
390 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 63, NO. 1, JANUARY 2014

Access Points Planning in Urban Area for Data
Dissemination to Drivers

Tan Yan, Wensheng Zhang, Guiling Wang, and Yujun Zhang

Abstract—Roadside infrastructure can greatly help disseminate
data to drivers. In this paper, we study a fundamental problem,
i.e., roadside infrastructure planning. We propose a class of algo-
rithms named Tailor to select a minimum number of intersections
to install the infrastructure. In the case when the traffic infor-
mation is not available, we formulate the intersection selection
problem, which formally proves its np-completeness, and pro-
vide novel heuristics, i.e., the adapted-bipartite-based heuristics
(ABS), to solve it, whose worst-case approximation ratio is 4/3.
ABS bridges the planar graph and the bipartite graph through
topology transformation. With ABS, the approximate solution to
all the problems that are NP-hard in a general planar graph
but polynomially solvable in a bipartite graph can be efficiently
obtained in the planar graph. We also prove that, even with traffic
information, the intersection selection problem remains NP-hard.
Greedy heuristics is employed to balance the tradeoff between the
number of selected intersections and the percentage of reached
vehicles.

Index Terms—Graph theory, heuristics, NP-complete, vehicular
ad hoc network (VANET).

I. INTRODUCTION

THE UNITED STATES is a nation on wheels. Driving plays
an important role in people’s daily life. Providing drivers

with timely and helpful information can greatly improve road
safety and reduce congestion. On the other hand, drivers are
an important group of customers. To reach them effectively
through advertisement is the very desire of a large number
of companies. Therefore, effective and efficient schemes to
disseminate data to drivers are in great demand for both safety
and commercial applications.

Current research in data dissemination to drivers is generally
conducted in vehicular ad hoc networks (VANETs) through
epidemic propagation with or without the help of roadside
infrastructure [1]–[3]. Epidemic propagation without roadside
infrastructure is generally of high overhead and can only
reach drivers with the best effort, considering the sporadic

Manuscript received September 23, 2012; revised January 19, 2013 and
April 9, 2013; accepted June 6, 2013. Date of publication July 11, 2013;
date of current version January 13, 2014. This work was supported by the
National Science Foundation under Grant 1128369. The review of this paper
was coordinated by Prof. J. Misic.

T. Yan and G. Wang are with the Department of Computer Science, New
Jersey Institute of Technology, Newark, NJ 07102-1982 USA (e-mail: ty7@
njit.edu; gwang@njit.edu).

W. Zhang is with the Department of Computer Science, Iowa State Univer-
sity, Ames, IA 50011 USA (e-mail: wzhang@cs.iastate.edu).

Y. Zhang is with the Institute of Computing Technology, Chinese Academy
of Science, Beijing 100190, China (e-mail: zhmj@ict.ac.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVT.2013.2272724

disconnection between vehicles. In many situations, without
infrastructure, reaching every vehicle with critical information
is simply infeasible. The involvement of roadside access points
can greatly reduce the overhead of data dissemination, improve
its effectiveness, and guarantee that all vehicles can be reached.

With the development and advancement of technology and
economy, roadside access points are expected to be widely
deployed in the near future, particularly in urban areas. Re-
search on data dissemination with a roadside station generally
focuses on how to fully utilize the infrastructure to facilitate the
dissemination [4]. In this paper, instead, we address a funda-
mental problem: How do we provide roadside infrastructures in
a specific area so that all the vehicles or a desired percentage of
vehicles are guaranteed to be reached when they move around
in the area? We observe that, in urban area, a vehicle driving
around visits intersections. If information is disseminated at one
of the intersections, this vehicle can receive the information
when it passes the intersection. To reach all the vehicles in
the area, we aim to select multiple intersections so that all the
vehicles driving in the area will pass by at least one of the
selected intersections.

The research on this paper can be applied to two scenarios.
First, a city has no roadside access points, and the city hall or
some companies need to determine intersections to install ac-
cess points. Second, the dissemination area already have many
access points provided by coffee shops, cafes, and companies.
An agency needs to disseminate data and determines which
access points to rent to conduct the dissemination.

We tackle the problem in two steps. First, we determine the
intersections to install access points or determine the available
access points to rent, so that it is guaranteed that every vehicle
in the area can be reached. This is for the dissemination of
sensitive information, such as safety information. The objective
of this paper is to minimize the number of access points to
reduce cost. Second, when it is not necessary to reach all
the vehicles and there is limited budget, we determine the
intersections to install access points to maximize the percentage
of vehicles that are guaranteed to be reached given a budget.
Additionally, a guideline will be provided about the tradeoff
between construction or renting cost and the percentage of
drivers that can be reached.

In the first step, we consider the most general case in which
all the possible paths can be taken by drivers. The objective is to
calculate a set of intersections, every possible path taken by the
drivers intersects at least one of which. The problem is named
topology-aware intersection selection (TIS) problem. We prove
that minimizing the number of selected intersections in TIS
is NP-complete since the hitting set problem [5], which is a

0018-9545 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

YAN et al.: ACCESS POINTS PLANNING IN URBAN AREA FOR DATA DISSEMINATION TO DRIVERS 391

well-known NP-complete problem, can be reduced to TIS.
We propose novel polynomial-time heuristics, i.e., adapted
bipartite-based heuristics (ABS), to tackle this NP-C problem,
and to theoretically prove that the approximation ratio of ABS
is bounded by 4/3. This means that, if the minimum number
of intersections to cover all the possible paths is N , in the
worst case, ABS selects at most 4/3N intersections to cover
the whole area. ABS is motivated by an observation. The vertex
cover problem in bipartite graphs is polynomial-time solvable.
We prove that if there exists an algorithm that solves the vertex
cover problem in polynomial time, this algorithm solves TIS
in polynomial time. Therefore, to solve TIS for a general
geographic area, we first identify the relationship between
the geographic area and a bipartite graph. Then, we design
a novel algorithm to adjust the topology of the geographic
area and transform it into a bipartite graph. The exact solution
for the transformed bipartite graph is calculated using existing
polynomial algorithms [6]. Finally, we convert the graph back
to its original form and employ a series of rules to adjust the
solution and thus solve the problem for the general geographic
area. The whole scheme of the first step is named Tailor-p.

In the second step, we aim to further reduce the number
of necessary installations by taking traffic information into
consideration. Among all the theoretical possible paths, vehi-
cles’ real trajectories are only a subset. For example, in most
cases, it is not likely that a driver drives back and forth in
an area or keeps driving in a circle. Therefore, if the traffic
information is known, we can further reduce the number of
access points but can still reach all the vehicles. We call it the
traffic correlation (TC) problem and prove that it is np-complete
because the dominating set problem [5], which is a well-known
np-complete problem, can be reduced to it. We employ the
greedy heuristics, which is recognized as the best heuristics to
get an approximation solution to similar problems [7]. Then, we
relax the requirement to reach all the vehicles, consider budget
constraint, and aim to balance between construction cost and
the percentage of vehicles that can be reached. The employment
of greedy heuristics can naturally achieve the goal. We call the
scheme of the second step Tailor-f.

To summarize, the contributions of this paper are three-fold.

1) We formulate the intersection selection problem, which
formally proves its NP-completeness, and provide smart
heuristics that can achieve an approximation ratio
bounded by 4/3.

2) ABS, which is the proposed heuristics, bridges a general
planar graph and a bipartite graph with topology trans-
formation. With ABS, the approximate solution to all
the problems that are NP-hard in a general planar graph
but polynomially solvable in a bipartite graph, e.g., an
independent set problem, can be efficiently obtained in
the general planar graph.

3) We prove that, given traffic information, the intersection
selection problem remains NP-complete.

The remainder of this paper is organized as follows. We
present the TIS problem in Section II and the ABS solution
in Section III. The analysis of ABS is given in Section IV
and its evaluation in Section V. The TC problem and the

Fig. 1. Example of a geographical area.

solution Tailor-f and its evaluation are presented in Section VI.
Section VII introduces the related work. Finally, we conclude
this paper in Section VIII.

