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Abstract—When deployed for long-term tasks, the energy required to support sensor nodes’ activities is far more than the energy that

can be preloaded in their batteries. No matter how the battery energy is conserved, once the energy is used up, the network life

terminates. Therefore, guaranteeing long-term energy supply has persisted as a big challenge. To address this problem, we propose a

node reclamation and replacement (NRR) strategy, with which a mobile robot or human labor called mobile repairman (MR)

periodically traverses the sensor network, reclaims nodes with low or no power supply, replaces them with fully charged ones, and

brings the reclaimed nodes back to an energy station for recharging. To effectively and efficiently realize the strategy, we develop an

adaptive rendezvous-based two-tier scheduling scheme (ARTS) to schedule the replacement/reclamation activities of the MR and the

duty cycles of nodes. Extensive simulations have been conducted to verify the effectiveness and efficiency of the ARTS scheme.

Index Terms—Sensor networks, node reclamation and replacement, energy replenishment, duty-cycle scheduling.

Ç

1 INTRODUCTION

IN a wireless sensor network (WSN), sensor nodes are
powered by batteries that can operate for only a short

period of time, which results in short network lifetime. The
short lifetime disables the application of WSNs for long-
term tasks such as structural health monitoring for bridges
and tunnels, border surveillance, road condition monitor-
ing, and so on. Hence, many energy conservation schemes
were proposed to battle the constraint. With these schemes,
the rate of energy consumption is slowed down, but
consumed energy cannot be compensated. Therefore, the
effectiveness of these schemes is inherently restrained by
the amount of energy preloaded to sensor nodes.

Fully addressing the problem requires that energy be
continually replenished to sensor nodes. One possible
approach is to harvest energy from various environmental
sources [1], [2], [3], [4], [5] such as the sunlight. However,
efficient harvesting technologies are still absent. In particular,
the amount of energy that a solar cell can harvest is
proportional to its surface area, but it is infeasible to equip a
tiny sensor node with a large-size solar cell. The amount of
available solar energy also depends on uncontrollable
conditions such as cloudiness of the sky. Hence, it is very
likely that the energy harvested is limited and unable to
satisfy the needs of sensor nodes. Another solution is to
incrementally deploy new sensor nodes to take over sensor

nodes running out of energy. This approach, however, is
costly because sensor node hardware cannot be reused, and
more importantly, it causes pollution to the environment
because dead batteries and hardware are left in the environ-
ment. Seeking an effective and efficient way to guarantee
long-term energy supply remains as a big challenge.

Revisiting the problem from a different angle, we
propose a new strategy called node reclamation and replace-
ment (NRR). With the NRR strategy, a robot or human labor
called mobile repairman (MR) periodically reclaims sensor
nodes of low or no energy supply, replaces them with fully
charged sensor nodes, and brings the reclaimed sensor
nodes back to a place called energy station (ES); in the ES, the
reclaimed sensor nodes are recharged, temporarily stored,
and can be used to replace other sensor nodes in later time.
This approach is applicable to WSNs that are deployed in
environments accessible to robots or human labors, such as
roadsides, factories, parks, forests, etc.

The basic idea of the NRR strategy may appear simple,
but effective and efficient realization of the strategy is
challenging. Ideally, the NRR scheme should schedule both
the travels of the MR and the duty cycles of sensor nodes to
achieve the following goals simultaneously: first, a guaran-
teed quality of service should be provided. The duty cycles of
sensor nodes should be properly scheduled to ensure a
sufficient number of sensor nodes being alive before the
MR’s visit. Moreover, the number of sensor nodes needed to
be reclaimed/replaced each time should be small such that
the MR is able to complete reclamation and replacement in
time considering the limited number of sensor nodes that
the MR can carry at one time. This implies that sensor nodes
should not die around the same time, and therefore, the
widely practiced load balancing philosophy and techniques
do not apply. Second, the overhead caused by the reclamation
and replacement should be minimized. The MR’s travel should
be properly scheduled such that the travel distance of the
MR is minimized in the long run. What is even more
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challenging is that the travel scheduling of the MR and the duty
cycling of sensor nodes are tightly coupled. How sensor nodes
determine their duty cycles locally depends on when the
MR comes to replace them; meanwhile, the travel schedule
of the MR depends on the energy level of sensor nodes.

We propose an adaptive rendezvous-based two-tier scheduling
scheme (ARTS) to tackle the above problem and thus realize
the NRR strategy effectively and efficiently. In the scheme,
sensor node reclamation and replacement are performed
round by round. During each round, scheduling is con-
ducted in two tiers: the global tier and the local tier. The
global-tier scheduling determines how many sensor nodes
should be reclaimed and replaced as well as in what order
the MR should reclaim and replace these sensor nodes.
Meanwhile, sensor nodes in the network collaborate to
conduct local-tier scheduling to determine their duty cycles.
The two tiers of scheduling interact with each other through
certain visiting appointments (rendezvous) that can be
changed from round to round adaptively. In each round,
the scheduling aims at 1) maintaining required quality of
service, 2) concentrating energy consumption at sensor
nodes that are to be reclaimed and replaced (hence, the
amount of energy remaining in these sensor nodes is
minimized when they are reclaimed), and 3) reducing the
travel cost of the MR. This way, high efficiency of reclama-
tion and replacement is achieved in each round, eventually
leading to high efficiency in the long run. Extensive
simulations are conducted to evaluate the proposed scheme.
The results show that the ARTS scheme meets the objectives
of the NRR strategy. The results also provide insights for
network designers to choose appropriate system parameters
when the ARTS scheme is deployed.

In the rest of the paper, Section 2 presents system model.
An overview of the ARTS scheme is presented in Section 3.
Sections 4 and 5 describe the local-tier scheduling and
global-tier scheduling schemes in detail. Section 6 reports
the simulation results. Section 7 discusses some practical
issues in realizing the ARTS scheme. Section 8 discusses
related work and Section 9 concludes the paper.

2 SYSTEM MODEL

We consider a WSN that is deployed for long-term
surveillance. The network needs to monitor a number of
locations, called posts. Surrounding each post, a number of
sensors are deployed, and these sensors form a group. The
sensors in a group are close to each other, and thus they can
provide approximately the same sensing quality. For
example, for event detection, the sensing quality of two
homogeneous sensors located close to each other is similar
as these sensors have the similar probability to sense an
event occurring in their sensing range.

Deploying multiple sensors near the same location is
necessary for a number of applications. For example, in
order to control sensing sensitivity [6] or improve accuracy
of event detection, the readings from multiple sensors
monitoring the same phenomenon can be collected and
processed; relying on the readings from a single sensor may
not achieve the required sensitivity or accuracy.

We assume that the locations of posts are given. In
practice, they may be determined based on the shape of the

deployment field, the required sensing quality, and the
sensing range of each sensor. Our system model applies in
the case where discrete points of interests in the sensing
field need to be monitored, while does not apply in the case
where the whole field needs to be monitored.

The system architecture of the NRR strategy is shown in
Fig. 1. As can be seen, the system consists of a mobile
repairman, an Energy Station, and a WSN composed of
groups of sensors surrounding the posts. The MR traverses
the network periodically to reclaim sensors having low or
no energy, and replace them with fully charged sensors.
The NRR strategy has the following assumptions:

. All sensors are loosely time synchronized. Existing
time synchronization protocols [7], [8] can be used
for this purpose. Time is divided into phases, of a
constant length. A certain number of phases com-
pose a round, the length of which is denoted as l. The
MR visits each post at most once every round.

. A sensor has two modes: active and sleeping. For
every phase, if a sensor is in the active mode, its
energy is reduced by �; if it is in the sleeping mode,
its energy is unchanged. Let the energy of a fully
charged sensor be e, which is a multiple of �. If a
sensor is in the active mode all the time, its lifetime is
denoted as � .

. Each group is deployed with Nd sensors, and Nd is
called group size. At the beginning of each phase, all
sensors in each group should wake up and partici-
pate in the duty-cycle scheduling. A sensor active in
the previous phase collects sensory readings from all
the other sensors also active in the previous phase,
and based on these readings, it determines the
number of sensors that need to be active in the
current phase. We call this number surveillance
number. Surveillance number varies between Nmin

and Nmax. The number may be determined based on
if there are events taking place at the post monitored
by the group and other factors. The sensor an-
nounces surveillance number, and all the other
sensors listen to the announcement and decide
whether they will be in the active mode or in the
sleeping mode in the current phase.

. The MR has a limited capacity, denoted as C, which
is defined as the maximum number of (reclaimed or
fully recharged) sensors it can carry. The MR has
orientation and localization ability such that it can
travel to designated locales and perform sensor
replacement task.
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Fig. 1. System architecture. Sensors surrounding each post are very
close to each other.



