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Abstract—As wireless power charging technology emerges,
some basic principles in sensor network design are changed
accordingly. Existing sensor node deployment and data routing
strategies cannot exploit wireless charging technology to mini-
mize overall energy consumption. Hence, in this paper, we (a)
investigate the impact of wireless charging technology on sensor
network deployment and routing arrangement, (b) formalize the
deployment and routing problem, (c) prove it as NP-complete,
(d) develop heuristic algorithms to solve the problem, and (e)
evaluate the performance of the solutions through extensive
simulations. To the best of our knowledge, this is the first effort
on adapting sensor network design to leverage wireless charging
technology.

I. INTRODUCTION

Constrained energy supply limits the lifetime of a sensor
network, which has persisted as a big challenge in sensor net-
work design especially when the network is deployed for long-
term monitoring. Existing energy conservation schemes [1]–
[5] can slow down energy consumption rate, but cannot
compensate energy depletion. Therefore, the effectiveness of
these schemes is inherently restrained by the amount of energy
preloaded to sensor nodes. New technologies are demanded to
fundamentally solve the energy constraint problem.

Researchers have proposed to harvest various types of
environmental energy such as sunlight and acoustic vibra-
tions [6]–[9]. However, the energy that a solar cell can
harvest is proportional to its surface area, and it is infeasible
to equip a tiny sensor node with a large solar cell; the
low harvesting efficiency of small solar cells, together with
uncontrollable environmental conditions (e.g., sensor nodes
deployed in shadow areas, cloudy skies), make it possible
that the harvested energy is limited and cannot satisfy the
needs. Incrementally deploying new sensor nodes [10], [11]
seems to be a convenient solution. However, the approach
is not environmental friendly or practical in many scenarios.
For example, in the applications of natural environmental
monitoring [12], continuously deploying sensor nodes without
reclaiming the deserted ones may pollute the environment;
in the applications of structure health monitoring and factory
monitoring [13], [14], sensor nodes are often embedded in
or tightly attached to walls, surfaces of bridge, containers of
hazard materials, etc. In these situations, human intervention
or robotic reclaiming/remounting of sensors [15] may be too
dangerous, costly or technically infeasible.

A. Feasibility of Wireless Rechargeable Sensor Networks

The emergency of wireless power charging technology [16]
has shed a light on the power constraint problem in sensor
networks. With this new technology, power can be transferred
from the transmitting antenna of a power charger to the
receiving antenna of sensor nodes via radio. The power is
then transformed to DC voltage which can either be utilized
by the sensors directly or stored in the rechargeable batteries.

We have conducted field experiments with equipments from
Powercast [16], where a charger continuously sends out RF
radio in frequency 903-927 MHz to rechargeable sensor nodes.
The preliminary experiments, as detailed in Section II, demon-
strate the feasibility of applying the wireless charging technol-
ogy in sensor networks. The charger and sensor nodes could
be several feet apart without alignment. It can be anticipated
that robots, vehicles or even human operators carrying wireless
chargers can move around and recharge sensor nodes deployed
on the ground, and that climbing robots [17] can recharge
sensor nodes deployed to the walls or tops of high buildings.

B. New Challenges in Rechargeable Sensor Network Design

As sensor networks become rechargeable, some basic prin-
ciples in network design change fundamentally. In designing
non-rechargeable sensor networks especially those needing to
operate for a long time, a common challenge is to balance
energy consumption among all sensors to prolong the life time
with constrained amount of preloaded energy. In rechargeable
sensor networks, however, the challenges faced by the design
change. Among the new challenges, how to minimize the cost
for power recharging is obviously an important one.

The cost of long-term power recharging is fundamentally
determined by two factors, namely, long-term energy con-
sumption rate in the sensor network, and long-term recharging
efficiency to the network (i.e., power recharged to the network
vs. power consumed by the recharger). To minimize the power
recharging cost, the energy consumption rate of the network
should be reduced and the recharging efficiency should be
improved. As discussed below, these two goals are difficult to
accomplish simultaneously.

To improve recharging efficiency, we propose a new de-
ployment strategy motivated by our field experiment result.
As detailed in Section II, our experiments show that when
there is single sensor receiver 20cm away from a charger,
the typical charging efficiency is less than 1% and more than
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99% energy is wasted in the air. However, as the number
of sensors being charged simultaneously increases, the total
obtained energy by all the sensors increases approximately
linearly. The experimental results motivate us to propose a new
deployment strategy, which deploys multiple nodes together in
each post and let them work in a rotation manner. Considering
the low cost of sensor nodes and generally employed redundant
deployment methodology, deploying multiple nodes in one
post can increase the recharging efficiency and fault tolerance
while decrease long-time recharging maintenance cost (i.e.,
recharging cost). Thus it is a choice of high performance/cost
ratio. How many nodes should be deployed in each post is
affected by the energy consumption rate in the post. The higher
the rate, the more nodes should be deployed, such that the
recharger does not need to come frequently to the post to
recharge nodes and meanwhile the recharging efficiency is
high. On the other hand, if a post has multiple nodes and thus
has a high recharging efficiency, more workload should be
allocated to these nodes, such that nodes with low recharging
efficiency (in other posts) can be allocated with low workload
to reduce their energy consumption rate.