II. TOPOLOGY-AWARE INTERSECTION

SELECTION PROBLEM

A vehicle driving inside an area may visit multiple inter-
sections. If a message is disseminated on at least one of these
intersections, this vehicle will receive the message when driving
in the area. For reaching all the vehicles driving in the area, in
Tailor-p, we aim to select a minimum number of intersections
of the area, so that the selected intersections intersect all the
possible moving trajectories of vehicles within this area. Here,
we first introduce the notations used in this paper. Then, we
formally define the TIS problem, i.e., the underlying problem
of Tailor-p, and prove its NP-completeness.

Throughout this paper, we use (vi, vj) to represent an edge
connecting vertices vi and vj . We use P (v1, v2, . . . , vk) to de-
note a path from vertex vi, v2, . . ., to vk and F (v1, v2, . . . , vk)
to denote a face composed of vertices v1, v2, . . . , vk and the
corresponding edges.

A. Problem Statement and Proof

Definition 2.1—TIS Problem: The map of the target area can
be viewed as a directed graph G = (V,E), as shown in Fig. 1,
where set V denotes intersections and the set of directed edges
E denotes the set of roads. A directed edge (u, v) ∈ E if and
only if a vehicle can drive from intersection u to intersection v.
A path is a sequence of vertices

Pi(v1, v2, . . . , vm) (1)

where (vj , vj+1) ∈ E for all j, 1 ≤ j ≤ m− 1. The problem is
identifying a set with a minimum number of vertices V ′ ⊆ V ,
such that, for each eligible path Pj , at least one intermediate
node on the path is inside V ′. That is, for every identified Pj ,
Pj ∩ V ′ �= ∅. �

Note that if a coffee shop providing access points is not at an
intersection, we can create a virtual intersection on the graph
without affecting the solution.

Theorem 2.1: The TIS problem is NP-complete. �
Proof of theorem 2.1: To facilitate the proof, we formulate

the decision version of the TIS problem as follows: Given
integer k ≤ |V |, is there a set of vertices V ′ ⊆ V that solves
the problem with |V ′| ≤ k?

392 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 63, NO. 1, JANUARY 2014

It is obvious to see that TIS ∈ NP since a nondeterministic
algorithm needs to only guess a subset of vertices and to check
in polynomial time to determine whether that subset contains
at least one intermediate node of every eligible path and is less
than or equal to k.

We reduce the hitting set problem [5] to the TIS problem.
Let an arbitrary instance of TIS be given by graph G = (V,E).
We construct set A = {a1, . . . , an} and a finite collection
B1, B2, . . . , Bm of subsets of A and claim that A has hitting
set H ⊆ A with |H| ≤ k, such that H ∩Bi �= ∅, 1 ≤ i ≤ m, if
and only if G has a TIS V ′ with |V ′| ≤ k.

To prove the claim, based on graph G = (V,E), we do the
following constructions:{

A = V
Bi = Pi, 1 ≤ i ≤ m
V ′ = H.

(2)

If there is polynomial solution V ′ to the TIS problem with
V ′ ∩ Pi �= ∅ and |V ′| ≤ k, replacing V ′ with H and Pi by Bi,
we obtain solution H for the hitting set problem with H ∩Bi �=
∅ and |H| ≤ k.

Conversely, if H ⊆ A is a polynomial solution to the hitting
set problem in A with |H| ≤ k and H ∩Bi �= ∅ for 1 ≤ i ≤ m,
by replacing H with V ′ and Bi with Pi, we obtain V ′ ∩ Pi �= ∅
and |V ′| ≤ k, i.e., a polynomial solution to the TIS problem.

During the reduction, all the transformations are polynomial
transformation through replacement. By our reduction, graph G
has a polynomial solution to the TIS problem if and only if A
has a polynomial solution to the hitting set problem. Therefore,
the TIS problem is NP-complete. �

B. Analysis

For a geographic area, if the minimum number of intersec-
tions in each eligible path is 1, the solution to TIS becomes
trivial, i.e., we have to select all the intersections of the area to
intersect every possible path. To avoid this extreme case, in this
paper, we assume that the minimum number of intersections in
each eligible path is 2. That is, every vehicle driving in the area
will pass at least two intersections.

We present Theorem 2.2, which is a foundation of the solu-
tion to the TIS problem.

Theorem 2.2: For planar graph G = (V,E), the solution to
the TIS problem is the solution to the vertex cover problem. �

Proof of theorem 2.2: For all the eligible paths in G,
we use P1 to denote the collection of the paths that contain
exactly two intersections and P2 to denote the collection of the
paths that have more than two intersections. According to the
definition of the TIS problem, it is easy to get P1 = E, and
every path in P2 is composed of the edges. Suppose that V ′ is a
minimum vertex cover of graph G and |V ′| ≤ k. By definition,
V ′ intersects all the edges in G. Then, obviously V ′ intersects
all the paths in P1 and P2. Hence, the solution to the vertex
cover problem solves the TIS problem with |V ′| ≤ k. �

From Theorem 2.2, we can see that if there exists an algo-
rithm that solves the vertex cover problem in polynomial time,
this algorithm solves TIS in polynomial time. Clearly, for a
general geographic area, there is no such polynomial solution

Fig. 2. Planar graph with four faces and one dead end.

Fig. 3. Relationship between a planar graph and a bipartite graph.

for either vertex cover or TIS due to the NP-completeness of
both problems. However, for a bipartite graph, the vertex cover
problem can be solved in polynomial time [8], which means the
exact solution to TIS for a bipartite graph can be easily obtained
according to Theorem 2.2.

III. ADAPTED BIPARTITE-BASED HEURISTICS

According to Theorem 2.2, TIS for a bipartite graph can
be solved in polynomial time, which motivates us to propose
our solution, i.e., ABS. ABS transforms a geographic area to
a bipartite graph. We are able to get the exact solution in
the bipartite graph by applying existing algorithms. Then, we
convert the graph back to the original planar graph and adjust
the solution accordingly to solve the problem for the general
geographic area.

Here, we first introduce preliminaries of the planar graph
and the bipartite graph. Then, we present how to do the graph
transformation and the intersection selection.

A. Preliminaries

A planar graph is defined as [8] a graph where all the edges
intersect only at their common vertices. Inside the planar graph,
a face is a circle that does not contain a subcircle. Moreover, if
a vertex inside the region formed by a face and it connects to
only one vertex of the face, this vertex is a “dead end” of the
face. When counting the number of edges in a face, the edge of
the dead end needs to be counted twice. For example, in Fig. 2,
(v4, v6, v7, v8) is a face, whereas (v3, v4, v6, v7, v8) is not. In
face F (v9, v1, v5, v6, v4), edge (v1, v9) is a dead end, and the
number of edges in this face is 6, instead of 5.

A bipartite graph [8] is a graph whose vertices can be divided
into two disjoint sets U and V , such that every edge connects
a vertex in U to one in V . The relationship between the planar
graph and the bipartite graph is shown in Fig. 3. A graph can

YAN et al.: ACCESS POINTS PLANNING IN URBAN AREA FOR DATA DISSEMINATION TO DRIVERS 393

Fig. 4. Example of a planar graph and a bipartite graph.

be both a planar graph and a bipartite graph at the same time.
If all the faces of a planar graph only have an even number of
edges, the graph is a bipartite graph [8]. For example, Fig. 4(b)
is a bipartite planar graph, whereas Fig. 4(a) is not because
it has faces with an odd number of edges. The vertex cover
problem for a bipartite graph is polynomial-time solvable by
transforming to a maximum matching problem using König’s
theorem [8].

B. Philosophy of Topology Transformation

A geographic area consisting of roads and intersections with-
out overpasses is a planar graph because any two intersecting
roads must cross at an intersection. A bipartite planar graph
is both a bipartite graph and a planar graph. The vertex cover
problem in a bipartite planar graph can be solved in polynomial
time. To seek for a solution to the vertex cover problem in a
general planar graph, we propose the idea of transforming a
planar graph to a bipartite planar graph. Our solution is dictated
by such a theorem: If all the faces of a planar graph only has
an even number of edges, it is a bipartite planar graph [8]
Furthermore, if we compare the difference between the planar
graph and the bipartite planar graph, as shown in Fig. 4, we
can see that Fig. 4(b) is almost the same as Fig. 4(a), except
for some detached edges and vertices. This inspires us that,
to discover in a planar graph, if we perform modifications to
transform all the faces with an odd number of edges, we can
transform a planar graph to a bipartite planar graph that “looks
similar” to it.

