
IEEE INTERNET OF THINGS JOURNAL, VOL. 2, NO. 4, AUGUST 2015 287

CrowdMi: Scalable and Diagnosable Mobile Voice
Quality Assessment Through Wireless Analytics

Ye Ouyang, Tan Yan, and Guiling Wang

Abstract—Scalable and diagnosable are the two most cru-
cial needs for voice call quality assessment in mobile networks.
However, while these two requirements are widely accepted by
mobile carriers, they do not receive enough attention during the
development. Current related research mainly focuses on audio
feature analysis, which is costly, sensitive to language and tones,
and infeasible to be applied to large-scale mobile networks. In this
paper, we revisit this problem, and for the first time explore wire-
less network, the causal factor that directly impacts the mobile
voice quality but yet lacks attention for decades. We design
CrowdMi, a wireless analytical tool that model the mobile voice
quality by crowdsourcing and mining the network indicators of
cellphones. CrowdMi mines hundreds of network indicators to
build a causal relationship between voice quality and network
conditions, and carefully calibrates the model according to the
widely accepted perceptual objective listening quality assessment
(POLQA) voice assessment standard. We implement a light-load
CrowdMi Client App in Android smartphones, which automat-
ically collects data through user crowdsourcing and outputs to
the CrowdMi Server in our data center that runs the mining
algorithm. We conduct a pilot trial in VoLTE network in differ-
ent geographical areas and network coverages. The trial shows
that the CrowdMi does not require any additional hardware or
human effort, and has very high model accuracy and strong
diagnosability.

Index Terms—Crowdsourcing, data mining, LTE, voice quality.

I. INTRODUCTION

S MARTPHONES penetrate into people’s life in a gal-
lop, committing to provide better connectivity, and more

importantly, higher quality voices to people. Despite tons of
new Apps invented every year, voice call remains the most
important and serious activity among all the cellphone usages.
In 2013, on average, people spend 39 min daily on phone calls,
and prefer to use voice call to carry time-sensitive content [1].
In addition to the substantial role the phone call acts in peo-
ple’s social life, the voice call itself usually is operated outdoor
with high noise and less delay tolerable to human’s percep-
tion. All these facts make the quality of voice calls always the
most important metric to evaluate the comprehensive quality of
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a mobile network, and the performance indicator that mobile
carrier always need to assess with highest priority [2], [3].

Current research in mobile voice call quality assessment
mainly focuses on directly evaluating the audio quality of
the speech. Perceptual objective listening quality assessment
(POLQA) [4] is a standard provided by ITU-T that takes the
audio clips as the input and compares it with prerecorded ref-
erence speeches to provide objective voice quality evaluation.
Under such architecture, different models are built in [5]–[11]
to model audio quality using signal features. Analysis on the
audio quality to human perception is conducted in [12] and [13]
that extracts the key features that are highly related to human
perception. To assess the quality of human voice, features in
different languages and tones are considered in [14]–[16].

While audio features may directly reflect voice call qual-
ity, evaluating them is very cumbersome and costly. To ensure
noiseless testing environment, each single evaluation requires
professional hardwares, such as high-definition recorders, head-
phones, and playbacks, carefully configured and operated by
domain experts [4]. Even with lossless audio, the testing results
usually are subjective to languages and tones [17]. Moreover,
the evaluation of audio quality does not analyze the root cause
of the change of the quality, and thus is unable to provide
a guideline for mobile system diagnose and optimization. On
the other hand, however, mobile carriers’ ultimate interest is
a large-scale voice quality assessment for their network and
localization of possible issues. The existing voice quality eval-
uation definitely cannot satisfy this interest, even for cell-level
assessment. Thus, a feasible voice assessment method provid-
ing causal analysis for mobile carrier is heavily demanded. In
other words, such method needs to fulfill the following two
requirements: 1) scalable, the evaluation needs to involve as
less hardware and human efforts as possible and 2) diagnos-
able, the evaluation results must be interpretable and directly
mapped to network indicators1 (e.g., traffics and handovers).