To increase energy efficiency, i.e., reduce the energy con-
sumption rate of the network, an optimal communication
topology and routing arrangement should be found such that
the overall data reporting activities can follow the most energy
efficient routes from sensors to the sink. This is especially
important considering communication is usually the biggest
source of energy consumption. By adjusting energy level,
nodes can have different communication range, and thus there
exists a large number of possible topologies and routes to
choose from. The optimal one depends on the locations of
posts and the workload at each post.

The energy efficiency-targeted routing arrangement and
the recharging efficiency-targeted node deployment cannot
be determined independently and simply merged together to
achieve the minimum power recharging cost. Instead, they are
entangled together. On one hand, the routing strategy affects
the power consumption rate at every post; specifically, a post
passed through by more packets has higher power consumption
rate than that passed through by less packets. This in turn
affects node deployment decision because more nodes should
be deployed in posts where power consumption rates are high.
On the other hand, node deployment also affects the routing
decision. If a post has more nodes deployed and hence a higher
charging efficiency, it should be assigned more forwarding
tasks. Due to the above reasons, the optimal decisions on
routing and node deployment should be made at the same time
to minimize the total recharging cost of the system, which is
the problem studied in this paper.

C. Our Contributions

This paper makes the following contributions: Firstly, we
conduct field experiments to demonstrate the feasibility of
applying wireless charging technology in sensor networks
and show the approximately linear relationship between the
efficiency of recharging power to a network and the number

of nodes being recharged simultaneously, which can be used
as a guideline in designing rechargeable sensor networks.
Secondly, the problem of determining network deployment
and routing arrangement simultaneously to minimize power
recharging cost for a rechargeable sensor network has been
defined, and the problem is proved to be NP-complete.
Thirdly, heuristic algorithms have been proposed to address
the problem efficiently and effectively. We have also conducted
simulations to evaluate and compare the performance of the
heuristic algorithms, as well as compare it with that of the
exact solution in small-scale networks. To the best of our
knowledge, this is the first effort on studying how to re-design
sensor networks to fully leverage the emerging wireless power
charging technology.

D. Organization

In the rest of the paper, Section II presents our field
experiments and results. Section III presents the system model.
Section IV proves the optimization problem is NP-complete.
Section V presents the heuristic algorithms. Section VI reports
the simulation results, and Section VII concludes the paper.

II. PRELIMINARY: FIELD EXPERIMENTS AND

OBSERVATIONS

We have conducted field experiments to study the feasibility
of recharging sensor nodes in a wireless fashion with equip-
ments provided by Powercast [16], and collected associated
data. The results show that the efficiency to recharge a single
node is low and most of the energy is wasted when propagated
in the air. Particularly, when a sensor is 20cm away from the
charger, on average the node can obtain less than 1% of the
energy consumed by the charger. As the distance increases,
the efficiency decreases exponentially.

Parameter Value

Number of sensors 1, 2, 4, 6
Charger-to-sensor distance 20cm, 40cm, 60cm, 80cm, 100cm
Sensor-to-sensor distance 5cm, 10cm

To study how recharging efficiency can be improved, we
conduct experiments on recharging multiple sensor nodes
simultaneously. We vary three parameters, the number of
nodes being recharged simultaneously, the distance between
nodes, and the distance between the nodes and the charger.
Table II summarizes the values used in the experiment. For
each value of the three parameters, we conduct 40 experiments
and plot the average of the received power rate in Fig. 1.

Both figures show that, when the number of sensor nodes
charged simultaneously increases from 2 to 6, the average
power received at each node remains approximately the same,
i.e., the efficiency for charging power to the network (note:
not the charging efficiency for a single node) has a linear
relationship with the number of sensors being charged. When
the number of nodes changes from 1 to 2, a noticeable decrease
in the average power received by each node is observed when
sensor-sensor distance is 5cm, the difference decreases when
the sensor-sensor distance increases to 10cm.
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Fig. 1. Field experiment result

In addition, comparing Fig. 1(a) and (b), we can see
that when inter-sensor distance becomes larger, the charging
efficiency increases more when multiple sensors are charged
together. This is because when sensors are more spread out,
they can better capture the energy in the air without interfering
with each other. Considering 10cm is a relatively short dis-
tance, the linear relationship between charging efficiency and
the number of sensors can be more obvious when inter-sensor
distance increases.

III. SYSTEM MODEL

Focusing on how wireless charging technology affects net-
work deployment and routing arrangement, we consider the
following simplified system model.

Fig. 2. Example of post configuration in an island. The solid square represents
the base station, and the solid circles represent post.

As shown in Fig. 2, a sensor network is deployed in a
field for long-term, continuous monitoring. The field has N
posts of interest and each post must have at least one sensor
node deployed. The locations of the posts are determined by

applications based on the shape of the terrain, the required
sensing quality, etc., and are given. The network has M
sensor nodes (N ≤ M ). Sensor nodes monitor their nearby
environment and every certain time interval, one node at each
post generates a report. The report will be forwarded hop by
hop to the base station, which is located at a corner of the
deployment field. If a post has multiple nodes deployed, these
nodes rotate in performing the sensing/reporting tasks such
that they maintain nearly the same level of residual energy.