To transform a face with an odd number of edges to a face
with an even number of edges, one intuitive method is to
delete one of its edges. However, the solution obtained on the
transformed graph is no longer a correct solution on the original
graph. For example, Fig. 5(a) is a face with an odd number of
edges. All the eligible paths in the original topology are listed in
Fig. 5(a). To intersect every path, the selected intersections are
{v2, v4, v5}. After deleting edge (v3, v4), Fig. 5(b) is no longer
a face. In this transformed graph, to intersect every path, the
solution is {v2, v5}. Hence, vertex v4 is not selected because
edge (v3, v4) is no longer an eligible path in Fig. 5(b). This
example shows that removing an edge invalidate the correctness
of the solution because it removes all the valid paths that the
edge is a part of. Thus, vertices connecting to the removed paths
are not selected, although they should.

Fig. 5. Philosophy of topology transformation in ABS.

To address this problem, during the topology transformation,
if an edge is removed from its two endpoints, we always create a
shadow vertex, connect it to one of the endpoints, and generate
a new edge. In this way, a correct solution can be obtained. For
example, Fig. 5(c) shows a transformed graph, where v′3 is the
added shadow vertex. The TIS solution for this graph is shown
in red dots. We can see that vertex v4 is in the selection because
edge (v4, v

′
3) is an eligible path in Fig. 5(c). The calculated

selection {v2, v4, v5} based on Fig. 5(c) is exactly the solution
for Fig. 5(a). After the selection, we convert the transformed
graph back to the original one, as shown in Fig. 5(d). In
some cases, if shadow vertices are selected, some adjustment
is needed after transforming back to the original graph. The
details will be presented in the following.

The exact solution for the transformed bipartite graph may
not be the exact solution for the original graph. It may have
redundancy and contain more vertices. That is, the existence
of some vertices are for covering the fake edges created dur-
ing the topology transformation. This redundancy cannot be
completely removed; otherwise, we are able to obtain an exact
solution to the NP-C problem. To reduce the redundancy, when
detaching an edge from one of its two endpoints, we always
detach it from the vertex with a relatively lower edge degree.
This way, the edge degree of the vertex becomes even one
degree lower, and the other vertex, which connects to the
created fake edge, keeps its higher edge degree. In the exact
vertex cover solution to the transformed bipartite graph, the
vertex with a higher edge degree is more likely to be selected.
When the vertex is selected, the fake edge is covered. Therefore,
we do not need to select an extra vertex to cover this fake edge.
Thus, the redundancy in this instance can be eliminated with
our best effort.

For example, in Fig. 6(a), {v2, v3} is the minimum vertex
cover solution to the original graph. In Fig. 6(b), if we detach
edge (v1, v3) from v3, then {v1, v2, v3} is the minimum vertex
cover for the transformed graph, where v1 is the redundancy.

394 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 63, NO. 1, JANUARY 2014

Fig. 6. Example of solution redundancy after topology transformation.

However, if we detach the edge from v1, which has lower edge
degree than v3, as shown in Fig. 6(c), the solution will be
{v2, v3}, which is the same as the exact solution to the original
graph.

Generally, the transformation follows the following four
steps. First, all faces of the graph are identified, and it is de-
termined if they have an odd or even number of edges. Second,
all the faces with an odd number of edges are transformed into
faces with an even number of edges, by removing edges, adding
shadow vertices, and creating fake edges accordingly. In this
procedure, faces originally with an even number of edges may
be affected, and they will be subsequently transformed. At the
end of the procedure, all faces have an even number of edges,
and a bipartite graph is obtained. Third intersections on the
bipartite graph are selected by employing existing polynomial
algorithms. Finally, the bipartite graph is transformed back to
the original graph, and the solution is adjusted accordingly.

C. Graph Face Identification

Before we present how to identify all the faces, we present
and prove a theorem to determine a face.

Theorem 3.1: Given a graph, place the graph in an arbitrary
coordinate system. Start from an edge (vi, vj) and walk from
vi to vj . At vj , pick the leftmost edge of vj in the coordinate
system and walk to the other vertex connecting the edge. Keep
walking this way until the original vertex vi is reached. Then,
the walking path consisting of all the visited vertices and edges
form a face. �

For example, as shown in Fig. 2, we start from edge (v7, v8)
and walk from v7 to v8. We pick the leftmost edge (v8, v4) in
the graph and keep walking the same way. Then, v4 and v6
are consequentially visited. In the end, the original vertex v7
is reached, and face F (v7, v8, v4, v6) is identified.

Proof of theorem 3.1: We prove the theorem by con-
tradiction. According to the definition of a face in a planar
graph, a face is a circle containing no subcircle inside. It is
obvious that all the visited vertices and edges in Theorem 3.1
form a circle C1. Thus, if these visited vertices do not form
a face, it must contain subcircles inside. We pick the smallest
one, i.e., subcircle C2. There must be two edges sharing one
vertex, one of which belongs to C1, and the other belongs to
C2. Let the two edges be (vi, vk) and (vi, vm), which shares
vertex vi. Let (vi, vk) belong to C1 and (vi, vm) belong to C2.
When vertex vi is visited, edge (vi, vm) should be visited next,
considering that C2 is smaller; thus, (vi, vm) is the leftmost
edge, instead of (vi, vk). However, since (vi, vk) belongs to C1,
this contracts to our operation that is always selecting a leftmost
edge. Therefore, all the visited vertices and edges in Theorem
3.1 form a face. �

Fig. 7. Rules of topology transformation.

If a planar graph is extracted from a geographic area, the ge-
ographic position of every vertex can naturally serve as the co-
ordinates of the vertices. Therefore, it is easy to identify the
“leftmost” edge to visit. Starting from an edge, Theorem 3.1
identifies a face. Starting from every edge in the graph and
applying the procedure in Theorem 3.1, all the faces of the
graph will be identified.

D. Topology Transformation

After all the faces are identified, we start the transformation
of faces with an odd number of edges. The topology of a face
with an odd number of edges falls in one of the following
three cases: 1) an outer face in the graph boundary; 2) an inner
face that has at least one adjacent face with an odd number of
edges; and 3) an inner face all of whose adjacent faces have
an even number of edges. For the three cases, we apply Outer
face removal, Adjacent face merge, and isolated triangle shift,
respectively, to conduct the face transformation.

1) Outer Face Removal: It is easy to identify an outer face.
If a face has an edge in the graph boundary, this face is an
outer face. If an outer face has an odd number of edges, we
simply remove the boundary edge, create a shadow vertex,
and generate a new edge by connecting the shadow vertex and
one vertex of the removed boundary edge. Fig. 7(a) shows an
example. F (v3, v4, v8) is an outer face and has three edges.
(v3, v8) is a boundary edge. We remove (v3, v8), create shadow
vertex v9, and connect v9 to v3. Then, a face with an odd
number of edges is removed.

2) Adjacent Face Merge: After the outer face removal, none
of the remaining faces with an odd number of edges has a
boundary edge. The edges of these faces cannot be simply
removed because adjacent faces may be affected. If one such
face has at least one adjacent face with an odd number of edges,
they can be merged by removing the shared edge. After that,
a shadow vertex is created and attached to one vertex of the
removed edge to generate a dead-end edge.

YAN et al.: ACCESS POINTS PLANNING IN URBAN AREA FOR DATA DISSEMINATION TO DRIVERS 395

Theorem 3.2: In a planar graph, given two faces with an odd
number of edges sharing an edge, the two faces can be merged
into one face with an even number of edges if the shared edge
is removed and a shadow vertex is added and attached to one
vertex of the removed edge, generating a dead-end edge. �

Proof of theorem 3.2: First, consider a face with k1 edges
and another face with k2 edges sharing a common edge. Both
k1 and k2 are odd numbers. If we merge these two faces
by simply deleting this edge, then the merged face will have
(k1 − 1 + k2 − 1) edges, which is an even number. Then, we
add a shadow vertex inside the face and attach to one of the two
endpoints of the deleted edge. By doing so, we add a new edge
to the graph. According to the definition of the face, this newly
added edge is a dead end inside a face and needs to be counted
twice when counting the number of edges for the face. Thus,
now, this merged face has (k1 − 1 + k2 − 1 + 2 = k1 + k2)
edges. Obviously, (k1 + k2) is an even number. �

Fig. 7(b) shows an example. Two faces F (v1, v2, v4) and
F (v2, v3, v4) have an odd number of edges, and they share
common edge (v2, v4). We remove the edge, create shadow
vertex v8, and create dead-end edge (v4, v8). The new merged
face F (v1, v2, v8, v3, v4) has an even number of edges.