To pursue this goal, in this paper, we explore for the first time
the causal factor that directly impact the mobile voice qual-
ity but yet lacks attention—the wireless network. We observe
that the major cause of the degradation of the mobile voice is
nothing else but the signal propagation in wireless environment
[18]. The network conditions such as network coverages, sig-
nal interferences, and mobility handovers together significantly
affect the voice quality. Inspired by this, we design a wireless
analytics algorithm, named CrowdMi, which models the mobile
voice quality by mining various types of network indicators.

1In this paper, we use the term network indicators to represent network
performance and resource indicators.
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CrowdMi respects POLQA as the standard for quantifying
mobile voice quality. However, it does not directly measure the
audio features. Instead, it builds a quantified causal relation-
ship between the change of voice quality and the deviation of
the network conditions, through large-scale data crowdsourcing
from users in different network scenarios. With CrowdMi, in
this paper we try to answer the following questions for mobile
carriers: How is the voice quality in your network? If not good,
what causes that?

In CrowdMi, to build the voice quality model, we make test-
ing phones call each other and record voice audio clips and
network indicators during the call. After data collection, we
identify important RF features, and classify the data into dif-
ferent groups based on such features. Then, for each RF group,
we design spatial silhouette distance (SSD) to select most rele-
vant network indicators, based on which, we perform clustering
to the data according to the selected network indicators that
impose heavy impact on network performance. In each cluster,
we then use the POLQA standard to analyze the audio features
and compute the voice quality score. We design an adaptive
LOESS algorithm to associate the network indicators to the
computed scores by regressing the features that show high-
est correlation to voice quality. Finally, the quality model is
built, where the selected network indicators are correlated and
mapped to voice quality. The change of such features is the root
cause of the deviation of the quality. After the model is built,
CrowdMi no longer relies on POLQA. To assess the voice qual-
ity of a phone, it just collects the phone’s network indicators,
feeds into the model, and computes the estimated voice quality.

We follow client–server architecture to implement CrowdMi.
The CrowdMi Client is implemented as an App in Android
smartphones, which automatically collects user data in differ-
ent locations and network scenarios through crowdsourcing,
and sends back to the CrowdMi Server. The CrowdMi Server is
deployed in our datacenter and runs our wireless analytics algo-
rithm. It mines the collected data to build a model to model the
mobile voice quality based on the collected network conditions.
When the model is built and calibrated, it takes the realtime data
collected from each of the CrowdMi Clients and calculates the
mobile voice quality for the CrowdMi Client, which represent
the current voice quality of the place where the CrowdMi Client
locates. We deploy and conduct a pilot trial in the VoLTE net-
work and crowdsource users in different geographic areas of
the United States to study the network with different cover-
ages. The trial shows that the CrowdMi does not require any
additional hardware or human effort, and has very high model
accuracy and strong diagnosability.

To summarize, the contribution of this paper is threefold.
1) We, for the first time, mine network indicators to

achieve scalable and diagnosable mobile voice quality
assessment.

2) We fully implement the CrowdMi, which runs the
CrowdMi algorithm and collects data through user crowd-
sourcing.

3) We deploy our system and conduct a pilot trial in VoLTE
networks, which shows the high usability of the system.

This paper is organized as follows. Section II introduces the
existing related work. The main CrowdMi mining algorithm

and its system implementation is described in Sections III and
IV, respectively. Section V describes our pilot trial. Finally, we
conclude this paper in Section VI.

II. RELATED WORK AND BACKGROUND

In this section, we first introduce the state-of-the-art regard-
ing to the voice quality assessment. After that, we describe the
POLQA standard for voice quality assessment and discuss the
motivation of our scheme.

A. Related Work

To the best of our knowledge, we are the first to address
mobile voice quality assessment by mining wireless networks.
There are not many comparable related works. In this section,
we survey the closest works in voice quality assessment.