Each node is assumed to have k transmission levels (denoted
as l1, · · · , lk), which enables it to transmit a message to the
distances of d1(dmin), d2, · · · , dk−1 and dk(dmax), respec-
tively. Assume the energy consumed for transmitting one bit
to distance dt is denoted as et, and the energy consumed for
receiving one bit is denoted as er. et and er can be calculated
as follows: {

et = α + βdγ ,
er = α

(1)

where α is the energy needed to run the transceiver circuitry,
β is the energy consumed in the amplifier circuitry to transmit
the data, and γ is the loss factor, which varies from 2 to 4,
depending on the quality of channel. Based on Eq. (1), the
amount of energy for transmitting one bit when using each of
the k power levels can be computed, and the value is denoted
as ei (i = 1, · · · , k). Note that, in this paper, we only consider
the energy consumption for packet transmission and reception,
the biggest source of energy consumption. However, the results
can be extended to other sources of energy consumption such
as sensing and computation.

We assume sensor nodes can always be recharged in time
before they run out of energy. How to schedule the wireless
charger to guarantee this is not the focus of this paper. We
denote the charging efficiency when a charger recharges a
single sensor node to be η (0 < η < 1). If the recharger
disseminate y units of energy and the sensor receives x, η = x

y .
The charging efficiency increases if the charger simultaneously
recharges multiple sensors. When charging m sensor nodes
simultaneously, the charging efficiency becomes a function of
m: η(m) = k(m)∗η. Our field experiment shows that k(m) is
a linear or sub-linear function of m. To get a quantitative result
of sensor deployment, we assume k(m) = m in this paper.
Since simultaneous charging increases charging efficiency, it
is beneficial to deploy multiple sensor nodes together to a post
whenever possible.

IV. PROBLEM DEFINITION AND ITS NATURE

A. Problem Definition

The problem of determining the optimal node deployment
and routing arrangement can be formulated as follows. Given:

• M sensor nodes are in the network and a base station is
connected to some of the nodes.

• Each node has k levels of transmission power (l1, · · · , lk).
At level li (i ∈ {1, · · · , k}), the transmission range is di

and the energy to transmit one bit is ei.
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• There are N deployment posts (p1, · · · , pN ). Each post
needs at least one node deployed.

• If post pi (i ∈ {1, · · · , N}) has been deployed with mi

(mi ≥ 1) nodes, the charging efficiency at pi is mi ∗ η.
That is, for every unit of energy consumed by the charger,
each of the mi nodes in pi can receive η units of energy.

The problem is to

(a) determine how to deploy M sensor nodes to N posts;
(b) for each post pi (i ∈ {1, · · · , N}), determine the trans-

mission power level that should be used and which post
should be chosen as its parent,

such that:

• based on the chosen transmission power level and parent
for each post, data generated by each sensor node can be
transmitted to the base station;

• the total amount of energy consumed by the charger
to compensate the energy consumption of each post for
sending one bit to the base station is minimized.

B. Nature of the Problem

Next, we prove that the afore-defined problem is NP-
complete. To ease the proof, we restrict the problem a bit, and
show that even the restricted problem is NP-complete. The
original, more general problem is therefore also NP-complete.
Our restrictions are as follows:

• Each node has 2 transmission power levels l1 and l2 and
4e1 = e2. The amount of energy for each node to receive
one bit is denoted as e0(e0 < e1).

• Each post can have at most two sensor nodes. Note
that, posts with two sensor nodes have twice charging
efficiency than posts with one sensor node.

The proof is as follows.
Proof: First of all, we show that the problem is in NP.

Clearly, if how M sensor nodes are deployed in N posts is
given, and the transmission levels and the parent choices of
N posts are also given, the total power recharging cost at the
charger can be calculated. It is determinable if the cost is no
greater than a given value W . Thus, the problem is in NP.

Next, we prove the problem is NP-hard by reducing the
3-CNF SAT problem to this problem.

Suppose there is an instance of the 3-CNF SAT problem
which consists of n Boolean variables x1, x2, · · · , xn, and m
conjunctive normal forms (CNFs) C1, C2, · · · , Cm, where for
each j ∈ {1, · · · ,m}, Cj = yj,1 ∨ yj,2 ∨ yj,3 and the three
literals yj,1, yj,2, yj,3 ∈ {x1, x̄1, x2, x̄2, · · · , xn, x̄n}. We can
construct an instance of our problem as follows.

• Let a network have M = 3n + 3m sensor nodes and
N = 2n + 2m posts. That is, n + m posts should have
two sensor nodes each, and the rest n + m posts should
have only one sensor node each.

• The posts are constructed as follows: (a) for each CNF
clause, there are two corresponding posts Uj and Vj , 1 ≤
j ≤ m; (b) for each Boolean variable xi, 1 ≤ i ≤ n, there
are two corresponding posts Si,1 and Si,2.

U1 U2 Uj Um

V1 V2 Vj
Vm

S1,2S1,1 S2,2S2,1 S3,2S3,1 Sn,2Sn,1

Fig. 3. NP-Completeness proof. The square represents the base station, and
the circles represent posts. Thick dotted lines indicate two end posts can reach
each other using transmission power l2, and thin dotted lines means two end
posts can reach each other using transmission power l1. This example assumes
Cj = x1 ∨ x̄2 ∨ x̄3.

• The base station can be directly reached by any post Uj ,
1 ≤ j ≤ m, only if they set their transmission power to
l2, but it cannot be reached directly by other posts.