3) Isolated Face Shift: If all the adjacent faces of an inner
face with an odd number of edges have an even number of
edges, we cannot apply the methods described earlier. We call
such a face an isolated face. Face F (v2, v5, v9) in Fig. 7(c) is
an example.

To solve the problem, we apply an iterative method. We
remove the shared edge that is closest to a boundary and shift
it, transforming the original isolated face into one with an even
number of edges, resulting in another face with an odd number
of edges. If the new face has a boundary edge or has an adjacent
face with an odd number of faces, either outer face removal
or adjacent face merge can be applied. Otherwise, we follow
the same procedure until the resulting face is not an isolated
face. Since we move toward the closest boundary, the procedure
terminates.

For example in Fig. 7(c), F (v2, v5, v9) is an inner face with
an odd number of edges, and all of its adjacent faces have an
even number of edges. We first delete edge (v2, v5) from v2
and attach it to vertex v1. After the operation, the topology of
Fig. 7(c) is transformed to the topology shown in Fig. 7(d),
in which both the original face F (v1, v5, v6) and the newly
generated face F (v5, v6, v7) have an odd number of edges.
Therefore, we merge them as shown in Fig. 7(d).

Note that, during the shifting procedure, if an edge is re-
moved, it is unnecessary to create a shadow vertex with a new
edge because the shifting procedure already creates a new edge
and attach it to another vertex. Here, for example in Fig. 7(c),
we can simply treat v1 as the shadow vertex for vertex v5.

E. Intersection Selection

After the topology transformation, a map with any arbitrary
planar graph topology is transformed to a bipartite graph, where
a polynomial solution to a vertex cover problem can be applied
directly. Take the map of the dissemination area shown in
Fig. 4(a) as an example. After our bipartite graph transforma-

Fig. 8. Procedure of ABS.

tion, the transformed graph can be shown as in Fig. 8(a). Then,
König’s theorem [8] can be applied to transform the vertex
cover problem to a maximum matching problem, whose exact
solution can be obtained by various well-known existing algo-
rithms, such as the Hopcroft–Karp algorithm [8]. According to
Theorem 2.2, the TIS problem in Fig. 8(a) is solved, and the
selected intersections in Fig. 8(a) are shown as the red circles
in Fig. 8(b).

F. Selection Adjustment

After obtaining the exact solution for the transformed bipar-
tite graph, we transform it back to its original form and adjust
our selections. Generally speaking, if a vertex is selected in
the transformed graph, then we select the same vertex in the
original graph. If the selected vertex is a shadow vertex, we
select its corresponding original vertex. The detailed procedure
works as follows.

1) We delete the shadow vertices and the corresponding
edges created in the outer face removal and adjacent face
merge, and add the original removed edges. If a shadow
vertex is selected in the problem solution, we remove it
and add the corresponding original vertex to the selection.

2) If an edge (vi, vj) in original graph shifts to (vi, vk) in the
transformed bipartite graph, we disconnect vi and vk and
reconnect vi and vj . If neither vi or vj is selected in the
problem solution, we add either of them to the selection.

Taking the original graph in Fig. 4(a) as an example, the final
selected vertices are shown as the red circles in Fig. 8(c). The
dashed circle is the vertex added during selection adjustment
because its shadow vertex is selected in the transformed graph,
as shown in Fig. 8(b).

IV. ANALYSIS OF ADAPTED

BIPARTITE-BASED HEURISTICS

Here, we formally prove the correctness of our ABS and its
approximation ratio being bounded by 4/3, analyze its compu-
tational complexity, and discuss its potential-wide application
in many NP-C problems in planar graphs.

A. Correctness

Theorem 4.1: ABS obtains an approximate solution for the
TIS problem. �

Proof of theorem 4.1: We prove the theorem by contradic-
tion. Let G = (V,E) be the original graph and G′ = (V ′, E ′)
be the transformed bipartite graph.

396 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 63, NO. 1, JANUARY 2014

Suppose ABS obtains an exact vertex cover solution V ′′

for G′, but V ′′ cannot cover all the edges in G. In this case,
there exists an edge (u, v) ∈ E such that u �∈ V ′′ and v �∈ V ′′.
Since V ′′ covers all the edges in E ′ of graph G′, it means
(u, v) �∈ E ′ in graph G′. This is because of the edge removal.
We analyze it in the following two cases. In the first case, the
edge removal is done in outer face removal or adjacent face
merge. Suppose the edge is detached from vertex u during the
transformation. Since we always create a shadow vertex for
every detached vertex, we let the shadow vertex be u′ for u.
Clearly, edge (u′, v) ∈ E ′. Then, we have u′ ∈ V ′′ or v′ ∈ V ′′

or both. Moreover, as presented in the selection adjustment,
if a shadow vertex is selected in the transformed graph, we
add its corresponding original vertex to the selection for the
original graph. That is, in the solution for original graph G, we
have u ∈ V ′′ or v ∈ V ′′ or both, which is a contradiction. In
the second case, the edge removal is done in an isolated face
shift. If an edge is not covered, it means none of its endpoints
is selected. However, according to the selection adjustment,
after an edge is shifted back, if none of its two endpoints is
selected, we select either of them to the solution, which is also
a contradiction.

Hence, ABS solves the TIS problem correctly. �

B. Approximation Ratio

Let H be the exact vertex cover solution for the original
graph G = (V,E) and H ′ be the vertex cover solution ob-
tained through ABS by transforming G to bipartite graph G′ =
(V ′, E ′). |H ′|/|H| is the approximation ratio of ABS. Since H ′

obtains an approximate vertex cover solution for the original
graph, we have |H ′|/|H| � 1. According to Theorem 4.1, the
case |H ′| > |H| means that the solution H ′ not only covers
all the edges of the original graph but covers some edges with
shadow vertices in the transformed graph as well.

To analyze the upper bound of the approximation ratio, we
want to see at most how many redundant vertices that ABS
uses to cover edges with shadow vertices. The shadow vertices
can be only created during outer face removal and adjacent
face merge. Since outer face removal only deals with faces in
the graph boundary, to avoid special boundary cases, we only
analyze adjacent face merge. We now construct a worst-case
graph instance for ABS. The worst-case instance should be built
based on the following philosophy.

1) The graph instance needs to merge as many faces as
possible to create as many shadow vertices as possible.

2) After face merge, the ratio of the number of newly created
edges to the number of original edges should be as high
as possible.

3) According to ABS, during face merge, an edge is always
detached from the vertex with a lower degree to reduce
the redundancy of the solution. To construct the worst-
case scenario, we should make the most of the vertices
having the same edge degree so that when creating new
edges, ABS only randomly selects an endpoint to detach.

To follow the first rule, we need to create a graph with all
the faces containing an odd number of edges so that every two

Fig. 9. Worst-case instance (all the grid intersections are vertices while circles
are the selected vertices). (a) Instance of vertex cover for original graph.
(b) Instance of vertex cover for transformed bipartite graph.

faces needs to break an edge and merge. For the second rule,
since merging two faces only creates one new edge, the number
of original edges in each face should be as small as possible.
Therefore, we let each face in the graph contains only three
edges. According to the third rule, the shape of the graph should
be symmetric.

Thus, we construct a graph containing only triangles adjacent
to each other, as shown in Fig. 9(a). Every two triangles need
to break an edge and merge. All the vertices, except those in
boundaries, have the same edge degree. It is obvious to see that
the circles represent the exact minimum vertex cover for the
original graph in Fig. 9(a). In ABS shown in Fig. 9(b), after
topology transformation, we break edges for each two adjacent
triangle faces and generate the bipartite planar graph shown. In
addition to the black circles, extra blue circles are added to the
minimum vertex cover solution for the transformed graph. The
solution to the transformed graph consists of all the vertices
of the graph (disregarding the special case in graph boundary).
After we transform the graph back to the original, these blue
circles cannot be eliminated and are the redundancy of our
solution.