Note that the NRR strategy does not require a WSN to be

connected. If a WSN is not connected, it often implies that

delay in collecting sensory data can be tolerated. In this

case, the MR can also serve as the mobile data collector. No

matter the network is connected or not, the NRR strategy

does not require each group to report its energy status

through multi-hop communication. Instead, the MR collects

the energy status of each group only when it visits the

group. This way, communication overhead can be reduced.
In the following sections, a number of notations are to be

used, and we summarize them in Table 1.

3 OVERVIEW OF THE ARTS SCHEME

The proposed adaptive rendezvous-based two-tier schedul-

ing scheme runs round by round. In each round, the mobile

repairman visits each group at most once. When the MR

visits a group, it reclaims/replaces a number of sensors,

collects the information about residual energy in the group,

and notifies the group of its next visiting time as well as the

number of sensors to be reclaimed/replaced in the next

visit. The calculation of the travel schedule and the number

of sensors to be reclaimed/replaced are referred to as global-

tier scheduling. Provided the MR’s visiting time, sensors in

the group collaborate in scheduling their activities, which is

referred to as local-tier scheduling.
When the MR visits a group in each round j, it reclaims/

replaces sensors, collects information about the residual

energy of the group, and notifies its visiting time and the

number of sensors to be reclaimed/replaced at round jþ 1.

After the MR visits all groups, at the end of round j, the MR

knows the residual energy of all the groups. Based on this

information, the MR employs our proposed global-tier

scheduling algorithm to calculate its visit time and the

number of sensors to be reclaimed/replaced for each group

in round jþ 2. Then, in round jþ 1, the MR notifies the

groups, its schedule for round jþ 2 and meanwhile, collects

information for the global-tier scheduling for round jþ 3.
One fundamental objective of both global-tier scheduling

and local-tier scheduling is that the quality of service will

not be violated, i.e., there are always enough sensors alive

and working. For the global-tier scheduling, this means the

MR cannot visit the groups too late; otherwise, there are not

enough sensors alive before the MR comes. For the local-tier

scheduling, given the MR’s next visiting time, it must

schedule the tasks among sensors effectively such that there
are enough sensors alive before the MR visits.

With the above fundamental objective as a prerequisite,
there is another objective for the scheduling in both tiers:
the amount of remaining energy in sensors to be reclaimed/
replaced should be as small as possible. Note that, by
overusing the sensors to be reclaimed/replaced, the energy
of other sensors would remain high and thus reduce the
workload for further reclamation/replacement. With this
objective, the local-tier scheduling algorithm becomes
fundamentally different from most of the existing schedul-
ing algorithms that are targeted at load balancing; instead, it
should overuse some sensors. For the global-tier schedul-
ing, this objective means the MR should not visit the groups
too early; otherwise, the sensors to be reclaimed still have a
lot of energy.

In addition, especially for the global-tier scheduling, the
travel distance of the MR should be minimized to save both
time and energy of the MR. This objective together with the
above objectives makes the travel scheduling for the MR a
NP-complete problem. We formally prove its NP-complete-
ness and propose efficient heuristic solutions in Section 5
after we present the local-tier scheduling algorithm in the
next section.

4 LOCAL-TIER SCHEDULING

Local-tier scheduling is performed every phase in each
group. All sensors in a group have a consistent view
regarding the amount of remaining energy in all sensors in
the group. This is because each sensor runs the same local-
tier scheduling algorithm, thus it knows which sensors shall
be in the active mode for any phase; when the MR visits the
group, it will notify the group the number of sensors to be
reclaimed/replaced in the next round, thus all sensors
know which sensors are to be reclaimed/replaced based on
the agreement that the least energy supplied sensors will be
reclaimed/replaced. It is possible that node failures cause
inconsistency temporarily in the view regarding the amount
of remaining energy in all sensors. We provide a solution to
it and discuss the solution in Section 7.

At the beginning of each phase, all sensors should wake
up and participate in the scheduling. For each group,
we choose a leading sensor out of the sensors active in the
previous phase. The leading sensor, for example, could be
the one with the smallest ID among active sensors. It
collects sensory readings from other sensors active in the
previous phase. Based on these readings, the leading sensor
determines the surveillance number (the required number
of active sensors) in the current phase, and announces the
number to all sensors in the group. How the surveillance
number is determined depends on application require-
ments and is out of the scope of this paper. Then, each
sensor in the group runs our proposed local-tier scheduling
algorithm independently to determine which sensors shall
be in the active mode. If a sensor should not be active, it will
go back to sleep. Our algorithm ensures that, if sensors have
consistent view regarding the amount of remaining energy
in all sensors in the group, they can reach the same
scheduling decision.
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Alternatively, we can let the leading sensor run the duty-
cycle scheduling algorithm, and broadcast the result to the
other sensors in the group. The result is encapsulated in a
bit vector in which each bit represents a sensor. If a sensor’s
corresponding bit is 1, it should be active in the phase;
otherwise, it should be sleeping in the phase. When the
number of sensors in a group is small, the communication
overhead for broadcasting this vector is comparable to that
for broadcasting the surveillance number considering the
header and trailer of a packet.

In either method described above, assuming all sensors
in a group can reach each other in one hop, the commu-
nication complexity is Nd þ 1 messages for each group in
one phase, where Nd is group size.

The local-tier scheduling algorithm has two objectives:
1) quality of service is guaranteed, i.e., there are always at
least Nmax sensors alive in the group for any phase before
the MR’s next visit to the group (note that without knowing
future energy consumption pattern, we have to assume the
worst case, i.e., using Nmax as surveillance number). 2) With
objective 1 as a prerequisite, the local-tier scheduling should
be conducted such that the residual energy in sensors to be
reclaimed/replaced is minimized.

The inputs to the local-tier scheduling algorithm include
the number of sensors in the group (denoted asNd) and their
residual energy, required surveillance number for the current
phase, and the number of remaining phases before the MR’s
next visit. The output of the algorithm is a set of sensors that
should be active for the current phase. The schedule must
guarantee that the number of alive sensors is no less than
Nmax for all the subsequent phases before the MR’s next visit.

We present the local-tier scheduling algorithm in three
steps: we first introduce a guard inequality, satisfying which
objective 1 can be attained. Then, we present a controlled-
greedy algorithm which always attempts to schedule first
the sensors with the lowest energy supply if doing so does
not violate the guard inequality, and these sensors will be
chosen to be reclaimed/replaced when the MR comes.
Finally, we formally prove that the local-tier scheduling
algorithm does not violate the guard inequality and thus
guarantees the quality of surveillance service.

4.1 A Guard Inequality

To guarantee quality of service, we discover a guard
inequality which has an attractive property that, for any
phase, satisfying the inequality guarantees that we can
always find a duty-cycle schedule such that at least Nmax

sensors are alive for the current phase and all the
subsequent phases before the MR’s next visit. Before
introducing the inequality, we first introduce the following
data structures: for each sensor, its ID is denoted as ui
(0 � i � Nd � 1), and the amount of its remaining energy is
denoted as ei. The sensors are sorted into a list L according
to the decreasing order of 2-tuples hei; uii. In our algorithm,
we assume the full energy of a sensor e is an integral
multiple of �. In reality, e may not be an integral multiple of
�. For example, e ¼ q� þ r, where q is an integer, and r < �.
In this case, we treat the full energy of a sensor as q�.

Let t be the number of remaining phases before the next
replacement/reclamation and � be the amount of energy
consumed by an active sensor per phase. We divide L into
three sublists as follows:

. L1 ¼ hu0; . . . ; um�1i. Each sensor in L1 has remaining
energy of at least t�.

. L2 ¼ hum; . . . ; uNa�1i. Each sensor in L2 has remain-
ing energy of less than t�, but at least �.

. L3 ¼ huNa
; . . . ; uNd�1i. Each sensor in L3 has 0

remaining energy.

We call m the turning point. Sensors in sublists L1 and L2

are alive sensors, while sensors in sublist L3 are dead
sensors. The following is the theorem that formally
introduces the guard inequality:

Theorem 4.1. If Inequality (1) is satisfied at the beginning of a
phase, a duty-cycle schedule can be found for the current phase
and all the subsequent phases before the MR’s next visit, such

that the quality of service is guaranteed for these phases.

XNa�1

i¼m
ei � ðNmax �mÞt�: ð1Þ

Inequality (1) is called the guard inequality.

Proof (Sketch). We first prove that if the guard inequality is
satisfied at the beginning of any phase, the quality of
service is satisfied for that phase. We need to show that
the number of alive sensors Na is at least Nmax. We
consider two cases:

. m >¼ Nmax. Clearly, there are more alive sensors
than Nmax.

. m < Nmax. Suppose at the beginning of a phase,
Inequality (1) holds. Each sensor ui (m � i �
Na � 1) belongs to L2, and its remaining energy ei
is subject to ei < t�. Hence, it follows Na �m >
Nmax �m, i.e., Na > Nmax. Thus, the number of
alive sensors Na is greater than Nmax.