Research in assessing speech and voice quality mainly
focuses on audio clips analysis [6]–[11], human voice mod-
eling [12], [13], and language processing [14]–[16]. Berger
et al. use short-term listening quality to evaluate the speech
quality per call and calculate the mean opinion scores (MOS)
to quantify the voice quality [6]. The edge-device is taken
into consideration in [7] to measure the quality of voice-over-
IP (VoIP) network. The intrusive speech quality model PESQ
[19] standardized by ITU-T estimates the received quality
of transmitted speech for the classical narrowband telephone
bandwidth. It was extended in standardized ITU-T Rec. P862.2
[20] to model wideband transmissions. PESQ was recently
replaced by POLQA [4] as the new standard for objective voice
quality testing technology. Such objective quality testing was
further studied in [9] and [11] to improve the flexibility of the
evaluation, and other intrusive and nonintrusive speech quality
assessment methods are described in [8] and [10]. Subjective
voice quality assessment is conducted in [12] and [13]. A
transmission planning tool, E-model, is designed in [21], and
VQmon is provided in [22]. To further assess the quality of
human voice, features in different languages and tones are
extracted and modeled in [14]–[16]. However, while audio and
language features may directly reflect voice quality, such eval-
uation is costly and cannot be directly applied in large-scale
mobile network for network-wide assessment. Moreover, they
do not consider the wireless network itself as a causal factor
to the quality of the voice, and thus are unable to provide a
guideline for network diagnose and optimization.

B. Preliminary of the POLQA Standard

POLQA is an ITU-T standard (ITU-T Rec. P.863) [4] that
quantifies the quality of voice speech through audio signal anal-
ysis. It specially supports new types of speech codecs used
in 3G and 4G LTE networks, and thus is widely adopted by
mobile operators in estimating voice quality in 3G and VoLTE
networks.

The key idea of POLQA is taking audio clips to be evaluated
as the input and comparing it with the prerecorded reference
audio signals to rate a degraded or processed speech signal in
relation to the original signal. The difference between the two
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signals is counted as distortions. When the input clips end, the
distorted speech files are scored from 1 to 5 based on MOS [23],
and such score is the qualified assessment of the transmitted
audio quality.

Practically, to evaluate the quality of mobile voice for cell-
phones, each test phone needs to connect to a POLQA box,
which includes the POLQA assessment algorithm, microphone,
audio recorder, playbacks, etc. Each POLQA box originates
phone calls to other phones, plays the prerecorded the reference
audio clips, and record the received audio signal (degraded).
The recorded audio clips are then processed inside the box
through the POLQA algorithm to calculate the quality score.

C. Why CrowdMi

As discussed in Section II-B, to analyze audio clips, the
acoustic indicators are critical variables to quantify the qual-
ity of the audio samples. These acoustic indicators cannot be
directly measured unless both of the following two conditions
are satisfied. 1) A POLQA box including a stack of professional
audio processing tools needs to be connected to each of the
testing phones. 2) All the testing phones need to be paired in
advance to launch/receive calls to/from each other. Such audio
assessment involves much efforts from subject matter experts
and huge hardware investments, and thus is only feasible for
very small-scale testing in laboratory conditions. The overhead
will go in exponential speed if we conduct large-scale evalu-
ations, e.g., voice quality assessment for a carrier’s network.
Moreover, the audio feature analysis can only tell the quality
of the voice, but is unable to identify its root cause, and thus is
incapable of helping wireless operators, e.g., the mobile carrier,
to diagnose and improve the network.

To overcome these issues, CrowdMi analyzes and mines the
network indicators instead of acoustic signals to avoid huge
evaluation overheads. It leverages the existing numerous mobile
users for crowdsourcing realtime network data and survey the
large-scale cellular network, without introducing extra hard-
ware and human efforts. The crowdsourced network indicators
are used to model the voice quality and learn the root cause.