By comparing Fig. 9(a) and (b), it is easy to see that, in
Fig. 9(a), for every two lines, the exact solution selects half of
the vertices in one line and all the vertices in the other, whereas
in Fig. 9(b), ABS selects all the vertices of the graph. Thus, in
the worst case, we have

|H ′|
|H| =

4
3
. (3)

Therefore, ABS solves TIS with approximation ratio con-
stantly bounded by 4/3.

In reality, the topology of a geographic area is not likely
to look similar to the graph in Fig. 9(a). Instead, it contains
faces mainly with four edges. That is, generally, most of the
intersections in an area connect four road segments, and most
blocks of the area are formed by four roads. In this case,
ABS has a much lower approximation ratio. For example,
for a normal graph from a geographic area with 10% of the
intersections connecting three or five road segments, and the
reset of intersections connecting four road segments, we have
the average approximation ratio |H ′|/|H| < 1.1.

YAN et al.: ACCESS POINTS PLANNING IN URBAN AREA FOR DATA DISSEMINATION TO DRIVERS 397

According to Lund et al. [9], two other popular heuristics,
i.e., random heuristics and greedy heuristics, have an approx-
imation ratio of 1.7 and 2, respectively, in the worst case.
This means that, in the worst case, greedy heuristics is about
1.3 times worse than our heuristics, and random heuristics is
1.5 times worse.

C. Computational Complexity

ABS contains four steps. In the first step, i.e., face iden-
tification, it takes O(fe) to identify a face, where fe is the
average number of edges in a face. Since face identification
needs to start walking through all the edges, it takes O(|E| ·
fe) to identify all the faces. In the second step, i.e., face
transformation, it takes O(|E|) to detach and shift edges. In
the third step, i.e., intersection selection, the complexity of the
well-known Hopcroft–Karp algorithm in solving the underlying
TIS/vertex cover problem is O(

√
|V | · |E|). In the final step, it

takes O(|E|) to conduct the transformation back to the original
and O(|V |) for solution adjustment. In total, the computational
complexity of ABS is

O
(
|E| · fe + |E|+

√
|V | · |E|+ |E|+ |V |

)
. (4)

Considering a planar graph abstracted from a geographic
area, the value of fe is around 4, which is smaller than

√
|V |.

Thus, the complexity of face identification is O(
√

|V | · |E|).

D. Discussion of Some Practical Issues

We deploy roadside stations at the selected intersections
to capture all vehicle traffics of the area. In practice, it is
very likely that not all the intersections are available to be
selected for installing roadside stations or that the user may only
want to rent the existing roadside stations deployed at certain
intersections to disseminate messages. In this case, our goal is
to select a minimum number of intersections from the available
intersections where stations can be installed.

It is easy to see that solving this problem is equivalent to
finding the solution of the vertex cover problem in the intersec-
tions where a roadside station can be installed, and it is also
NP-hard. To address this problem, we first remove the vertices
where we cannot install roadside stations from the graph. Here,
if one of an edge’s endpoints is removed, we add a fake vertex
to it to complete the graph. If an edge’s two endpoints are
removed, then this edge is deleted because there is no way to
cover the edge. We then transform the original graph to the one
containing only applicable vertices and apply ABS to obtain the
solution to the graph. The fake points will be eliminated during
the selection adjustment phase.

An example is shown in Fig. 10. Roadside stations can be
only installed at the intersections shown as bold circles in
Fig. 10(a). Fig. 10(b) is the transformed graph where dashed
circles are fake vertices. After applying ABS, the selected
vertices are shown as red bold circles in Fig. 10(c).

E. The n-TIS Problem and Its Solution

As defined in Section II-B, in the TIS problem, the minimum
number of intersections in each path is two. If the minimum

Fig. 10. Discussion of installation availability.

number of intersections in each path is n(n ≥ 3), we call this
problem n-TIS problem (n ≥ 3). The n-TIS problem remains
NP-complete, which is shown in Theorem 2.1. The solution to
the vertex cover problem cannot be directly applied to address
the n-TIS problem (n ≥ 3). The existing heuristic solutions
proposed for the hitting set problem can be employed to solve
it, which is proven in Theorem 4.2.

Theorem 4.2: For graph G, the solution to the hitting set
problem constructed in the way in Theorem 2.1 with |Bi| ≥ 3
is the solution to the n-TIS problem (n ≥ 3). �

Proof of theorem 4.2: If solution H solves the hitting set
problem constructed in Theorem 2.1 with |H| < k, H ∩Bi �=
∅ for 1 ≤ i ≤ m and |Bi| ≥ 3, replacing H by V ′ and Bi by Pi,
we obtain a solution for the n-TIS problem with V ′ ∩ P ′ �= ∅,
|V ′| ≤ k, and |Pi| ≥ 3. �

F. Remarks

By using ABS, we are able to convert an arbitrary planar
graph to a bipartite planar graph and address it with very
low worst-case approximation ratio of 4/3. Compared with
the greedy heuristics with an approximation ratio higher than
1.7 [9] and the random heuristics with an approximation ratio
of 2, ABS addresses TIS effectively. ABS can be adapted
to be efficient heuristics for addressing the problems that are
NP-complete in general planar graphs and polynomial-time
solvable in bipartite graphs, such as the maximum independent
set problem [5].

V. EVALUATION OF ADAPTED

BIPARTITE-BASED HEURISTICS

In Section IV-B, we formally prove that the approximation
ratio of ABS in the worst case is 4/3. Here, we evaluate the
performance of ABS in three real maps, instead of an artificially
generated graph, and compare it with the greedy heuristics, the
random heuristics, and the exact solution.

The first map is a 2 km × 2 km area in Brooklyn, New York
City, NY, USA, shown in Fig. 11(a), which is extracted from
the Topologically Integrated Geographic Encoding and Refer-
encing (TIGER/Line) database of the U.S. Census Bureau [10].
It is a typical urban area with 332 intersections, in which most
faces contain four vertices. To further evaluate the performance
of the ABS in extreme cases, two other maps, i.e., a 10 km ×
10 km area in Zurich, Switzerland, shown in Fig. 11(b) and a
10 km × 10 km area in Baar, Switzerland, shown in Fig. 11(c),
are also employed. These two maps are extracted from the Open
Street Map [11]. Fig. 11(b) has 75 intersections, and Fig. 11(c)

398 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 63, NO. 1, JANUARY 2014

Fig. 11. Simulation maps. (a) Map of New York City, NY, USA, with 332 intersections. (b) Map of Zurich, Switzerland, with 75 intersections. (c). Map of Baar,
Switzerland, with 46 intersections.

Fig. 12. Performance comparison of different heuristics. (a) Map of NYC, USA, with 332 intersections. (b) Map of Zurich, Switzerland, with 75 intersections.
(c) Map of Baar, Switzerland, with 46 intersections.

has 46 intersections. They have blocks of irregular shapes, in
which most faces contain three or five vertices. The three maps
are of completely different topologies, which can evaluate the
performance of the ABS comprehensively.

We run ABS, the greedy heuristics, and the random heuristics
on the three maps and compare them with the exact solution ob-
tained by an exponential algorithm. Fig. 12 shows the number
of intersections selected by the three heuristics and the exact so-
lution. In Fig. 11(a), ABS selects 103 intersections, whereas the
exact solution selects 98 intersections, as shown in Fig. 12(a). In
this instance, the approximation ratio achieved by ABS is 1.051.
When most faces in a map contain an even number of edges, the
topology of the map is close to a bipartite graph, and our ABS
can achieve nearly optimal performance. The greedy heuristics
selects 155 intersections and the random heuristics selects
190 intersections, which are 1.5 times worse and 1.84 times
worse than our heuristics, respectively. In Fig. 12(b) and (c),
we can see that ABS has the approximation ratios of 1.182
and 1.095, respectively, which are much better than that of the
greedy heuristics and the random heuristics. When the number
of faces with an odd number of edges increases, ABS tends
to select more redundant intersections. From the evaluation, we
can see that, in a real map, the performance of ABS is very close
to the exact solution, and ABS outperforms other heuristics
even more, compared with that in the worst-case graph.