Next, we prove that if the guard inequality is satisfied at
the beginning of a phase, a duty-cycle schedule can be
found such that the guard inequality is satisfied at the
beginning of the next phase. Suppose the guard inequality
(1) is satisfied at the beginning of the phase. We select
Nmax sensors for the phase as follows: 1) minðNmax;mÞ
sensors with the least energy in listL1, and 2)maxðNmax �
m; 0Þ sensors with the least energy in list L2. Then, at the
beginning of the next phase, we construct a new List L0,
decide the new turning pointm0 andN 0a, and divideL0 into
three sublists L01; L

0
2, and L03. Assuming the remaining

energy in any sensor ui (0 � i � Nd � 1) in L0 is e0i, we
consider two cases (Note that m0 cannot be less than m.):

. m0 ¼ m. We have

XN 0a�1

i¼m0
e0i � ðNmax �m0Þðt� 1Þ�:

. m0 > m. We have

XN 0a�1

i¼m0
e0i ¼

XN 0a�1

i¼m
e0i �

Xm0�1

i¼m
e0i:

Clearly, for sensor uiðm � i � m0 � 1Þ, it holds
that e0i ¼ ðt� 1Þ�. It follows
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XN 0a�1

i¼m0
e0i ¼

XN 0a�1

i¼m
e0i � ðm0 �mÞðt� 1Þ�

� ðNmax �mÞðt� 1Þ� � ðm0 �mÞðt� 1Þ�
¼ ðNmax �m0Þðt� 1Þ�:

Thus, the guard inequality is satisfied at the beginning
of the next phase. The correctness of Theorem 4.1 is
straightforward due to the above two results. tu

To further explain Theorem 4.1, a counterexample is
shown in Fig. 2 to illustrate that, if the guard inequality is not
satisfied in scheduling, the quality of service could be
violated. Here, Nmax ¼ 5, the number of remaining phases
before the MR’s next visit (i.e., t) is 3, and for all the remaining
phases, surveillance number is 5. At the beginning of the first
phase, the guard inequality is satisfied. If a greedy schedul-
ing policy is deployed, which always schedules sensors with
the least residual energy, then at the beginning of the second
phase, the left side of the guard inequality, i.e., the
summation of u3 and u4’s residual energy, is 2, and the right
side of the guard inequality is 4. Thus, the guard inequality is
violated at the beginning of the second phase, and at the
beginning of third phase, there are only three alive sensors,
but surveillance number is 5. As a result, the scheduling fails.

4.2 Controlled-Greedy Algorithm

Fig. 2 shows that the greedy scheduling policy cannot
always satisfy the guard inequality at the beginning of any
phase. In order to address this issue, we propose a
controlled-greedy scheduling algorithm. The basic idea of
the controlled-greedy scheduling algorithm is that if the
greedy scheduling policy can satisfy the guard inequality,
we apply this scheduling policy; otherwise, we schedule
some sensors with higher remaining energy in order to
satisfy the guard inequality.

Suppose phase p is t phases before the MR’s next visit,
the surveillance number for phase p is x, and the guard
inequality is satisfied at the beginning of phase p. Our
proposed controlled-greedy algorithm will schedule the
duty cycles of sensors such that the guard inequality is still
satisfied at the beginning of phase pþ 1. The details of the
algorithm are as follows:

The first step is an attempted Greedy Scheduling. Among
all the sensors alive, x sensors with the least energy are
chosen. We simulate that these sensors are scheduled to be
active for this phase. Hence, the energy of these sensors is
deducted by �. Then, we simulate that, at the beginning of

phase pþ 1, based on the new energy level, lists L1 and L2

are constructed, and the guard inequality is tested. If the

guard inequality is satisfied, meaning the attempt for

greedy scheduling succeeds, the x chosen sensors are really

scheduled to be active for phase p. Otherwise, the attempted

greedy scheduling fails and we proceed to the second step.
The second step is Semi-greedy Scheduling. Note that

when the semi-greedy scheduling is needed, we must have

m < Nmax and x > Nmax �m at the beginning of phase p;

otherwise, the greedy scheduling will succeed. The semi-

greedy scheduling schedules the x� ðNmax �mÞ sensors

with the least energy in L1, and Nmax �m sensors with the

least energy in L2.
We use an example in Fig. 3 to illustrate the algorithm.

As shown in Fig. 3, at the beginning of the first phase, we

have t ¼ 3;m ¼ 3; Nmax ¼ 5, and for all the remaining

phases, surveillance number is 5, i.e., x ¼ 5. The first step

fails, so we proceed to the second step. Since x ¼ 5 >

ðNmax �mÞ ¼ 2, we schedule x� ðNmax �mÞ ¼ 3 least

energy supplied sensors in L1, i.e., u0; u1, and u2. The other

two sensors are the two sensors with the least energy in L2,

i.e., u5 and u6. For the second and third phases, greedy

scheduling succeeds, and the quality of service is satisfied

until the MR’s next visit. Algorithm 1 formally presents the

above local-tier scheduling algorithm.

Algorithm 1. Local-Tier Scheduling in a group at phase p

Notations:

x: surveillance number in phase p

t: the number of remaining phases before the MR’s

next visit

L;L1; L2; L3; L
0: lists of sensors in an energy decreasing

sequence

ei; e
0
i: the amount of the remaining energy of the

ith sensor in list L;L0 (respectively)

�;Nd: defined previously

1: Calculate m and partition L into three sublists:

L1; L2; L3. jL1j ¼ m; 8ei 2 L1; ei � t�; 8ei 2 L2,

� � ei < t�.

2: Tentatively schedule the last x alive sensors in L to be

active, and decrement their energy by �.

3: Construct a new list L0 and decide the new turning
point m0 and N 0a.

4: if
PN 0a�1

i¼m0 e
0
i � ðNmax �m0Þðt� 1Þ� then

5: Confirm the schedule and return.

6: else

7: Cancel the changes made in line 2.
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Fig. 2. A counterexample. Each bar represents a sensor, whose residual
energy is marked by the value under it. Shaded bars represent sensors
that are chosen to be active in the current phase. We assume � ¼ 1.

Fig. 3. Local-tier scheduling. Each bar represents a sensor, whose
residual energy is marked by the value under it. Shaded bars are chosen
to be active in the previous phase. We assume � ¼ 1.



8: Schedule the last ðx� ðNmax �mÞÞ sensors in L1.
9: Schedule the last ðNmax �mÞ sensors in L2.

In Algorithm 1, Lines (1), (3), and (4) each take OðNdÞ
time, and other lines take less time. Therefore, the time
complexity of Algorithm 1 is OðNdÞ.

4.3 Correctness of the Algorithm

Theorem 4.2. Our local-tier scheduling algorithm ensures that if
the guard inequality is satisfied at the beginning of the first
phase right after an replacement/reclamation, the guard
inequality is satisfied at the beginning of every phase before
the next replacement/reclamation.

Proof. We prove this claim by induction. We are already
given that the guard inequality is satisfied at the
beginning of the first phase.

Assume the guard inequality is satisfied at the
beginning of phase p, we show that after applying our
local-tier scheduling algorithm, the guard inequality is
satisfied at the beginning of phase pþ 1. We consider
two cases:

. Greedy scheduling succeeds. If the greedy schedul-
ing succeeds, the test at Line (4) in Algorithm 1
must return true. Thus, the guard inequality is
satisfied at the beginning of the next phase.

. Greedy scheduling fails. If the greedy scheduling
fails, the semi-greedy scheduling will be applied,
i.e., we schedule the last ðx� ðNmax �mÞÞ sensors
in L1, and the last ðNmax �mÞ sensors in L2. Then,
at the beginning of the next phase, we construct a
new List L0 and decide the new turning point m0,
which divides sublists L01 and L02. We consider
two cases: 1) m ¼ m0 and 2) m0 > m. With the
similar derivation in the proof of Theorem 4.1, we
conclude that the guard inequality is satisfied at
the beginning of the next phase.

Therefore, our local-tier scheduling algorithm guar-
antees that the guard inequality is satisfied for every
phase between two consecutive replacements if the
guard inequality is satisfied at the beginning of the
first phase. tu

At the beginning of the sensor network’s life, every node
has full energy and the guard inequality is satisfied. After
that, our global-tier scheduling algorithm guarantees that,
after each reclamation/replacement, the inequality is also
satisfied. Therefore, during the whole life of the sensor
network, the inequality is satisfied and the quality of
surveillance service is satisfied.

5 GLOBAL-TIER SCHEDULING

At the end of each round j, after the MR completes
reclamation, it knows the amount of residual energy of each
group, i.e., the summation of residual energy on all sensors
in the group. Based on the amount, the MR first calculates
the number of sensors to be reclaimed/replaced for the
group in round jþ 2, which is called the replacement number.
Based on the replacement numbers and the residual energy
information of all groups, the MR runs our proposed MR

travel scheduling algorithm to calculate a schedule to visit
every group in round jþ 2. When the MR visits a group in
the coming round (round jþ 1), it notifies the group of its
visiting time and replacement number in round jþ 2.
Meanwhile, the MR collects the residual energy information
from each sensor in the group for the global-tier scheduling
for round jþ 3. Assuming that the MR and each sensor in a
group can reach each other in one hop, the communication
complexity between the MR and a group is Nd þ 1 messages
in one round.