• Assuming the three literals of CNF clause Cj (1 ≤ j ≤
m) are yj,1, yj,2 and yj,3, if xi is one of these literals, post
Si,1 can reach Uj only when using transmission power
l2; if x̄i is one of these literals, post Si,2 can reach Uj

only when using transmission power l2.
• Each pair of posts Si,1 and Si,2 (1 ≤ i ≤ n) can reach

each other when using transmission power l1.
• Each Vj (1 ≤ j ≤ m) can reach the same set of posts as

Ui does except the base station, when using transmission
power l1.

Fig. 3 shows an example of the constructed instance. Let W =
7m e1

η + 9n e1
η + m e0

η + n 3e0
2η . We claim that

(i) if there exists an assignment of Boolean values to
x1, x2, · · · , xn such that the instance of 3-CNF SAT is
evaluated to be true, then there is a solution to the afore-
constructed instance of our problem in which the total
power recharging cost of the afore-constructed network
is no greater than W ; and
(ii) the reverse of Claim (i).

Firstly, we prove Claim (i). Suppose there is an assign-
ment of Boolean values to x1, x2, · · · , xn, which satisfies
the instance of 3-CNF SAT, we construct a solution to our
problem as follows. For each post Uj , 1 ≤ j ≤ m, we
deploy two sensor nodes, and they use transmission power
l2 to send data to the base station. For a 3-CNF clause
Cj = yj,1 ∨ yj,2 ∨ yj,3, without losing arbitrariness, let us
assume literal yj,k (1 ≤ k ≤ 3) is true. So there will be
two cases: yj,k = xi or yj,k = x̄i. If yj,k = xi, we do the
following:

• Two sensor nodes are deployed in post Si,1, and one
sensor node is deployed in post Si,2.

• Si,1 uses transmission power l2 to send data to Uj , and
Si,2 uses transmission power l1 to send data to Si,1.

• One sensor node is deployed in each Vj , 1 ≤ j ≤ m,
which uses transmission power l1 to send data to Si,1.
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On the other hand, if yj,k = x̄i, we do the following:

• Two sensor nodes are deployed in post Si,2, and one
sensor node is deployed in post Si,1.

• Si,2 uses power level l2 to send data to Uj , and Si,1 uses
transmission power l1 to send data to Si,2.

• One sensor node is deployed in each Vj , 1 ≤ j ≤ m,
which uses transmission power l1 to send data to Si,2.

In this way, we have distributed all 3m + 3n sensor nodes
to the 2m + 2n posts, and have chosen transmission power
levels and parents for all posts. Next we show the total power
recharging cost of this network is no greater than W .

• To compensate the energy consumed for reporting one-
bit information at each post Uj (1 ≤ j ≤ m), the amount
of energy consumed at the charger is 4e1

2η . Therefore, the
total for all the m posts is 2m e1

η .
• For each pair of posts Si,1 and Si,2 (1 ≤ i ≤ n),

one of them (with two sensor nodes deployed) incurs a
recharging cost of 4e1

2η + 4e1
2η + e0

2η for every bit information
it has reported to the base station ( 4e1

2η incurred at itself,
another 4e1

2η and e0
2η incurred at post Uj for forwarding

and receiving this data, respectively), and the other (with
one sensor node deployed) incurs a recharging cost of
4e1
2η + 4e1

2η + e1
η + 2 e0

2η . Therefore, the total for all the
2n posts is n e1

η ∗ (2 + 2 + 2 + 2 + 1) + n e0
2η (1 + 2) =

9n e1
η + 3n e0

2η .
• For each post Vj (1 ≤ j ≤ m), the recharging cost is

4e1
2η + 4e1

2η + e1
η + 2 e0

2η for every bit information it has
reported. Therefore, the total recharging cost for all the
m posts is m e1

η ∗ (2 + 2 + 1) = 5m e1
η + m e0

2η .

Summing up the above amounts of different types of posts, we
obtain the total recharging cost of the network for the one-bit
data that every post has reported, which is 7m e1

η + 9n e1
η +

m e0
η + n 3e0

2η = W .
Secondly, we prove Claim (ii). To prove this claim, we first

show that if there is a solution to the afore-constructed instance
of our problem, the network must satisfy the following two
properties:

(ii-A) Each post Uj (1 ≤ j ≤ m) has two sensor nodes;
Each post Vj (1 ≤ j ≤ m) has one sensor node; and for
each pair of posts Si,1 and Si,2 (1 ≤ i ≤ n), exactly one
of them has two sensor nodes, and the other has only one
sensor node.
(ii-B) Given the distribution method of sensor nodes
stated in Property (ii-A), there is only one way to choose
the transmission power level and the parent for each post,
such that the total recharging cost of the network is no
greater than W . The way to choose the transmission
power level and the parent post for each post is as follows:
(a) each post Uj (1 ≤ j ≤ m) uses transmission power
level l2 to send data to the base station; (b) for each pair
of posts Si,1 and Si,2, the post with two sensor nodes
uses transmission power level l2 to send data to a post
Uj (1 ≤ j ≤ m), and the other uses transmission power
level l1 to send data to the former, and (c) each post Vj

(1 ≤ j ≤ m) uses transmission power level l1 to send
data to a post Si,k (1 ≤ i ≤ n, 1 ≤ k ≤ 2) which has
two sensor nodes.