VI. TAILOR-F: TRAFFIC-AWARE SELECTION

Among all the theoretically possible paths, only a subset will
be taken by drivers in most cases. For example, drivers are
not likely to drive back and forth, although they can do so.
Therefore, given traffic information on an area, we can further
improve the solution calculated by Tailor-p to select an even
smaller number of intersections while still covering all the paths
taken by the drivers. In addition, the traffic information can also
tell which paths are most frequently visited by most drivers.
When there is a budget limit, it is desirable that an even smaller
number of intersections are selected, and most of the drivers can
still be reached.

Here, we assume that the traffic information is given, based
on which, we first formally prove that the problem to select
the minimum number of intersections to intersect all the paths
taken by the drivers is still NP-hard. Then, we discuss how to
obtain a tradeoff between installation cost and the percentage of
drivers to reach by employing the greedy heuristics [7], which is
the best known heuristics to solve similar problems. We name
our algorithm Tailor-f. Previous work MCP-sz [12] addresses
a similar problem compared with Tailor-f. However, Tailor-f
only selects intersections from those calculated by Tailor-p
and thus reduces the traffic analysis complexity, as shown in
Section VI-C. Both Tailor-f and MCP-sz assume that the traffic
information is known and employ the greedy heuristics in [7].

YAN et al.: ACCESS POINTS PLANNING IN URBAN AREA FOR DATA DISSEMINATION TO DRIVERS 399

Our contribution resides in our formally proving the NP-C
nature of Tailor-f. Note that, in reality, we cannot obtain the
traffic information beforehand. Only historical information can
be used as a prediction of future traffic, and the predication
accuracy cannot be perfect and will affect the correctness of
the intersection calculation to a certain degree.

A. Theoretical Proof

The problem we aim to address is to select a minimum
number of intersections so that all the vehicle paths given in the
traffic information intersect with at least one of them. The given
traffic information on an area can be in such a format: a list
of intersections associated with vehicle IDs passing them. The
information can be abstracted into a graph G = (I +M,E).
Here, M is the set of vehicles, and I is the set of intersections
visited by them. ∀u ∈ I and ∀v ∈ M , (u, v) ∈ E if and only
if vehicle v has visited intersection u. Formally speaking, the
problem is to identify a set with a minimum number of vertices
Itc ⊆ I , such that for all u ∈ M , there is a v ∈ Itc with (u, v) ∈
E. We call it the TC problem.

Theorem 6.1: The TC problem is NP-complete. �
Proof of theorem 6.1: To facilitate the proof, we formulate

the decision version of the TC problem as follows: Given an
integer k ≤ |I|, is there a set of vertices Itc ⊆ I that solves the
problem with |Itc| ≤ k?

It is easy to see that TC ∈ NP since a nondeterministic
algorithm only needs to guess a subset of vertices Itc ⊆ I with
an appropriate size and to check in polynomial time whether
every vertices in M connect to at least one vertex in Itc.

We reduce the dominating set problem [5] to the TC problem.
We construct a graph G′ = (V ′, E ′) and claim that G′ has
dominating set Vd ⊆ V ′ with |Vd| ≤ k, in which for each u ∈
V ′ − Vd, there exists v ∈ Vd such that (u, v) ∈ E ′, if there is a
solution Itc to TC in graph G with |Itc| ≤ k.

To prove the claim, we let G′ = G. That is, G′ = (I ′ +
M ′, E ′), I ′ = I , M ′ = M , and E ′ = E. Then, we create a
set of edges E ′′ for graph G′, such that every two vertices
in I ′ are connected by some edge in E ′′. Therefore, I ′ forms
a clique with size |I ′|. Fig. 14 shows an instance of graph
G = (I +M,E) and G′ = (I ′ +M ′, E ′ + E ′′).

If there is a polynomial solution Itc to TC problem in graph
G with |Itc| ≤ k, we let Vd = Itc. Then, in graph G′, every
vertex in M ′ must connect to Vd via some edge in E ′ − E ′′.
Moreover, since I ′ is a clique, then every vertices in I ′ − Vd

are connecting to Vd. Thus, Vd is a dominating set of G′ with
|Vd| ≤ k.

Conversely, if there is a polynomial solution Vd ⊆ I ′ to the
dominating set for graph G′ with |Vd| ≤ k, then every vertex
in M ′ must connect to Vd via some edge in E ′ − E ′′, and
every vertex in I ′ − Vd connect to Vd via some edge in E ′′. We
simply let Itc = Vd. According to our construction, in graph
G = (V,E), there is a TC solution Itc ⊆ I with |Itc| ≤ k, such
that, for all u ∈ M , there is a v ∈ Itc for which {u, v} ∈ E.

By our reduction, the TC problem in graph G can be solved
in polynomial time if and only if the dominating set problem in
graph G′ can be solved in polynomial time.

Therefore, TC problem is NP-complete. �

Fig. 13. Example of traffic collection. (a) A geographic area. Red circles
are intersections selected by Tailor-p. (b) Real trajectories of all the vehicles.
(c) IDs of vehicles associated with each visited intersection.

Fig. 14. “Yes” instance for TC problem (k = 2).

Fig. 13(a) is an example of an interested area. The four red
circles are the selected intersections after applying Tailor-p.
In Fig. 13(b), Ii and Mi are the ID of an intersection and a
vehicle, respectively. The information can be transformed to a
list of intersections associated with vehicle IDs passing them,
as shown in Fig. 13(c). Note that, here, I1, I2, I3, and I4
are the selected intersections by Tailor-p. Therefore, the traffic
information on I5 is not needed and is, thus, discarded because
Tailor-f is a further refinement of Tailor-p.

In Fig. 14, a set of two vertices {I2, I3} is a “yes” instance
for graph G and G′ with k = 2. In Figs. 13 and 14, we can see
that, compared with Tailor-p, by taking the advantage of traffic
information, Tailor-f further reduces the number of selected
intersection from 4 to 2.

B. Greedy Heuristics and Reachability

A greedy heuristics [7] is employed to solve the given NP-
complete problem. According to [7], it can achieve an approxi-
mation ratio of H(s), where s is the size of the largest set, and
H(n) is the nth harmonic number, i.e.,

H(n) =

n∑
k=1

1
k
≤ lnn+ 1. (5)

Greedy heuristics is essentially the best possible polynomial-
time approximation algorithm for a general set-cover-like prob-
lem, under plausible complexity assumptions according to [9].

Given traffic information, we have the TC graph G = (I +
M,E), where the degree of each vertex in I represents the
amount of visited vehicles at its corresponding intersection.
In Tailor-f, we always select a vertex in I with the highest
degree, which is the vertex in I connecting most vertices in M .
Then, we delete the vertex along with the edges and vertices
connected to it. We repeat the procedure until all the vertex in
M are deleted.

400 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 63, NO. 1, JANUARY 2014

TABLE I
SIMULATION SETTINGS

Fig. 15. Percentage of reached vehicles under different number of selected intersections. (a) Map of New York City, NY, USA. (b) Map of Zurich, Switzerland.
(c) Map of Baar, Switzerland.

The greedy heuristics can naturally provide users a guideline
to achieve a balance between cost and performance (defined as
the percentage of vehicles reached). More specifically, given a
budget, which can afford to install or rent a certain number of
access points, greedy heuristics can provide the intersections
that can reach most vehicles. In addition, a chart can be pro-
vided to illustrate the percentage of vehicles that can be reached
under different budgets.

C. Performance Evaluation

We compare Tailor-f and MCP-sz [12]. Both heuristics are
based on greedy heuristics in [7].

The difference between Tailor-f and MCP-sz or other general
greedy heuristics is that, in MCP-sz and other general greedy
heuristics, all the intersections of the map are candidate inter-
sections, whereas in Tailor-f, only the intersections calculated
by Tailor-p can be selected. This drastically saves the compu-
tational effort in traffic analysis. Tailor-f is a further refinement
of Tailor-p, given traffic information.

We run the evaluation also on the maps shown in Fig. 11.
The moving trace of vehicles is generated by the open-source
microscopic space-continuous and time-discrete vehicular traf-
fic generator package Simulation of Urban Mobility (SUMO)
[13]. SUMO uses a collision-free car-following model to deter-
mine the speeds and the positions of the vehicles. The output
from SUMO is converted into traffic information required for
both Tailor-f and MCP-sz. We generate ten traffic files. The
employed system parameters are listed in Table I. Each figure
shown in the following is the average of the results on ten
traffic files.