With the prerequisite of satisfying the quality of service,
the global-tier scheduling has two objectives: 1) the total
travel distance of the MR is minimized, and 2) the
remaining energy of sensors to be replaced is minimized.
Satisfying the above objectives makes the MR travel
scheduling an NP-hard problem. In the following, we
present how to calculate the replacement number, prove the
NP-hard nature of calculating the MR’s travel schedule, and
present heuristic solutions to this problem.

5.1 Calculation of Replacement Numbers

The replacement number at group gið1 � i � nÞ in round
jðj � 1Þ is denoted as Nrði; jÞ. When the MR comes to group
gi, it chooses Nrði; jÞ sensors with the minimum residual
energy to reclaim, and replace them with the same number
of fully charged sensors. Let Eði; jÞ denote the summation
of residual energy on all sensors in group gi after the MR
completes replacement/reclamation at group gi in round j
and e be the amount of energy held by a fully charged
sensor. Recall that, l is the length of a round and � is the
lifetime of a sensor if it is active all the time. Nrði; jÞ is
conservatively calculated as follows:

Nrði; 1Þ ¼ Nrði; 2Þ ¼ maxfdðl=�ÞNmaxe; Nmaxg
Nrði; jþ 2Þ ¼
max d3ðl=�ÞNmaxe �Nrði; jþ 1Þ � Eði;jÞ

e

j k
; 0

n o
ðj � 1Þ:

8><
>:

For the first two rounds, the replacement number is
predetermined as maxfdðl=�ÞNmaxe; Nmaxg to guard against
the worst case scenario when Nmax nodes are needed to be
active all the time. The replacement number of round 3 and
later is calculated by the second formula. The part
d3ðl=�ÞNmaxe �Nrði; jþ 1Þ reflects that in the worst case,
group gi may be required to have the maximum number of
active sensors for three rounds in a row, rounds j; jþ 1, and
jþ 2, but with only one replenishment in round jþ 1. This
happens when the MR only visits group gi at the beginning
of round j and at the end of round jþ 2. bEði;jÞe c is the
number of fully charged sensors that have equivalent
energy to the total residual energy in group gi. Note that,
if the MR does not visit group gi in round j, it cannot obtain
the exact number of Eði; jÞ and will conservatively assume
that Nmax sensors are required to be active throughout
round j. If d3ðl=�ÞNmaxe �Nrði; jþ 1Þ � bEði;jÞe c < 0, then
Nrði; jþ 2Þ ¼ 0, which implies that group gi does not need
replacement/reclamation in round jþ 2 and the MR does
not visit group gi in the round.

5.2 Calculation of the Travel Schedule for the MR

For each round, we need to 1) minimize the total travel
distance of the MR in this round and 2) minimize the residual
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energy in sensors to be reclaimed/replaced. The reason for
objective 2 is that if we minimize the residual energy in
sensors to be reclaimed/replaced, the net amount of energy
replenished into the network in this round is maximized, and
thus the demand for future reclamation/replacement is
minimized. As a result, the MR will need to replace the
smallest number of sensors in future rounds, and thus the
total MR travel distance is reduced in the long run.

Since minimizing the residual energy of sensors to be
reclaimed/replaced affects the travel distance of the MR,
and vice versa, these two objectives are not likely to be
satisfied at the same time. Hence, we associate a weight
with each objective and aim to optimize the combined
objective. In the following, we introduce related data
structures, formally state this optimization problem, prove
its NP-completeness, and present heuristic solutions.

5.2.1 Data Structures

At the end of round j, the MR calculates its visiting schedule
to all the groups in round jþ 2. A 2D table R, is used in
calculating the best visiting time of the MR to each group. R
records the total residual energy in the sensors to be
reclaimed/replaced in each group at each phase of round
jþ 2 if the MR visits the group at the phase. The energy can
be positive, zero, or an invalid number. The invalid number
means the quality of service is already violated in the phase
because the MR comes too late. Fig. 4 shows an example.
Each entry eði; pÞ in the table represents the total residual
energy in the sensors to be reclaimed/replaced in group gi
when the MR visits it at phase p in round jþ 2. Along a row,
the value of eði; pÞ gets lower as p increases, i.e.,
eði; 1Þ > eði; 2Þ > � � � > eði; ciÞ ¼ � � � ¼ eði; diÞ ¼ 0. The best
phases for the MR to visit group i in round jþ 2 are within
½ci; di�, for which the residual energy is 0. Phase di is called
the deadline for the MR to visit group gi in round jþ 2,
because if the MR comes late, the quality of service is
violated. It is also possible that even if the MR visits a group
at the last phase of round jþ 2, the residual energy is still
greater than 0. Group gx is such an example. In the case, we
call the last phase, i.e., phase m, the deadline for the MR to
visit group gx in round jþ 2, i.e., dx ¼ m.

Because the future energy consumption pattern is not
known beforehand, the table can only be constructed
based on prediction. In our scheme, we simulate the local-
tier scheduling algorithm phase by phase until phase p in
round jþ 2, using the maximum surveillance numbers
(Nmax) conservatively to obtain entry eði; pÞ. Other meth-
ods to predict surveillance numbers will be explored in
our future work.

In addition to the 2D table R, the following data
structures are needed in formalizing the problem:

. GðV ;E;WðV Þ;WðEÞ; RÞ denotes a complete undir-
ected graph. V ¼ fgi j 0 � i � ng, where g0 repre-
sents the ES and g1; g2; . . . ; gn represent n groups.
WðV Þ ¼ fNrð1; jþ 2Þ; . . . ; Nrðn; jþ 2Þg, where Nrði;
jþ 2Þ is the replacement number for group gi
(1 � i � n) in round jþ 2. For any two groups gi
and gkð0 � i 6¼ k � nÞ, there is an edge ðgi; gkÞ, whose
weight represents the cost for the MR’s travel
between groups gi and gk, and WðEÞ stores the cost
of each such edge. R is defined above.

. ~t ¼ ðt1; t2; . . . ; tnÞ is a visiting time vector in which ti is
the phase when the MR visits group gi in round jþ 2.

. D ¼ dð~tÞ is the total traveling distance for the MR to
fulfill a complete reclamation/replacement tour
according to time vector ~t. Note that the MR needs
to go back to the ES for reloading multiple times due
to the limited capacity of the MR.

5.2.2 Nature of MR Travel Scheduling Problem

The problem is to find a time vector~t for the MR which can
carry up to C fully charged sensors to visit the groups in the
network and replace WðV Þ sensors, such that the following
metric is minimized.

Y ¼ �Dþ �
Xn
i¼1

eði; tiÞ ¼ �dð~tÞ þ �
Xn
i¼1

eði; tiÞ; ð2Þ

where � and � are two system parameters, each represent-
ing the weight of the associated item.

The MR travel scheduling problem is an NP-hard
problem since the well-known NP-hard Vehicle Routing
Problem with Time Windows (VRPTW) [9], [10], [11] can be
reduced to this problem. The proof can be found in [12].

5.2.3 Heuristic Solutions

The object value Y depends on two optimization objectives,
the total MR travel distance and the total residual energy in
sensors to be reclaimed/replaced, which cannot be opti-
mized at the same time. Hence, we propose heuristic
solutions to optimize the two objectives according to their
associated weights, � and �.

If � is much larger than �, distance D is minimized with
priority. As the capacity of the MR is limited, multiple tours
to visit all the groups are calculated to minimize D, where
each tour is a sequence of groups that the MR should visit in
order. Since changing the ordering of different tours does
not affect D, we can find an order of these tours to minimize
the residual energy in sensors to be reclaimed/replaced
based on table R.

If � is much larger than �, the residual energy in sensors
to be reclaimed/replaced is minimized with priority.
Intuitively, groups with similar deadlines should be visited
at similar time. This can be done by distributing groups into
tours based on the similarity of their deadlines. The MR will
conduct the tours in the increasing order of the deadlines;
i.e., tours with early deadlines will be conducted early.
Within each tour, a visiting order of the groups can be
determined to minimize the MR travel distance.

For more general cases, we propose a supertour heuristic
solution and use a parameter M to reflect the relative weight
of � and �. The basic idea of the supertour heuristic solution
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is as follows: given n groups, we distribute them into a
number of supertours based on similarity of their deadlines.
A supertour is composed of M physical tours. That is, in a
supertour, the MR needs to go back to the ES for M � 1
times for reloading. We order supertours according to the
deadlines aiming to minimize the total amount of residual
energy in sensors to be reclaimed/replaced. Inside each
supertour, we first calculate multiple physical tours to
minimize the total travel distance; then we determine the
sequence of these physical tours according to the deadlines
to minimize the residual energy.