We now prove Property (ii-B). Firstly, it is clear that the afore-
described way for choosing the transmission power level and
the parent post of each post results in a total recharging cost
of W . Secondly, we want to prove that, if there is another
way for choosing the transmission power and the parent post,
there exists a sequence of transformations which results in
another set of choices of the transmission power level and the
parent post with less amount of total recharging cost. In other
words, any way for choosing the transmission power and the
parent post that is different from the one described in (ii-B)
will incur a total recharging cost that is greater than W . The
transformations are as follows:

• For pairs of posts Si,1 and Si,2 (1 ≤ i ≤ n): Without the
loss of generality, assume Si,1 (1 ≤ i ≤ n) has only one
sensor node, and it uses power level l2 to send data to a
post Uj (1 ≤ j ≤ m). We can reset Si,1’s power level
to l1, and let it send data to Si,2, which has two sensor
nodes. Clearly, the recharging cost of Si,1 and Si,2 is
reduced without affecting other posts.

• For posts Vj (1 ≤ j ≤ m): Without the loss of generality,
assume Vj uses transmission power l1 to send data to post
Si,1 (1 ≤ i ≤ n) which has only one sensor node. We can
let Vj to send data to Si,2, which has two sensor nodes,
with a reduced recharging cost of Si,1 and Si,2 without
affecting other posts.

We next prove Property (ii-A). Suppose there is a way to
distribute 3m + 3n sensor nodes into 2m + 2n posts which is
different from the way described in (ii-A), there exists a series
of transformations to re-distribute sensor nodes such that with
the resulting deployment, less amount of total recharging cost
can be obtained. The transformations are as follows:

• For each post Uj that has only one sensor node, there
must be either a post Vj having two sensor nodes, or a
pair of posts Si,1 and Si,2 both having two sensors. If we
move a sensor node from Vj or either of Si,1 and Si,2 to
Uj , it is clear that the total recharging cost is reduced.

• For each pair of posts Si,1 and Si,2 that both have only
one sensor node, there must be either a post Vj having
two sensor nodes, or another pair of posts Si′,1 and Si′,2
both having two sensor nodes. If we move a sensor node
from Vj or either of Si′,1 and Si′,2 to one of Si,1 and Si,2,
it is clear that the total recharging cost is also reduced.

Therefore, both Properties (ii-A) and (ii-B) hold when there
is a solution to an instance of our problem.

Based on Properties (ii-A) and (ii-B), we can assign Boolean
values to the corresponding instance of the 3-CNF problem as
follows: For each pair of post Si,1 and Si,2, if Si,1 has two
sensor nodes, then we let xi = true; on the other hand, if
Si,2 has two sensor nodes, then we let x̄i = true. Due to the
way we construct the network, each post Uj (1 ≤ j ≤ m)
must have at least one post Si,k (1 ≤ i ≤ n, 1 ≤ k ≤ 2) as
its child. Furthermore, if k = 1, then xi is a literal in 3-CNF
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clause Cj ; and if k = 2, then x̄i is a literal in 3-CNF clause
Cj . Due to Property (ii-B), Si,k must have two sensor nodes,
and thus xi = true if k = 1, or x̄i = true if k = 2. In either
case, Cj is true.

So far, our problem is proven to be NP-hard. Since the
problem is also in NP, it is NP-complete.

V. PROPOSED HEURISTIC ALGORITHMS

A. Routing-First Heuristic (RFH) Algorithms

1) Basic Ideas: The objective for co-designing the network
deployment and the routing strategies is to minimize the total
recharging cost of the network for infinite network lifetime. As
discussed in Section I, the total recharging cost is affected by
two factors: the amount of energy consumed by sensor nodes
and the efficiency for recharging sensor nodes. The routing-
first heuristic algorithms attempt to first minimize the amount
of energy consumed by sensor nodes, which is achieved
through finding the most-energy-efficient routing paths for
every post. Then, based on the found paths, a routing tree
is constructed to facilitate every sensor node to send/forward
their data to the base station. The routing tree should satisfy
the dual conditions: Firstly, the tree contains only the most-
energy-efficient routing paths, which ensure the minimum of
energy consumption in sensor nodes. Secondly, the routing
workload is concentrated to as few posts as possible, which
is motivated by the idea that, letting these posts consume the
most energy and meanwhile deploying a large number of nodes
to these posts to improve the efficiency for charging energy
to these posts may collectively minimize the total recharging
cost. After the tree is constructed, the routing workload at
each post is computed, and then sensor nodes are deployed
to all posts in the way that the number of nodes deployed to
each post is proportional to the workload of the post. In the
following, we first describe the basic version of the algorithm,
which is followed by an advanced version which iteratively
adjusts the routing arrangement and the deployment to reduce
the total recharging cost as much as possible.