Fig. 15 shows the percentage of vehicles reached under a dif-
ferent number of selected intersections by Tailor-f and MCP-sz.
In Fig. 15, we can see that the performance of both methods is
very close to each other. We can also see that the tradeoff be-
tween cost and the percentage of vehicles can be reached. Users
with a limited budget can make a decision based on the figure.

The advantage of Tailor-f is that it requires less traffic infor-
mation than MCP-sz because Tailor-f selects intersections from
those calculated by Tailor-p. Thus, only the traffic information
associated with the candidate intersections is needed by our
algorithm, which reduces the cost of traffic collection and trace
analysis.

To evaluate how Tailor-f saves computing effort compar-
ing with MCP-sz, we plot the computation time of Tailor-p,
Tailor-f, and MCP-sz in Fig. 16. For the New York City map
with a 2.6-GB trace file, Tailor-p takes about 0.3 h to compute a
solution because it only needs to analyze the area topology and
has nothing to do with the vehicle traces. After the calculation
of Tailor-p, Tailor-f takes 2.9 h to select intersections from the
intersections selected by Tailor-p to intersect all the vehicle
traces. Therefore, the total is 3.2 h. MCP-sz takes 8.3 h to com-
pute a solution, as shown in Fig. 16(a). Compared with MCP-sz,
Tailor-f requires only one third of the computing effort in
calculating a solution because it only needs to analyze the
vehicle traces at the intersections that are selected by Tailor-p
(103 intersections in this instance), whereas MCP-sz needs to
analyze the vehicle traces at all the intersections of the area
(332 intersections in this instance). Similarly, for Zurich map
and Baar map, Tailor-p takes less than half of the amount of
time of MCP-sz to compute a solution, as shown in Fig. 16(b)
and (c), respectively.

YAN et al.: ACCESS POINTS PLANNING IN URBAN AREA FOR DATA DISSEMINATION TO DRIVERS 401

Fig. 16. Computation time of different strategies.

In Fig. 16, we can see that Tailor-f greatly reduces com-
putational effort by only analyzing the vehicle traces at the
intersections selected by Tailor-p. Moreover, practically, there
may be more vehicles in an area (e.g., 6000 vehicles), and we
may need to collect vehicle traces over a longer time (e.g., a
week). The size of vehicle traces may be over 100 GB and
Tailor-f can save more time in computing a solution. Compared
with the analysis of vehicle traces, the operation of Tailor-p only
adds very small overhead to the entire computation time. Thus,
it is worth it to first apply Tailor-p and then apply Tailor-f to
calculate a solution.

VII. RELATED WORK

This paper is on infrastructure planning for data dissemina-
tion in VANETs with or without traffic information. Current
research literature mainly focuses on balancing the access point
coverage and installation cost, assuming the traffic information
is known. MCP-sz [12] addresses a similar problem as our
Tailor-f. The difference is that Tailor-f selects intersections
from those calculated by Tailor-p, which reduces the traffic
analysis time. In addition, we formally prove that Tailor-f
addresses an NP-complete problem. Cataldi et al. maximize the
joint user/operator benefit based on the user’s utility [14]. They
also consider many practical issues, such as polygon-based
coverage. Minimum required transmission time is considered
in [15] when planning roadside infrastructures, whereas Liang
et al. make a tradeoff between the number of hops in interve-
hicle communication and the number of installed access points
[16]. For improving driving convenience, Lee et al. aim to max-
imize the connectivity of the network [17]. Given the number
of access points, the communication range, and the collected
vehicle traces, the proposed algorithm calculates the locations
to install access points to cover most of the vehicle traces. The
scheme of planning virtual access points is proposed in [18], in
which vehicles cache the content obtained from access points
and disseminate in places where no access point is present.
A statistical model is built to calculate the probability of each

vehicle visiting each intersection in [19]. Based on the model, a
planning heuristics is proposed to select intersections to install
access points to maximize the connectivity. An adapted generic
algorithm is proposed in [20] to select a minimum number of
positions along the road to install access points, such that the
whole road is covered and any wireless device on the road can
communicate with one of the access points. Poff et al. develops
a framework that provides methods on how to collect vehicle
traffic data and how to train the system with the collected
information [21]. Dubey et al. analyze the positions to place the
access points in an intersection to maximize radio coverage [4].

Extensive research has been conducted in data dissemination
through vehicle-to-vehicle communication with or without the
help of roadside stations. Abiding Geocast [22] delivers time-
stable message to a target area, and it has been well studied
in [1], [2], and [23]. Protocols for dissemination relay are
proposed in [1]. Yu and Heijenk propose to let the vehicles
traveling in the opposite direction relay the message broadcasts
[2]. The value of timer length is analyzed in [23]. Persistent
data dissemination in VANETs has been addressed in [24]–
[29]. Mylonase et al. propose a flooding-based dissemination
protocol [24]. For dissemination collaboration and persistence,
the relay strategy are studied in [25] and [27]. The scenario of
dynamic region is studied in [26]. Leontiadis et al. propose
a persistent dissemination scheme for a publish/subscription
system, which allows a message to be disseminated persistently
in an area to reach subscribers [28]. Wagner et al. evaluates
the performance of data dissemination [29]. The area map
information is used in [30]–[32] to improve the efficiency in
dissemination and location-based service. A large-scale geocast
scheme is proposed in [33], which handles obstacles and topol-
ogy complexity in different terrains. Schwartz et al. designs
a directional data dissemination protocol by using carry-and-
forward method based on the road layout [3].

VIII. CONCLUSION

In this paper, we have designed Tailor-p and Tailor-f to select
a minimum number of intersections to install access points with
or without the traffic information. We formally prove the NP-C
nature of both problems and employ effective heuristics to solve
them. For Tailor-p, we prove that the approximation ratio of our
ABS heuristics outperforms existing heuristics.

REFERENCES

[1] S. D. Hermann, C. Michl, and A. Wolisz, “Time-stable geocast in
intermittently connected ieee 802.11 manets,” in Proc. VTC, 2007,
pp. 1922–1926. [Online]. Available: http://dx.doi.org/10.1109/VETECF.
2007.404

[2] Q. Yu and G. Heijenk, “Abiding geocast for warning message
dissemination in vehicular ad hoc networks,” in Proc. ICC Workshops,
2008, pp. 400–404. [Online]. Available: http://dx.doi.org/10.1109/ICCW.
2008.81

[3] R. Schwartz, R. Barbosa, N. Meratnia, G. Heijenk, and H. Scholten,
“A directional data dissemination protocol for vehicular environments,”
Comput. Commun., vol. 34, no. 17, pp. 2057–2071, Nov. 2011. [Online].
Available: http://dx.doi.org/10.1016/j.comcom.2011.03.007

[4] B. Dubey, N. Chauhan, and S. Pant, “Effect of position of fixed infras-
tructure on data dissemination in VANETs,” Int. J. Res. Rev. Comput. Sci.
(IJRRCS), vol. 2, no. 2, p. 482, Mar. 2011. [Online]. Available: http://
www.researchgate.net/publication/228653668

402 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 63, NO. 1, JANUARY 2014

[5] M. Garey and D. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness. San Francisco, CA, USA: Freeman, 1979.
[Online]. Available: http://dl.acm.org/citation.cfm?id=574848

[6] J. Hopcroft and R. Karp, “An n5/2 algorithm for maximum matchings in
bipartite graphs,” SIAM J. Comput., vol. 2, no. 4, pp. 225–231, Jan. 1973.
[Online]. Available: http://dx.doi.org/10.1109/SWAT.1971.1

[7] V. Chvatal, “A greedy heuristic for the set-covering problem,” Math. Oper.
Res., vol. 4, no. 3, pp. 233–235, Aug. 1979. [Online]. Available: http://
mor.journal.informs.org/content/4/3/233.full.pdf

[8] D. West, Introduction to Graph Theory., 2nd ed. Englewood Cliffs, NJ,
USA: Prentice-Hall, 2001.