When M gets larger, the total travel distance tends to be
smaller, but the total amount of residual energy in sensors
to be reclaimed/replaced tends to be larger, and vice versa.
Note that when M ¼ 1, the solution is reduced to the case
that the residual energy is minimized first. M is tuned
according to the weights � and � such that Y is minimized.

Algorithm 2 formally presents the supertour heuristic
solution. Step 4 in Algorithm 2 is to divide a supertour into
M physical tours such that the travel distance is minimized,
which is the Capacitated Vehicle Routing Problem (CVRP)
problem, an NP-hard problem. We employ a well-known
and effective heuristic algorithm proposed in [13] to solve it.

Algorithm 2. Super-Tour Heuristic Solution

(for round jþ 2)
Notations:

M: the number of physical tours in a super tour

C: the capacity of the MR

di: the deadline of group i in round jþ 2

eði; diÞ: the amount of residual energy of group i if it is

visited by the MR at phase dðiÞ in round jþ 2

1: Sort all groups gi into a sequence L in an increasing
order based on pair hdi; eði; diÞi (1 � i � n).

2: while L is NOT empty do

3: Construct a super tour ST by reversely traversing

L such that the sum of their demands is less than or

equal to M � C while adding one more group will

make the sum greater than M � C.

4: Divide ST into M physical tours such that the

overall travel distance is minimized.
5: Decide the visiting times to all groups in ST .

6: Remove all groups in ST from L.

In Algorithm 2, Line (1) takes OðnÞ time if the counting
sort algorithm is adopted. Lines (3) and (6) take OðnÞ time
as well. Lines (4) and (5) are executed for at most n times. If
the time to run an instance of CVRP with n stations is T ðnÞ,
the complexity for running lines (4) and (5) is OðnT ðnÞÞ.
Therefore, the overall complexity of the algorithm is
OðnT ðnÞÞ. With the heuristic CVRP solver [13] that we
use, T ðnÞ is an exponential function of n in the worst case
but it is a polynomial function in most cases.

5.2.4 Two Special Topologies

It is an NP-hard problem to deal with arbitrary topology
and divide a supertour into M physical tours in step 4 in
Algorithm 2, and generally some complex heuristics are
necessary. However, we notice that there are two deploy-
ments used in a number of applications of sensor networks

which can be handled in a simpler way. One is the line
topology. The examples include sensor networks deployed
along a highway [14] to monitor the traffic or deployed
along a boundary [15] to detect intrusion. Another is the
ring topology. For example, sensor networks deployed
around a lake [16] exhibit such a topology. In this section,
we introduce two efficient algorithms to handle these
specific scenarios optimally.

Line topology. Fig. 5 shows an example of line topology.
Suppose posts 1; 2; . . . ; 6 are located on a line from left to
right. The ES is to the left of post 1. When the MR makes a
physical tour, it is efficient for it to travel a forward path
and return in the reverse path without zigzags. In this case,
the travel distance of a physical tour is determined by the
furthest group from the ES.

Suppose a supertour includes M physical tours. We
define FGti as the group which is farthest away from the ES
among the groups to be visited in physical tour i
(i ¼ 1; 2; . . . ;M) and define dðFGtiÞ as its distance to the
ES. We assume all tours ti (i ¼ 1; . . . ;M) are sorted
according to the decreasing order of dðFGtiÞ, i.e., dðFGtM Þ
has the smallest value, while dðFGt1Þ has the largest value.

Given M tours, we aim to determine FGti ; i ¼ 1;
2; . . . ;M, such that

XM
i¼1

dðFGtiÞ

is minimized.
Our solution to this problem is as follows: starting from

group FGt1 , which is the farthest group from the ES, we
examine groups one by one along the direction toward the
ES, summing up the demands of the examined groups until
the sum reaches C. These groups form a physical tour.
Among the remaining groups that have not been fully
replenished by tour t1, the group furthest away from the ES
becomes FGt2 . Then, we start from FGt2 , and count the
second physical tour in the same way as determining the
first tour. As this process continues, tours t2; . . . ; tM are
formed one by one, until the ES is reached. Based on this
idea, a greedy algorithm can be developed to make the
optimal travel schedule.

Algorithm 3 formally presents how to determine FGti ,
where i ¼ 1; 2; . . . ;M. The input for Algorithm 3 is a
supertour ðg1; g2; . . . ; gsÞ which is formed in step 3 of
Algorithm 2, where g1 is the nearest group to the ES, and
gs is the farthest group to the ES.

Algorithm 3. Algorithm for Line (4) in Algorithm 2 for

Line Topology

Notations:

FGti ; dðFGtiÞ: defined before
PTi: groups to be visited in physical tour ti; 1 � i �M
gk: the kth group in the super tour, indexed by the

distance to the ES in an increasing order, 1 � k � s
NrðkÞ: the replacement number of group gk
D: total MR travel distance

1: FGt1  gs; sum 0; start FGt1 ; D 0
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2: i 1,k s

3: while k � 1 do

4: sum sumþNrðkÞ
5: if sum > C then

6: if ðsum�NrðkÞÞ ¼ C then

7: PTi ¼ fgstart; . . . ; gkþ1g
8: else

9: /* group gk will be visited in both tour ti
and tiþ1 � =

10: /* generate a new group gk0 */
11: Nrðk0Þ  C � ðsum�NrðkÞÞ
12: PTi ¼ fgstart; . . . ; gkþ1g [ gk0
13: NrðkÞ ¼ sum� C
14: sum 0; start k; i iþ 1; D Dþ dðFGtiÞ�2
15: else

16: k k� 1

17: PTi ¼ fgstart; . . . ; gkþ1g; D Dþ dðFGtiÞ�2
18: RETURN (ft1; t2; . . . ; tMg; D)

In Algorithm 3, the while loop from Line (3) to Line (16)

dominates the running time, and each statement in the loop

is executed at most once. Therefore, the time complexity of

Algorithm 3 is OðsÞ. As a result, if we use Algorithm 3 to

implement Step 4 in Algorithm 2 for the line topology, the

time complexity isOðnþ
Pr

i¼0 siÞ ¼ OðnÞ, where r is the total

number of supertours in Algorithm 2 and si is the number of

groups in supertour i.
Ring topology. Fig. 6 shows an example of ring

topology. For the ring topology, we still employ a greedy

heuristic. Our algorithm is described as follows: given each

group in a supertour, we consider it as a start point, sum up

the demands of groups until the sum reaches C in the

counterclockwise direction to form the first physical tour,

and then continue to form the second physical tour, and so

on and so forth. After all the physical tours are formed, we

compute the total travel distance. We will choose the set of

physical tours which has the minimum total travel distance.

Algorithm 4 shows this process.

Algorithm 4. Algorithm for Line (4) in Algorithm 2 for Ring

Topology
Notations:

S: current set of physical tours

Smin: the set of physical tours with the minimum

travel distance

D0: total MR travel distance of S

D0min: total MR travel distance of Smin
gk: the kth group in the super tour, 1 � k � s. gk and

gkþ1 are physically adjacent

1: Smin ¼ �;D0min ¼ 1
2: for k 1 to s do

3: reorder ðg1; g2; . . . ; gsÞ as ðgk; . . . ; gs; g1; . . . ; gk�1Þ
4: call a modified version of Algorithm 3 with sequence

ðgk; . . . ; gs; g1; . . . ; gk�1Þ
5: ðS;D0Þ ¼ ðft1; t2; . . . ; tMg; DÞ
6: if D0 < D0min then

7: Smin ¼ S;D0min ¼ D0
8: RETURN ðSmin;D0minÞ

Line (4) in Algorithm 4 calls a modified version of

Algorithm 3. The differences between this modified version

and the original version are as follows:

. In the modified version, for any tour, if all groups
are on one half of the ring, the MR’s travel distance
in this tour is twice the distance of the farthest group
to the ES.

. In the modified version, if some groups in a tour are
on the left half ring, and other groups are on the
right half ring, we consider two cases. Assume that
on the left half ring, the farthest group from the ES is
gl with distance dðglÞ, and on the right half ring, the
farthest group from the ES is gr with distance dðgrÞ.

- If the distance between gl and gr across the
boundary opposite to the ES of the two half
rings is less than half of the perimeter of the
ring, the tour becomes the whole ring, and the
MR travel distance is the perimeter of the ring.

- Otherwise, the tour is composed of two sub-
tours, each of which starts from the ES, goes to
either gl or gr, and goes back to the ES. The MR
travel distance is 2ðdðglÞ þ dðgrÞÞ.

The time complexity of Algorithm 4 is Oðs2Þ since Lines

(2) to (7) run for OðsÞ times, and each execution of Line (4)

takes OðsÞ. When we use Algorithm 4 to implement Step 4

in Algorithm 2, the time complexity of Algorithm 2

becomes Oðnþ
Pr

i¼0 s
2
i Þ � Oðn2Þ, recalling r is the total

number of supertours and si is the number of groups in

supertour i.
In the following, we show that Algorithm 4 in fact

returns the optimal set of physical tours for ring topology.