2) The Basic Routing-First Heuristic Algorithm: The basic
Routing-First algorithm runs in the following four phases.
Phase I: Finding the minimum-energy paths from every post
to the base station

This phase is conducted as follows:

• A graph G = (V,E,w) is constructed, where V is the set
of posts plus the base station. For any pair of nodes vi and
vj in V , if the distance between them is less than the max-
imum transmission range (i.e., dist(vi, vj) < dmax), then
there is an edge between vi and vj (i.e., (vi, vj) ∈ E).
w : E �−→ R is the weight function for edges. For
each edge (vi, vj), w(vi, vj) is the amount of energy
consumed for sending one bit between vi and vj , and
as described in Section II, w(vi, vj) can be computed as
w(vi, vj) = α + β · dγ

x, where x ∈ {1, 2, · · · , k}, and dx

is the smallest transmission range which is larger than
the distance between vi and vj .

• For each post in V , the Dijkstra algorithm can be run to
find the shortest path to the base station. Note that, with
the above definition of edge weight, the found shortest
path is actually the minimum energy path to the base
station. The traditional Dijkstra algorithm returns only
one shortest path. If multiple shortest paths exist, we
need to find them out to enable the optimization in the
next steps. Several methods can be applied to find all the
shortest paths. For example, the Dijkstra algorithm can be
modified such that it can record multiple shortest paths.

Phase II: Building the minimum-energy and workload-
concentrated routing tree
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Fig. 4. The benefit of concentrating routing workload. The square represents
the base station, and the circles represent posts. The number to the right of
each post is its routing workload. Each post uses e units of energy to send
one bit to its next hop post. The total number of sensor nodes is 7.

Phase I returns a number of minimum-energy paths for each
post. We can form a shortest path “fat tree” by combining
these paths of all the posts. Note that the final structure is
not a tree but a “fat tree”, since a post may have multiple
parents. We need to trim this fat tree into a tree. As discussed
in the subsection of Basic Ideas, we adopt the heuristic of
concentrating routing workload to a few number of posts when
trimming the tree. The example in Fig. 4 further explains
why we adopt the heuristic. Here, Fig. 4 (a) shows a fat tree
composed of shortest paths from every post to the base station.
Fig. 4 (b) and (c) show two different routing tree structures
that can be derived from the fat tree in (a): In Fig. 4 (b),
routing workload is evenly distributed to three intermediate
posts, while in Fig. 4 (c), the workload is concentrated to post
B. Suppose we have 7 sensor nodes to deploy to 6 posts.
Obviously the extra one nodes should be deployed to one of
posts A, B and C in Fig. 4 (b) and post B in Fig. 4 (c),
since leaf posts have less routing workload. In Fig. 4 (b), the
total recharging cost of this network (for every bit information
reported by every post) is 3e + 2 · 2e + 2e/2 = 8e, while the
total recharging cost is reduced to 5e+4e/2 = 7e in Fig. 4 (c).
We find that, in a larger scale network with limited number
of sensor nodes to deploy, the benefit of routing workload
concentration is even more significant. Specifically, the fat tree
is trimmed as follows:

• Step 1. The routing workload at each post on the fat tree
is computed. In RFH, the routing workload of a post on
the fat tree is defined as the number of descendants of
the post.
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• Step 2. Posts are sorted based on the decreasing order of
their routing workload. Then, the sorted posts are stored
into a queue L based on the order; specifically, the post
with the largest workload is at the head of the queue.

• Step 3. Let the current head element of queue L be
post p. The following operations are conducted: For each
descendant of p, denoted as dp, its edge to any parent
p′ (where p′ is not p’s descendant or p) is deleted. This
triggers p′ and some of its upstream nodes to update their
routing workload because reports from dp may not pass
through them. Consequently, their positions in the queue
may have to be changed to maintain that all posts in L are
stored in the decreasing order of their routing workload.
After the operations are finished, post q is removed from
the queue, and this step is repeated on the new head
element if the queue is not empty.

After the above steps, a minimum-energy workload-
concentrated routing tree is formed. Fig. 5 demonstrates a
complete example to further illustrate the execution of Phase
II.
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Fig. 5. Trimming a fat tree into a minimum-energy workload-concentrated
routing tree. The square represents the base station. The circles represent
posts. The number to the right of a post is its routing workload (the number
of its descendants) (a) is a fat tree of all shortest paths. In (b), the post with
the highest routing workload (post B) is examined, and all the edges from its
sub-tree to the other part of the tree, including (E, A),(F, C),(H, D),(J, G),
are deleted, and the workload on affected posts is adjusted. In (c), post E
is examined, and no edge is deleted. In (d), post I is examined, and edge
(H, E) is deleted.

Phase III: Opportunistic merging of sibling posts
In the routing tree constructed so far, there may be multiple

sibling posts that are close to each other and can reach each
other using low transmission power but need to use high
transmission power to reach their common parent. If this is the
case, we can ask these sibling posts to send their data to one
of them, and the latter is responsible for forwarding the data to
their common parent post. This way, routing workload can be

further concentrated. Concretely, this phase can be conducted
as follows: for each post p in the tree, it is checked whether
there are some of its children that can reach each other with
smaller transmission range than what they need to reach itself.
If there exists such children, they are organized into groups
in which each member post can send its data to a designated
post (the head of the group), and then the head forwards the
all the data to p.
Phase IV: Workload-based deployment of sensor nodes

According to the routing tree constructed so far, sensor
nodes can be deployed. The basic idea for deployment is,
the number of nodes deployed in each post is proportional
to the routing workload of that post. Assuming the workload
is αi for post i (1 ≤ i ≤ N ), the problem for distributing M
sensor nodes to N posts can be formulated as the following
minimization problem:

Minimize : ∑N
i=1 αi/mi

Subject to : ∑N
i=1 mi = M

Where mi is the number of sensor nodes to be deployed in
post i.