[9] C. Lund and M. Yannakakis, “On the hardness of approximating min-
imization problems,” J. ACM, vol. 41, no. 5, pp. 960–981, Sep. 1994.
[Online]. Available: http://dx.doi.org/10.1145/185675.306789

[10] U.S. Census Bureau TIGER/Line 2009. [Online]. Available: http://www.
census.gov/geo/www/tiger/

[11] Open Street Map. [Online]. Available: http://www.openstreetmap.org/
[12] O. Trullols, M. Fiore, C. Casetti, C. Chiasserini, and J. Ordinas, “Plan-

ning roadside infrastructure for information dissemination in intelligent
transportation systems,” Comput. Commun., vol. 33, no. 4, pp. 432–442,
Mar. 2010. [Online]. Available: http://dx.doi.org/10.1016/j.comcom.
2009.11.021

[13] Centre for Applied Informatics (ZAIK) and the Institute of Transport Re-
search German Aerospace Centre, Sumo—Simulation of urban mobility.
[Online]. Available: http://sumo.sourceforge.net/

[14] P. Cataldi and J. Harri, “User/operator utility-based infrastructure de-
ployment strategies for vehicular networks,” in Proc. IEEE Veh. Technol.
Conf., Fall, 2011, pp. 1–5. [Online]. Available: http://dx.doi.org/10.1109/
VETECF.2011.6093125

[15] E. Cavalcante, A. Aquino, G. Pappa, and A. Loureiro, “Roadside unit
deployment for information dissemination in a VANET: An evolutionary
approach,” in Proc. 14th Int. Conf. Genetic Evol. Comput. Conf. Com-
panion, 2012, pp. 27–34. [Online]. Available: http://dx.doi.org/10.1145/
2330784.2330789

[16] Y. Liang, H. Liu, and D. Rajan, “Optimal placement and configuration
of roadside units in vehicular networks,” in Proc. IEEE Veh. Technol.
Conf., Spring, 2012, pp. 1–6. [Online]. Available: http://dx.doi.org/10.
1109/VETECS.2012.6240345

[17] J. Lee, “Design of a network coverage analyzer for roadside-to-vehicle
telematics networks,” in Proc. Int. Conf. Softw. Eng., Artif. Intell., Netw.,
Parallel/Distrib. Comput., 2008, pp. 201–205. [Online]. Available: http://
dx.doi.org/10.1109/SNPD.2008.27

[18] N. Frangiadakis, D. Camara, F. Filali, A. Loureiro, and N. Roussopou-
los, “Virtual access points for vehicular networks,” in Proc. Mobil-
ware, 2008, p. 14. [Online]. Available: http://dl.acm.org/citation.cfm?
id=1361492.1361509

[19] B. Aslam, F. Amjad, and C. Zou, “Optimal roadside units placement
in urban areas for vehicular networks,” in Proc. IEEE ISCC, 2012,
pp. 000423–000429. [Online]. Available: http://dx.doi.org/10.1109/ISCC.
2012.6249333

[20] H. Ghaffarian, M. Soryani, and M. Fathy, “Planning VANET infrastruc-
tures to improve safety awareness in curved roads,” J. Zhejiang Univ.,
vol. 13, no. 12, pp. 918–928, 2012. [Online]. Available: http://www.zju.
edu.cn/jzus/article.php?doi=10.1631/jzus.C1200082

[21] L. Poff, A. Gokhale, and M. McDonald, “A framework for broker place-
ment in vehicular ad hoc networks,” in Proc. Int. Conf. CTS, 2012,
pp. 182–189. [Online]. Available: http://dx.doi.org/10.1109/CTS.2012.
6261048

[22] C. Maihofer, T. Leinmuller, and E. Schoch, “Abiding geocast: Timecstable
geocast for ad hoc networks,” in Proc. VANET , 2005, pp. 20–29. [Online].
Available: http://dx.doi.org/10.1145/1080754.1080758

[23] H. Joshi, M. Sichitiu, and M. Kihl, “Distributed robust geocast: A
multicast routing for inter-vehicle communication,” in Proc. Workshop
WiMAX, Wireless Mobil., 2007. [Online]. Available: http://www4.ncsu.
edu/~mlsichit/Research/Publications/geocastHarsh.pdf

[24] Y. Mylonase, M. Lestas, and A. Pitsillides, “Speed adaptive probabilistic
flooding in cooperative emergency warning,” in Proc. Int. Conf. Wireless
Internet, 2008, p. 81. [Online]. Available: http://dl.acm.org/citation.cfm?
id=1554228

[25] S.-B. Lee, G. Pan, J.-S. Park, M. Gerla, and S. Lu, “Secure incentives
for commercial ad dissemination in vehicular networks,” in Proc. Mo-
bihoc, 2007, pp. 150–159. [Online]. Available: http://dx.doi.org/10.1145/
1288107.1288128

[26] Y.-S. Chen, Y.-W. Lin, and S.-L. Lee, “A mobicast routing protocol
in vehicular ad-hoc networks,” Mobile Netw. Appl., vol. 15, no. 1,
pp. 20–35, Feb. 2010. [Online]. Available: http://dx.doi.org/10.1007/
s11036-009-0176-3

[27] I. Leontiadis and C. Mascolo, “Opportunistic spatio-temporal dissemina-
tion system for vehicular networks,” in Proc. Workshop Mobile Oppor-
tunistic Netw., 2007, pp. 39–46. [Online]. Available: http://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.113.7998

[28] I. Leontiadis, P. Costa, and C. Mascolo, “A hybrid approach for content-
based publish/subscribe in vehicular networks,” Pervas. Mobile Comput.,
vol. 5, no. 6, pp. 697–713, Dec. 2009. [Online]. Available: http://dx.doi.
org/10.1016/j.pmcj.2009.07.016

[29] C. Wagner and W. Franz, “Stochastic evaluation of geographical for-
warding in vehicular ad hoc networks,” in Proc. GI Jahrestagung, 2004,
pp. 95–99. [Online]. Available: http://subs.emis.de/LNI/Proceedings/
Proceedings50/article3114.html

[30] S. Kim, Y. Jung, S. Lee, E. Lee, and S. An, “Efficient geocast utilizing
topology information database,” in Proc. Int. Conf. Comput. Inform. Tech-
nol. Workshops, 2008, pp. 210–215. [Online]. Available: http://dx.doi.org/
10.1109/CIT.2008.Workshops.23

[31] B. Dubey, N. Chauhan, L. Awasthi, N. Chand, and S. Pant, “Efficient
VANET-based traffic information dissemination using centralized fixed
infrastructure,” in Proc. Commun. Comput. Inf. Sci., 2011, vol. 168

[32] D. Ashok, M. Pai, and J. Mouzna, “Efficient map based location service
for VANETs,” in Proc. Int. Conf. ITS Telecommun., 2011, pp. 387–392.
[Online]. Available: http://dx.doi.org/10.1109/ITST.2011.6060087

[33] R. Hall, “An improved geocast for mobile ad hoc networks,” IEEE Trans.
Mobile Comput., vol. 10, no. 2, pp. 254–266, Feb. 2011. [Online]. Avail-
able: http://dx.doi.org/10.1109/TMC.2010.56

Tan Yan received the B.E. degree from South-
east University, Nanjing, China, and the M.E. de-
gree from the New Jersey Institute of Technology,
Newark, NJ, USA. He is currently working toward
the Ph.D. degree with the Department of Computer
Science, New Jersey Institute of Technology.

Wensheng Zhang received the B.S. degree from
Tongji University, Shanghai, China; the M.S. degree
from the Chinese Academy of Sciences, Beijing,
China; and the Ph.D. degree from the Pennsylvania
State University, University Park, PA, USA, all in
computer science and engineering.

Since 2005, he has been a Faculty Member with
the Department of Computer Science, Iowa State
University, Ames, IA, USA, where he is currently an
Associate Professor.

Dr. Zhang is a member of the Association for
Computing Machinery.

Guiling Wang received the B.S. degree in software
from Nankai University, Tianjin, China, and the
Ph.D. degree in computer science and engineering
and a minor in statistics from The Pennsylvania State
University, University Park, PA, USA, in May 2006.

Since 2006, she has been with the New Jersey
Institute of Technology, Newark, NJ, USA, where
she is currently an Associate Professor.

Yujun Zhang received the B.S. degree in software
from Nankai University, Tianjin, China, in 1999 and
the Ph.D. degree in computer science from the Chi-
nese Academy of Sciences, Beijing, China, in 2004.

He is currently an Associate Professor with the In-
stitute of Computing Technology, Chinese Academy
of Sciences. His research interests include future
Internet architecture, network security, and trust.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