Theorem 5.1. Algorithm 4 returns a visiting scheme with travel

distance the same as theoretical optimum value for ring topology.

Proof. Let S be the physical tour set returned by the greedy

algorithm, and its travel distance is DS . Now given any

other physical tour set S0, which is not returned by the

greedy algorithm, we claim that DS0 � DS .
By examining the property of the greedy algorithm, it

explores all possible consecutive neighboring groups
into physical tours, and returns a physical tour set with
the minimum travel distance.

Hence, in set S0, there must be some physical tours, in
which groups are not consecutive. For instance, in Fig. 7,
physical tour ti contains three groups: A;B, and E,
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which are not consecutive. However, we can transform
the nonconsecutive physical tours into consecutive ones
without increasing the travel distance of S0. The basic
idea is as follows: we first pick the group that is farthest
from the ES, and assume this group is in tour ti in S0. We
next exchange nonconsecutive groups in ti for consecu-
tive ones in other groups. Take Fig. 7 as an example.
Suppose A is the farthest group from the ES, and
NrðCÞ; NrðDÞ, and NrðEÞ represent the replacement
numbers of group C;D, and E, respectively, with
equation NrðEÞ ¼ NrðCÞ þNrðDÞ satisfied. Assuming
group C is in tour tj, and group D in group tk; ti will
exchange NrðCÞ sensors of group E for group C in tj,
and NrðDÞ sensors of group E for group D in tk. Note
that group E is in both tours tj and tk after the
transformation. As a result, none of the physical tours
in S0 has its travel distance increased.

Repeatedly applying the above steps to other non-
consecutive groups, we will finally get a set of physical
tours which only contain consecutive neighboring
groups without increasing the travel distance. Hence,
the greedy algorithm returns a solution which is no
worse than the optimum value. tu

6 PERFORMANCE EVALUATION

6.1 Experimental Methodology

We built a custom simulator using C++ to evaluate the

performance of the proposed scheme. In all experiments,

we normalize the full energy level of a sensor to 400 units

and the energy consumption rate to 0.1 unit/minute. Thus,
each sensor’s lifetime � is 4,000 minutes. The length of a

phase is set to 10 minutes. The length of a round l is set to

4,000 minutes except the experiment studying the impact of

the number of sensors deployed in a group, i.e., group size,

on the performance. We set Nmin ¼ 6 and Nmax ¼ 16 for all

groups except the comparative study between our scheme
and the optimum solution on a small-scale network.

Except the experiment studying the impact of group size

on the performance, group size is set to 32. Note that when

Nmax is 16 and a sensor’s lifetime is equal to a round length, a

group of 32 sensors means initially deployed sensors are able

to guarantee the quality of service for two rounds in the
worst case scenario. The MR has a capacity of 80 sensors, and

its speed is 20 meters/minute unless otherwise mentioned.
In practice, surveillance number is determined by the

application, as well as the real-time frequency and distribu-

tion of events. In our simulation, we consider two types of

distributions of the number: the linear decrease distribution

and the Gaussian distribution.

. Linear decrease. The Probability Density Function
(pdf) of surveillance number linearly decreases as
surveillance number increases. Specifically, the pdf
for surveillance number i 2 ½Nmin;Nmax� is

fðiÞ ¼ Nmax � iþ 1PNmax

k¼Nmin
ðk�Nmin þ 1Þ

:

. Gaussian. We deploy Gaussian distribution Nð� ¼
Nmin; �

2 ¼ 4Þ and truncate it to the range ½Nmin;Nmax�.
We conducted the following sets of experiments: studying
the trade-off between the residual energy in sensors to be
reclaimed/replaced and the MR’s travel distance, comparing
the supertour heuristic solution and a naive solution,
comparing the supertour heuristic solution and the optimal
solution, studying the impact of MR’s capacity on the
performance, and studying the impact of group size on the
performance. The first set of experiments is conducted on
three network topologies: line, ring, and arbitrary, while
other experiments are conducted on the arbitrary topology.
For each topology, 36 groups of sensors are distributed in the
network field. For each experiment, our algorithm is executed
for a long time period, starting at 0 and ending at a cutoff time.
The cutoff time is set to 40,000 minutes for all experiments.
Furthermore, we run each simulation for 20 times and take
the 95 percent confidence interval for each evaluated metric.

6.2 Simulation Results

6.2.1 Trade-Off between Residual Energy in Sensors

and MR’s Travel Distance

In this section, we study the trade-off between the amount
of residual energy in sensors to be reclaimed/replaced and
the MR’s travel distance, by measuring and showing the
energy amount and the travel distance as functions of the
number of physical tours in a supertour (i.e., system
parameter M).

Line topology. We deploy 36 sensor groups with even
interval on a straight line with a length of 3;600 m as shown in
Fig. 8a. The energy station is located at the position 0. Figs. 9a
and 9b show how the total residual energy in reclaimed/
replaced sensors and MR’s travel distance changes as M

varies. As can be seen, when M increases, the total residual
energy in sensors to be reclaimed/replaced increases, while
the total travel distance decreases. The value of M leverages
the two optimization factors in (2). When M ¼ 1, it
corresponds to the energy-first heuristic, since there is only
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Fig. 8. Line and ring topology for experimental setting. The solid square
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one physical tour in a supertour; whileM ¼ 8, it corresponds
to the distance-first heuristic since the MR can visit all the
sensors in one supertour.

Ring topology. We deploy 36 sensor groups along a circle

with a perimeter 7,200 m as shown in Fig. 8b. Thirty-two
sensor groups are on the right side of the circle, and four
sensors are on the left side of the circle. Any two adjacent
groups have a distance of 100 m. Figs. 10a and 10b show
how the residual energy in sensors to be reclaimed/

replaced and the MR’s travel distance changes as the
number of physical tours in a supertour varies. The figures
illustrate the same trend as in the line topology case.

Arbitrary topology. In this experiment, we study in the
arbitrary topology the trade-off between the amount of

residual energy in sensors to be reclaimed/replaced and the
MR’s travel distance, as M varies. At the same time, we also
compare our supertour heuristic solution with a naive
solution. The naive solution works in the following way: the

MR visits all groups in a fixed order in all rounds. In a

round, whenever the MR has deployed all the fully charged

sensors it carries, it goes back to the ES for reloading. Note

that sensors in all groups still perform the proposed local-

tier scheduling algorithm in this case.
We deploy 36 groups of sensors in a 1;000 m�1;000 m

square field at random. Figs. 11a and 11b show how the

amount of residual energy in sensors to be reclaimed/

replaced and the MR’s travel distance changes as M varies.

As can be seen, the figures illustrate the same trend as in the

line and ring topologies case. Furthermore, for all values of

M, the both metrics of the supertour heuristic solution are

considerably better than those of the naive solution. For

instance, when M ¼ 2 in the Gaussian distribution case, the

travel distance and the amount of residual energy in sensors

to be reclaimed/replaced of the supertour heuristic solution

are 31 and 23.7 percent lower than those of the naive

solution, respectively.

6.2.2 Comparison between Supertour Heuristic and

Optimal Solution

Due to the NP-Completeness nature of the problem, we

cannot work out the optimal solution for a network with a

practical size. However, for a network small enough, we can

work out the optimal solution by enumerating all the

possible travel schedules and get the best one. In the

experiment, we randomly deploy nine groups into a 500 m �
500 m square field. The MR has a capacity of 10 sensors, and

its speed is set to 10 meters per minute. In the experiment,

we use object value Y in (2) with � ¼ 5 and � ¼ 1 as the

performance metric.
Fig. 12 shows the performance difference between the

supertour heuristic solution and the optimal solution in the

Gaussian distribution case. The y-axis of Fig. 12 is object value

Y in (2). From the figure, we can see, when M ¼ 4, the object

value of the supertour heuristic solution is only 0.8 percent

higher than the optimal value. Even though the result is from

a small size problem, we still can see the effectiveness of our

proposed heuristic. Note that even though the objective value
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Fig. 9. Impact of number of physical tours in a supertour. (a) Line: linear
decrease. (b) Line: Gaussian.

Fig. 10. Impact of number of physical tours in a supertour. (a) Ring:
linear decrease. (b) Ring: Gaussian.

Fig. 11. Impact of M. (a) Arbitrary: linear decrease. (b) Arbitrary:
Gaussian.



is worse whenM is smaller than 4, through simulation, theM
which makes the best result can be found out and used.

6.2.3 Impact of MR’s Capacity

In this experiment, we randomly deploy 36 groups of
sensors in a 1;000 m � 1;000 m square field, and set M ¼ 2.
The capacity of the MR is varied among f40; 50; 60; 70; 80g
sensors. As can be seen from Fig. 13, both performance
metrics decrease as the MR carries more sensors. With
higher capacity, the MR can pay less number of trips to
finish the replenishment process, and thus travel shorter in
total. On the other hand, since the MR is able to finish the
replenishment process in a shorter time, groups tend to be
visited later by the MR and thus have more chance to use
the energy in the sensors to be reclaimed/replaced. In
general, larger capacity is beneficial.