Although the classical Lagrange multipliers method [18] can
be run to find out mi (i = 1 ≤ i ≤ N ), the resulting mi

may not be integers. Hence, we address the problem in the
following way:

• The Lagrange multipliers method is used to obtain first
round of the values for mi (1 ≤ i ≤ N ). For the
smallest mj among m1, · · · ,mN , we round it to the
nearest integer, which is the number of sensor nodes to
be deployed in post j. Note that if the resulting number
is 0, we set the number to 1 since every post should have
at least one sensor node.

• Excluding post j and the number of sensor nodes that
have been deployed in post j, the Lagrange multipliers
method is reused to obtain another round of values for
mi (i ∈ {1, · · · , N}/{j}). Similar to the previous step,
the smallest mk among all mi is rounded to the nearest
integer to get the actual number of sensor nodes deployed
to post k. Then, this step is repeated until the deployments
to all posts have been determined.

When heap data structure is utilized to maintain the list in
Phase II, the time complexity of RFH is O(N2 log N) which
equals that of the most time-consuming part, Phase II.

3) The Iterative Routing-First Heuristic Algorithm: The
basic version of the routing-tree first heuristic algorithm
is composed of two macro-steps: a minimum-energy and
workload-concentrated routing tree is first constructed, and
then sensor nodes are distributed based on this tree. The
routing tree obtained from the first macro-step is of critical
importance to the quality of final deployment and routing
decisions. The tree is regarded as a minimum-energy tree based
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on the implicit assumption that every post has only one sensor
node deployed, which however is not right. The iterative RFH
algorithm is aimed to address this problem.

Our design of the iterative algorithm is motivated by the
following observation. After one complete execution of the
basic RFH algorithm, the deployment of sensor nodes to posts
is decided. From the deployment decision, we can find out the
efficiency for charging every post. Taking this into account, we
can now compute a more accurate minimum-energy tree, and
then based on the tree to refine the deployment decision. This
way, better routing and deployment decisions can be found.
Furthermore, if the above steps are performed for multiple
times, decisions can be continuously improved. The above idea
is confirmed by the simulation results to be reported in Section
V: If we run our algorithm iteratively, the total recharging cost
of the network decreases monotonically, and it converges at a
certain value after a small number of iterations.

B. Incremental Deployment-Based (IDB) Heuristic Algorithm

The naive method to compute the exact optimal solution of
the routing and deployment problem is as follows: For each of
the possible ways to deploying M sensor nodes to N posts,
a minimum-energy routing tree is computed, and the total
recharging cost is recorded; then, the deployment strategy and
the minimum-energy routing tree structure that result in the
least total recharging cost is the solution. However, the method

incurs a runtime complexity of O(
(

M − 1
N − 1

)
), which is not

affordable when the system scale is large. To reduce the time
complexity, we propose an incremental deployment heuristic
as follows:

• Initially, each post is deployed with one sensor node.
• The rest M − N sensor nodes are deployed in multiple

rounds. In each round, we deploy δ number of sensors,
and the total number of rounds is M−N

δ rounds, where δ
is a system parameter.

In each round of the deployment, we examine each possible
way to deploy the δ sensor nodes to posts. Thus, each round
has a time complexity

O(
(

N + δ − 1
N − 1

)
).

Then, for each of the deployment strategies, the corresponding
minimum-energy tree and the associated total recharging cost
are found. Note that, when computing the minimum-energy
tree, all sensor nodes that have been deployed in previous
rounds are assumed to exist in their deployment posts. After all
possible ways have been examined, the one with the minimum-
energy tree is chosen; i.e., δ sensor nodes are incrementally
deployed to posts according to the chosen deployment strategy.
After M−N

δ rounds of incremental deployment, we obtain the
final strategy for deploying all M sensor nodes to N posts.
The total time complexity for the algorithm is

O(
M − N

δ

(
N + δ − 1

N − 1

)
).

VI. PERFORMANCE EVALUATION

Our performance evaluation has two objectives: (i) compar-
ing the proposed heuristics with the optimal solution for small-
scale networks; (ii) evaluating the proposed heuristic schemes
in large scale networks under different system parameter
settings to provide insights on choosing these parameters for
network designers.

A. Simulation Setup

In the simulation, we assume the sensor network is deployed
within a two-dimensional square field. The base station is
located at its lower left corner. Posts are randomly selected
within the field. The evaluation metric is the total recharging
cost, which is defined as the total energy disseminated by
the wireless charger to compensate the energy consumption
of each post for sending one bit to the base station.

The following are the system parameters we used: In the
equation regarding the energy consumption model (Eq. (1)),
we set α = 50nJ/bit, β = 0.0013pJ/bit/m4, and γ = 4,
as suggested in [19]. We choose three transmission ranges,
i.e., (d1, d2, d3) = (25, 50, 75) meters in all the experiments
except the one studying the effect of number of transmis-
sion ranges, in which we used six transmission ranges, i.e.,
(d1, d2, d3, d4, d5, d6) = (25, 50, 75, 100, 125, 150) meters.

