
edges of cluster coverage in WSNs that employ clustering to achieve lower re-
dundancy in data processing and extension in network lifetime. Specifically,
edge effects occur in routing from border nodes to cluster-heads, where the goal
is to reduce the packets from edge nodes from transmitting redundant data to
the cluster-heads for processing.

5. PERFORMANCE EVALUATION

The objective of this section is to study the variation of the following coverage
properties: vacancy, m-redundancy and the expected number of neighbors of
a node as a function of the intensity of the driving PCPP and Poisson point
processes. The vacancy estimation is compared in both Poisson and PCPP pro-
cesses, and the m-redundancy is estimated as the expected number of clumps
minus voids in the deployment region. Both m-redundancy and expected num-
ber of neighbors of a node increase with intensity of the driving process, while
vacancy decreases. These results are shown in Figures 4–8.

In all our simulations, we use the following parameters. The number of nodes
in the deployment region varies according to the intensity of the PCPP process
from 2 to 20 in steps of two. The sensing radius is varied from 0.01 to 0.7 to
study the impact on redundancy.

To evaluate the expected vacancy in a deployment region, we simulate a
WSN of 300 nodes as a function and plot the variation vacancy as a function of
the intensity of the deployment process. We use the sensing range of a circular
coverage disk with radius equal to 6m. The deployment region is assumed to
be circular with radius of 1000m.
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Fig. 5. Vacancy comparison in PCPP and Poisson models with intensity equal to 0.2. This figure
shows that clustering can be accurately modeled using a PCPP instead of a Poisson process.

Figure 4 shows the expected vacancy in a region, assuming the Poisson
process and the PCPP distribution of node placement and shows the decrease
in vacancy with increase in the intensity of nodes in the region. We see that the
PCPP process exhibits higher vacancy in the region than a Poisson process of
node placement. The vacancy decreases with increase in the intensity of nodes.
This vacancy can be further decreased by increasing the degree of clustering.
From Figure 4, we can also see that the PCPP model captures different coverage
property compared to that captured by the Poisson distribution, especially
when the node density is low.
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Fig. 6. Expected m-redundancy in node coverage.
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Fig. 7. Expected m-redundancy as a function of the clump factor.

We show a representative case in Figures 5(a) and 5(b). Figure 5 shows the
positions and coverage of a sensor network, whose process intensity is 0.2.
The vacancy in a PCPP modeled topology as seen from Figure 5(a) is approx-
imately 17%, while Poisson model can only report 1% vacancy. The clustered
topology is evident in the grouping of nodes. Figure 5 shows the vacancy in
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Fig. 8. Expected number of neighbors of a node.

Poisson and PCPP topology of nodes. As seen from Figure 3, the vacancy in a
Poisson topology is about 2% of the deployment region and is depicted in the
Figure 5(b). This shows that coverage in random deployments of nodes are
accurately modeled by PCPP rather than the Poisson model.

Figure 6 shows the number of clumps minus voids (m-redundancy) in a
region with PCPP nodes, where m<k denotes the redundancy that can be
increased to a level k. As the intensity of nodes increases, the m-redundancy
increases in the region.

Figure 7 shows the variation of the m-redundancy with the clump factor. As
the clump factor increases, m-redundancy has an almost linearly increasing
relationship with the clump factor.

Figure 8 shows the number of neighbors of a node in a WSN with PCPP
process of node distribution. As expected, the number of neighbors increases
with the intensity of the PCPP nodes. These results draw attention to the
need for realistic simulation of the placement process of nodes in WSNs by
considering the natural tendency of clustering in a random deployment process
in the deployment region.

6. CONCLUSION

We have given an introduction to coverage properties in clustered networks of
wireless sensor nodes. We looked at coverage in terms of the expected vacancy,
m-coverage and k-coverage, (k < m) where coverage in m-redundancy indicates
the coverage that can be decreased to that achieved by k-redundancy by power
management. Having built up the theory for clustered nodes in a deployment
region, we analyze the properties of coverage in a realistic scenario with varying
intensity of clustering in the deployment region. These results started with
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an initial guess to the properties of coverage in clustered networks, where
clustered networks have larger vacancy in the deployment region that has been
verified by simulation results. Although this article studies clustered networks
of wireless sensor nodes, it can easily be extended to include a structured
analytical model for ad hoc networks of mobile nodes. In general, this analysis
replaces the often-used notion of coverage in a Poisson deployment of nodes.
Our future work incorporates exploiting the coverage properties of clustered
networks for adaptive density through power management schemes for WSNs.
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