6.2.4 Impact of Group Size

In this experiment, we also deploy 36 groups of sensors in a
1;000 m � 1;000 m square field at random, and set M ¼ 2.
Group size is varied among f24; 28; 32; 36; 40g sensors.
Round length l also varies with group size since larger
group size can allow more delay for replacement given fixed
Nmax. Given a group size s; s and l satisfy s ¼ d2ðl=�ÞNmaxe.

In Fig. 14, both the total residual energy and the total
travel distance decrease as round length increases. The
decrease of the former metric is because longer round
length (as a result of larger group size) gives groups more
chances to use up the energy in the sensors before they
are reclaimed/replaced. The decrease in total travel
distance can be explained as follows: let us first consider
the average length of a tour. When round length increases,

each group has more sensors to be replaced in one round,
which implies a less number of visiting destinations in each
tour and hence shorter distance for each tour. Next,
consider the number of tours during the entire simulation
time (40,000 minutes). As round length increases, the
number of tours needed in a round increases; but the total
number of rounds decreases given the fixed cutoff time.
The total number of tours is the result of joint effects of
these two conflicting factors. By checking simulation traces,
we find that the number of tours generally decreases as
round length increases. Since both the average length of a
tour and the total number of tours decrease, the total travel
distance decreases.

This experiment shows that larger group size reduces the
total MR travel distance in the long run.

7 DISCUSSIONS

We now discuss some practical issues in implementing the
ARTS scheme. First, the ARTS scheme treats failed sensors
the same as sensors drained of energy, i.e., failed sensors
will be replaced by the MR. We employ the following
method to detect sensor failures. At the time for scheduling
(i.e., at the beginning of a phase), a sensor u that is chosen to
be active in the phase, should broadcast a message to all
sensors in the group. Other sensors also know which
sensors shall be active for the phase. If they do not receive
the message from sensor u, they assume sensor u has failed.
Hence, they rerun the local-tier scheduling algorithm to
select another active sensor to replace sensor u.

In the local-tier scheduling, sensors in a group may have
different views regarding the amount of remaining energy
in all sensors due to sensor failure or other reasons. To
address this issue, we let each sensor broadcast its amount
of remaining energy at the beginning of a phase every
certain number of phases. When other sensors receive this
information, they update their record accordingly.

8 RELATED WORK

To prolong sensor network lifetime, duty-cycling schemes
[6], [17], [18] have been proposed, with which sensor nodes
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Fig. 12. Comparison between supertour heuristic and optimal solution.

Fig. 13. Impact of capacity. (a) Linear decrease. (b) Gaussian.

Fig. 14. Impact of group size. (a) Linear decrease. (b) Gaussian.



spend most of their lifetime in the sleeping state. They may
slow down energy consumption in sensor nodes, but cannot
replenish energy to the network. Therefore, the lifetime of
the network is inherently limited by the amount of energy
preloaded to sensor nodes. Schemes [1], [19], [20] have also
been proposed to balance energy consumption among
sensor nodes. However, they do not always pick the most
energy-efficient sensor nodes to perform a certain task, and
thus may consume more than necessary energy.

Researchers have studied environmental energy such as
sunlight and acoustic vibrations [1], [2], [3], [4], [5], [21],
[22], [23]. In these schemes, part or all sensor nodes are
equipped with environmental energy harvesting devices,
e.g., solar cells, and they harvest environmental energy in
an opportunistic fashion. These schemes have the following
practical issues: 1) They deeply rely on uncontrollable
environment conditions. For instance, cloudy skies may
prevent a sensor node from harvesting solar energy. 2) In
some cases, the amount of environmental energy a sensor
node can harvest is proportional to the size of the energy
harvesting device. For instance, the energy that a solar cell
can harvest is proportional to its surface area. It may be
infeasible to equip a tiny sensor with large energy harvest-
ing devices.

Numerous schemes [24], [25], [26] deploy sensor nodes
incrementally to extend network lifetime. When sensor
nodes fail or are drained of energy, a controller will deploy
new sensor nodes to replace them. This approach seems to
be a convenient solution; however, it is not environmental
friendly or practical in many scenarios. For example, in the
applications of natural environmental monitoring [27],
continually deploying sensor nodes without reclaiming
the deserted ones may pollute the environment.

Mobility-based data collection schemes are closely related
to our scheme. In [28], the authors classified mobility-based
data collection schemes into three categories: the mobile base
station-based schemes, the mobile data collector-based schemes,
and the rendezvous-based schemes. In the mobile base station-
based approaches [19], [20], mobile base stations (i.e., sinks)
need to move to different locations periodically to balance
the network traffic. The frequent movement of base stations
may consume large amount of energy for both motion and
maintaining the communication paths between sensors and
the base stations; further, base stations may not be allowed to
move in some scenarios (e.g., they are connected via wires to
the Internet). In the mobile data collector-based approaches
[29], [30], [31], [32], [33], a set of mobile data collectors
traverse the network periodically to collect the data
generated and buffered at sensors, while in the rendez-
vous-based approaches [34], sensors send their data to
designated rendezvous nodes, which are visited by mobile
data collectors periodically for data collection.

The Traveling Salesman Problem [35], [36] and the
Vehicle Routing Problem with Time Windows [9], [10],
which are closely related to our global-tier scheduling, have
been extensively studied in the operational research.

9 CONCLUSION

In this paper, we proposed an NRR strategy and an adaptive
rendezvous-based two-tier scheduling scheme to meet the

challenges of designing an efficient WSN for long-term tasks.
To the best of our knowledge, we are the first to propose the
NRR strategy to combat the challenging problem.

In the future, we plan to study the impact of various
realistic issues on our design and explore other design
choices for the NRR System. Especially, we aim to improve
our schemes in the following aspects: first, the current
model assumes all sensors to consume a fixed amount of
energy � in each phase. In reality, based on sensor’s
workload and other factors, different sensors may consume
energy at different rates, and a sensor may consume energy
at different rates at different phases. The dynamics will be
studied in our future work. Second, in our schemes, the MR
always reclaims the same number of sensors as it redeploys
when it visits a group. We plan to study how our schemes
are affected if the number of reclaimed sensors is different
from the number of redeployed ones.

ACKNOWLEDGMENTS

A preliminary version of this work appears on the
proceedings of the Sixth Annual IEEE Communications
Society Conference on Sensor, Mesh and Ad Hoc Commu-
nications and Networks (SECON 2009) [12]. The work was
partially supported by US National Science Foundation
(NSF) grants CNS-0831874 and CNS-0831906.

REFERENCES

[1] K. Zeng, K. Ren, W. Lou, and P.J. Moran, “Energy-Aware
Geographic Routing in Lossy Wireless Sensor Networks with
Environmental Energy Supply,” Proc. Int’l Conf. Quality of Service
in Heterogeneous Wired/Wireless Networks (QShine ’06), pp. 8-17,
2006.

[2] V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M.
Srivastava, “Design Considerations for Solar Energy Harvesting
Wireless Embedded Systems,” Proc. Int’l Symp. Information
Processing in Sensor Networks (IPSN ’05), pp. 457-462, 2005.

[3] A. Kansal, J. Hsu, M.B. Srivastava, and V. Raghunathan,
“Harvesting Aware Power Management for Sensor Networks,”
Proc. Ann. Design Automation Conf. (DAC ’06), pp. 651-656, 2006.

[4] A. Kansal and M.B. Srivastava, “An Environmental Energy
Harvesting Framework for Sensor Networks,” Proc. Int’l Symp.
Low Power Electronics and Design (ISLPED ’03), pp. 481-486, 2003.

[5] A. Kansal, D. Potter, and M.B. Srivastava, “Performance Aware
Tasking for Environmentally Powered Sensor Networks,” Proc.
ACM SIGMETRICS, pp. 223-234, 2004.

[6] T. He, S. Krishnamurthy, L. Luo, T. Yan, L. Gu, R. Stoleru, G.
Zhou, Q. Cao, P. Vicaire, J.A. Stankovic, T.F. Abdelzaher, J. Hui,
and B. Krogh, “Vigilnet: An Integrated Sensor Network System for
Energy-Efficient Surveillance,” ACM Trans. Sensor Networks, vol. 2,
no. 1, pp. 1-38, 2006.

[7] S. Yoon, C. Veerarittiphan, and M.L. Sichitiu, “Tiny-Sync: Tight
Time Synchronization for Wireless Sensor Networks,” ACM Trans.
Sensor Networks, vol. 3, no. 2, pp. 8-40, 2007.

[8] Q. Li and D. Rus, “Global Clock Synchronization in Sensor
Networks,” IEEE Trans. Computers, vol. 55, no. 2, pp. 214-226, Feb.
2006.