B. Performance of Iterative RFH Algorithm

We first study the performance of iterative RFH algorithm
under different iteration steps to determine the best iteration
number. The deployment field is a 500m ∗ 500m square, the
number of posts is 100, and the number of sensor nodes varies
in {400, 600, 800, 1000}. The results are the average of 20
simulations on different post distributions.
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Fig. 6. The benefit of running RFH iteratively

As shown in Fig. 6, the total recharging cost decreases with
more iterations, and it converges quickly after a small number
of rounds. The figure shows that all the instances converage
after 7 rounds either to a single value or to a very small
narrow range. In some instances, the total recharging cost does
not converage at a single value, but oscillates among two or
more values that are very close to each other. For instance,
when the number of nodes is 600, the total recharging cost
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for the RFH algorithm oscillates among {8.2592, 8.2581}μJ
after the fifth round. We conjecture that the reason is, when
we assign sensor nodes to posts, we round the values returned
by the Lagrange multipliers method, and the rounding may
have different effects in different rounds.

In the following sections, we always use the iterative RFH
algorithm with seven iterations as a representative.

C. Comparing the Performance of Heuristic Algorithms with
Optimal Solution

Due to the NP-hardness of the network deployment and
routing problem, it is infeasible to compute the optimal
solution for a large scale sensor network. Therefore, we only
compute the optimal solution for a small-size network, and
compare the optimal solution with the results obtained from
our proposed heuristic schemes under the same network set-
tings. The comparison is to find out the difference between the
optimal solutions and the solutions obtained by the heuristic
algorithms. The results are the average of five simulations on
different post distributions.

In this study, the network field is a 200m∗200m square. We
conduct two experiments. Firstly, we fix the number of posts
to 10, vary the number of nodes among {20, 24, 28, 32, 36},
and measure the total recharging cost. As can be seen from
Fig. 7(a), the total recharging cost for all the algorithms
decreases when there are more sensor nodes, since the energy
recharging efficiency increases as more sensors are deployed
to the same post. We can also see that, both the heuristic
algorithms achieve a performance close to the optimal solu-
tions under these network settings. Between them, the IDB
scheme with δ = 1 has better performance. Specifically, the
IDB algorithm delivers the same solutions as the optimal one
for all the numbers of the sensor nodes in {20, 24, 28, 32, 36}.
Furthermore, the total recharging cost of the solutions found
by RFH is up to 3% higher the optimal solutions.

Secondly, we fix the number of nodes to 36, vary the
number of posts among {8, 9, 10, 11, 12}, and measure the
total recharging cost of the solutions produced by different
schemes. As shown in Fig. 7(b), the total recharging cost
decreases as the number of posts increases. This is because
more data should be sent to the base station as the number
of posts increases. Similar to the previous comparison in
Fig. 7(a), we can see that the performance of the heuristic
algorithms is also close to that of the optimal solution. When
the number of posts is 11 and 12, the total recharging cost
given by IDB (δ = 1) is slightly higher than that given by the
optimum solution.

D. Performance of Heuristic Algorithms in Large-Scale Net-
works

In this section, we show the performance of our heuristic
algorithms in large-scale networks. Assuming the sensor net-
work is deployed to a 500m ∗ 500m square field, we evaluate
the impact of the number of sensors, the number of posts, and
the number of transmission ranges on the performance of the
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Fig. 7. Comparison between the heuristics and the optimal solution
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heuristics. The results are the average of 20 simulations on
different post distributions.

Impact of number of sensor nodes. We fix the number
of posts at 100, and vary the number of nodes among
{200, 400, 600, 800, 1000}. Fig. 8 shows that IDB leads with
a margin over RFH, which indicates IDB is a better heuristic
in terms of performance. For instance, when the number of
posts is 1000, IDB with δ = 1 computes a solution with total
recharging cost of 4.6914 μJ , and RFH computes one with
total recharging cost of 4.9283 μJ , i.e., 5% higher than IDB
with δ = 1. On the other hand, our simulation also indicates
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IDB runs much slower than RFH. Therefore, for large-scale
networks, the RFH scheme may be a good choice considering
its much shorter running time and a little worse performance.

Impact of number of posts: We fix the number of
nodes at 600, and vary the number of posts among
{100, 150, 200, 250, 300}. Fig. 9 shows a similar trend as
Fig. 8.

Impact of number of transmission ranges: We fix the num-
ber of nodes at 600, the number of posts at 200, and vary the
number of transmissions among {3, 4, 5, 6}. When the number
of transmission ranges is i, the set of transmission ranges is
{25, 50, · · · , 25 ∗ i} accordingly. Fig. 10 shows that, when
more transmission ranges are available, the total recharging
cost almost keeps at the same value for IDB and RFH. The
reason is that, under the constraint of keeping the network
connected, shorter transmission ranges are preferable to larger
ones since the power consumption increases much faster than
transmission range does as shown by Eq. (1). As a result,
larger transmission ranges do not have a significant impact on
the heuristic algorithms.

VII. CONCLUSIONS

In this paper, we investigated the impact of newly emerging
wireless charging technology on sensor network deployment
and routing arrangement. Specifically, we formalized the de-
ployment and routing problem as an optimization problem,

proved the problem as NP-complete, and designed and evalu-
ated various heuristic algorithms to solve the problem.
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