III. CROWDMi MINING ALGORITHM

In this section, we first give an overview of our CrowdMi
mining algorithm, and then describe the details of the CrowdMi
algorithm.

A. CrowdMi Overview

CrowdMi consists of training phase and testing phase and
can be installed as software in phones to perform voice qual-
ity assessment. In the training phase, to build the voice quality
model, phones installed with CrowdMi make voice call to each
other and collect the data, including audio clips and the network
indicators during the call. After each call, the POLQA score of
each voice clip record is computed using the method described
in Section II-B, and the records are organized in a way such that
at each time point, the audio quality score is associated with a
set of network indicators and RF features.

With such data, based on domain knowledge and the recom-
mendation by widely used standards [24], [25], we first classify
the records into groups based on their RF quality. We identify
two important RF indicators: 1) reference signal received power
(RSRP) and 2) signal-to-interference-plus-noise ratio (SINR),
which serve as features to classification. After that, each of the
classified groups consists of records with a certain range of
RF quality and the recorded network indicators. Then, inside
each RF group, we perform clustering to cluster the records
based on their network indicators. Before doing clustering, to
reduce the overfitting, we want to only select important net-
work indicators that are discriminative to separate records with
good voice quality and ones with bad quality. To do so, we
design SSD to measure the capability of each network indicator
in differentiating voice qualities, and only select the features
with large SSD value, e.g., SSD ≥ 0.7. The selected network
indicators are treated as features, and we apply K-Medoids
method to do the clustering. Such clustering selects the network
indicators that impose heavy impact on network performance
and group the data according to such features. Furthermore, in
each cluster, we associate the selected network indicators to the
computed POLQA scores by regressing the network indicators
that have high correlation to voice quality. We propose adap-
tive local weight scatterplot smoothing (A-LOESS) regression,
which improves original LOESS by adding adaptive window
size to regress the features and compute the estimated voice
quality score. Finally, the quality model is built, where in each
cluster, selected network indicators are correlated and mapped
to voice quality, and their change is the root cause of the voice
quality deviation. After we build the voice quality model, we no
longer rely on POLQA and have a full leverage of the model.

In the testing phase, to assess the voice quality for a phone,
CrowdMi needs not to collect or analyze audio clips. Instead, it
only collects network indicator and RF data of each phone. For
each of the collected records, CrowdMi feeds it to the model
to assign its RF quality group and network indicator cluster
by measuring the similarity between the input records and the
training model. After the assignment, it uses the trained A-
LOESS model to compute the estimated voice quality for this
record.

B. Classification on RF Quality

As mobile voice quality is mainly impacted by two facts, net-
work coverage and interference, we follow the recommendation
[26] by 3GPP TS 36.214 and 3GPP TS 36.133 to select two
indicators: 1) RSRP and 2) SINR, to represent these two facts,
and recommend their applicable ranges.

To be more specific, RSRP refers to the average power of
resource elements that carry cell-specific reference signals over
the entire bandwidth. RSRP is a direct cell signal strength
indicator and thus is a representative indicator to denote the
coverage strength. A strong coverage cannot ensure a good
RF quality. A strong-covered area with high interference and
noise may still has poor voice signal. Thus, SINR that reflects
the interference and noise condition is used as a typical indi-
cator to represent interference condition. Furthermore, domain
experts [26] have proposed scales of LTE signal strength for
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TABLE I
CLASSIFICATION ON RF QUALITY

those signal indicators. Thus, there is no need to make a clas-
sification algorithm to train and derive each class, and we can
simply use the scales to classify the RF quality. Table I is the
proposed classification table based upon the scales of RSRP and
SINR, respectively.

C. Feature Selection and Network Indicator Clustering

There are hundreds of kinds of network indicators in mobile
networks, but only a few of them may impact the voice quality.
In this section, we first design a feature selection method to
select most relevant network indicators and then use them as
features to perform clustering, which clusters the data to several
groups based on the availability, sufficiency, and assignability
of the network resources.