[9] M. Desrochers, J. Lenstra, M. Savelsbergh, and F. Soumis, Vehicle
Routing with Time Windows: Optimization and Approximation,
pp. 65-84. Dept. of Operations Research and System Theory,
Centrum voor Wiskunde en Informatica, 1987.

[10] “The vrp Web,” http://neo.lcc.uma.es/radi-aeb/WebVRP/, 2007.
[11] J.K. Lenstra and A.H.G.R. Kan, “Complexity of Vehicle Routing

and Scheduling Problems,” Networks, vol. 11, no. 2, pp. 221-227,
1981.

[12] B. Tong, G. Wang, W. Zhang, and C. Wang, “Node Reclamation
and Replacement for Long-Lived Sensor Networks,” Proc. Ann.
IEEE Comm. Soc. Conf. Sensor, Mesh and Ad Hoc Comm. and
Networks (SECON ’09), pp. 592-600, 2009.

1562 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2011



[13] T. Liebling, D. Naddef, and L.A. Wolsey, “On the Capacitated
Vehicle Routing Problem,” Math. Programming, vol. 94, nos. 2/3,
pp. 343-359, 2003.

[14] M.I. Brownfield and N.J. Davis, “Symbiotic Highway Sensor
Network,” Proc. Vehicular Technology Conf., pp. 2701-2705, 2005.

[15] B. Liu, O. Dousse, J. Wang, and A. Saipulla, “Strong Barrier
Coverage of Wireless Sensor Networks,” Proc. Int’l Symp. Mobile
Ad Hoc Networking and Computing (MobiHoc ’08), pp. 411-420, 2008.

[16] L. Zhang, X. Zhou, and Q. Cheng, “Landscape-3D; A Robust
Localization Scheme for Sensor Networks over Complex 3D
Terrains,” Proc. IEEE Conf. Local Computer Networks (LCN ’06),
pp. 239-246, 2006.

[17] S. Du, A.K. Saha, and D.B. Johnson, “RMAC: A Routing-Enhanced
Duty-Cycle Mac Protocol for Wireless Sensor Networks,” Proc.
IEEE INFOCOM, pp. 1478-1486, 2007.

[18] F. Wang and J. Liu, “Duty-Cycle-Aware Broadcast in Wireless
Sensor Networks,” Proc. IEEE INFOCOM, pp. 468-476, 2009.

[19] W. Wang, V. Srinivasan, and K. Chua, “Using Mobile Relays to
Prolong the Lifetime of Wireless Sensor Networks,” Proc. ACM
MobiCom, pp. 270-283, 2005.

[20] J. Luo and J.-P. Hubaux, “Joint Mobility and Routing for Lifetime
Elongation in Wireless Sensor Networks,” Proc. IEEE INFOCOM,
pp. 1735-1746, 2005.

[21] M. Rahimi, H. Shah, G.S. Sukhatme, J. Heidemann, and D. Estrin,
“Studying the Feasibility of Energy Harvesting in a Mobile
Sensor Network,” Proc. IEEE Int’l Conf. Robotics and Automation
(ICRA ’03), pp. 19-24, 2003.

[22] C.M. Vigorito, D. Ganesan, and A.G. Barto, “Adaptive Control of
Duty Cycling in Energy-Harvesting Wireless Sensor Networks,”
Proc. Ann. IEEE Comm. Soc. Conf. Sensor, Mesh and Ad Hoc Comm.
and Networks (SECON ’07), pp. 21-30, 2007.

[23] C. Alippi and C. Galperti, “An Adaptive System for Optimal Solar
Energy Harvesting in Wireless Sensor Network Nodes,” IEEE
Trans. Circuits and Systems I, vol. 55, no. 6, pp. 1742-1750, July 2008.

[24] P. Corke, S. Hrabar, R. Peterson, D. Rus, S. Saripalli, and G.
Sukhatme, “Autonomous Deployment and Repair of a Sensor
Network Using an Unmanned Aerial Vehicle,” Proc. IEEE Int’l
Conf. Robotics and Automation (ICRA ’04), pp. 3602-3608, 2004.

[25] L. Filipe, M. Augusto, L. Ruiz, A. Alfredo, D. Ceclio, and A.
Fernandes, “Efficient Incremental Sensor Network Deployment
Algorithm,” Proc. Brazilian Symp. Computer Networks, pp. 3-14,
2004.

[26] Y. Mei, C. Xian, S. Das, Y.C. Hu, and Y.-H. Lu, “Sensor
Replacement Using Mobile Robots,” Computer Comm., vol. 30,
no. 13, pp. 2615-2626, 2007.

[27] W. Hu, V. Tran, N. Bulusu, C. Chou, S. Jha, and A. Taylor, “The
Design and Evaluation of a Hybrid Sensor Network for Cane-
Toad Monitoring,” Proc. Int’l Symp. Information Processing in Sensor
Networks (IPSN ’05), pp. 503-508, 2005.

[28] E. Ekici, Y. Gu, and D. Bozdag, “Mobility-Based Communication
in Wireless Sensor Networks,” IEEE Comm. Magazine, vol. 44,
no. 7, pp. 56-62, July 2006.

[29] R.C. Shah, S. Roy, S. Jain, and W. Brunette, “Data MULEs:
Modeling and Analysis of a Three-Tier Architecture for Sparse
Sensor Networks,” Ad Hoc Networks, vol. 1, nos. 2/3, pp. 215-233,
2003.

[30] A.A. Somasundara, A. Ramamoorthy, and M.B. Srivastava,
“Mobile Element Scheduling for Efficient Data Collection in
Wireless Sensor Networks with Dynamic Deadlines,” Proc. IEEE
Int’l Real-Time Systems Symp. (RTSS ’04), pp. 296-305, 2004.

[31] Y. Gu, D. Bozdag, E. Ekici, F. Ozguner, and C. Lee, “Partitioning
Based Mobile Element Scheduling in Wireless Sensor Networks,”
Proc. Ann. IEEE Conf. Sensor, Mesh and Ad Hoc Comm. and Networks
(SECON ’05), pp. 386-395, 2005.

[32] O. Tekdas, J. Lim, A. Terzis, and V. Isler, “Using Mobile Robots to
Harvest Data from Sensor Fields,” IEEE Wireless Comm., vol. 16,
no. 1, pp. 22-28, Feb. 2009.

[33] M. Dunbabin, P. Corke, I. Vasilescu, and D. Rus, “Data Muling
over Underwater Wireless Sensor Networks Using an Autono-
mous Underwater Vehicle,” Proc. IEEE Int’l Conf. Robotics and
Automation (ICRA ’06), pp. 2091-2098, 2006.

[34] D. Jea, A.A. Somasundara, and M.B. Srivastava, “Multiple
Controlled Mobile Elements (Data Mules) for Data Collection in
Sensor Networks,” Proc. Int’l Conf. Distributed Computing in Sensor
Systems (DCOSS ’05), pp. 244-257, 2005.

[35] D.L. Applegate, R.E. Bixby, V. Chvatal, and W.J. Cook, The
Traveling Salesman Problem: A Computational Study. Princeton Univ.
Press, 2007.

[36] S. Arora, “Polynomial Time Approximation Schemes for Eucli-
dean Traveling Salesman and Other Geometric Problems,”
J. ACM, vol. 45, no. 5, pp. 753-782, 1998.

Bin Tong received the BE degree from Xi’an
Jiaotong University, China, and the MS degree
from East-China Institute of Computing Tech-
nology, China, both in computer science. He
received the PhD degree in computer science
from Iowa State University in 2009. He is
currently with Microsoft. His research areas lie
in wireless sensor networks and distributed
systems. He is a member of the IEEE.

Guiling (Grace) Wang received the BS degree
from Nankai University, China. She received the
PhD degree in computer science and engineer-
ing and a minor in statistics from Pennsylvania
State University in May 2006. She joined the New
Jersey Institute of Technology as an assistant
professor after that. Her research interests
include distributed systems, wireless networks,
and mobile computing with a focus on wireless
sensor networks. She is a member of the IEEE.

Wensheng Zhang received the BS degree from
Tongji University, Shanghai, China, and the MS
degree from Chinese Academy of Sciences. He
received the PhD degree in computer science
from the Pennsylvania State University in 2005.
Since then, he has been with the Department of
Computer Science at Iowa State University as
an assistant professor. His research interests
are wireless networks and network security. His
research is sponsored by US National Science

Foundation (NSF). He is a member of the IEEE and the ACM.

Chuang Wang received the BE and ME
degrees in computer science from Xi’an Jiao-
tong University, in 2003 and 2006, respectively.
He is working toward the PhD degree at Iowa
State University. His research interests include
privacy and security issues in wireless networks.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

TONG ET AL.: NODE RECLAMATION AND REPLACEMENT FOR LONG-LIVED SENSOR NETWORKS 1563