1) Selection of Network Indicators: We design SSD to
select network indicators that are most discriminative to dif-
ferent voice qualities. In the training dataset, we first divide
all the records into different quality groups according to their
POLQA voice scores. Then, we calculate the SSD for each net-
work indicator in each group, and use such value to determine
the discrimination capability of the network indicator. More
specifically, we follow ITU-T standard [27] to divide the mobile
voice into four groups based on their POLQA score as follows:
1) C1 : [0,2); 2) C2 : [2,3); 3) C3 : [3,4); and 4) C4 : [4.0, 4.5].2

Assume that each group Ck (k = 1, 2, 3, 4) has n records and
each record rkj has m network indicators. In each quality group
Ck, for each network indicator point Rk

i,j of each record rkj ,
we first compute the Euclidean distance (ED) to all the other
points in the same group, and obtain the average intra-group ED
IntraEDk

i,j for this feature point. Then, for this feature point,
similarly, we compute its ED to feature points in all the other
groups and calculate the average inter-group ED InterEDk

i,j for
this network indicator point Rk

i,j . Following this way, we com-
pute the average intra-group ED and average and inter-group
ED for every feature point in the training records. After that, for
each quality group, for each network indicator, we average out
its intra-group ED over all the records inside the group to obtain
its group-wise average intra-group ED IntraEDk

i , and simi-
larly, we obtain a group-wise average inter-group ED InterEDk

i

for this indicator. Then, for each quality group Ci, the SSD for
each indicator Rk

i is given by

S
k
i =

InterEDk
i − IntraEDk

i

max{InterEDk
i , IntraED

k
i }

. (1)

2For SWB mode, C4 needs to be [4.0, 4.75], as the maximum POLQA score
in such mode is 4.75.

For each network indicator Rk
i in a quality group Ck, we use

tricube weight function to weight it as follows:

W
k
i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1− |
4∑

i,j=1

(Rk
i −Rk

j )|3)3, if |
4∑

i,j=1

(Rk
i −Rk

j )| < 1

0, if |
4∑

i,j=1

(Rk
i −Rk

j )| ≥ 1.

(2)

Finally, we obtain the SSD for each network indicator Ri over
all the RF groups

Si = W
k
i × S

k
i . (3)

After we obtain the SSD for all the network indicators, we
select indicators with Si ≥ 0.7 as the features to perform clus-
tering, considering they are the discriminative features and are
highly correlated to the voice quality.

2) Clustering: After selecting the discriminative features,
we perform clustering to all the training records using the
selected features. We use K-Medoids clustering algorithm by
imposing a new converging rule to identify the best k. The
reason to adopt K-Medoids rather than other distance-based
clustering algorithm is that network indicator consumption
show high deviation due to peak time and rush hours. Hence
the network indicators, containing many spikes and outliers,
may be diluted in K-Means and the other similar algorithms.
To choose the optimal number of clusters k, we define an upper
bound of cluster number u based on domain experience. We
iterate k from 2 to u and perform K-Medoids clustering at each
iteration. The optimal k is selected, such that the intra-cluster
error is minimized and the inter-cluster distance is maximized
as follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0.7 ≤ IntraSumOfErrork+1

IntraSumOfErrork
≤ 1

0.7 ≤ IntraSumOfErrork+2

IntraSumOfErrork+1
≤ 1

0.7 ≤ IntraSumOfErrork+3

IntraSumOfErrork+2
≤ 1.

(4)

D. A-LOESS Feature Regression Based on POLQA Scores

After clustering all the records into different clusters, we
conduct a regression to regress POLQA for each cluster. We
propose A-LOESS to regress POLQA scores based on the net-
work indicators selected in Section III-C1. A-LOESS improves
LOESS [28] by adaptively computing a proper window size
during the regression, instead of the fixed window size in the
original LOESS. More specifically, we pack the POLQA scores
into different bins, and dynamically adjust window size for
each local set by the distribution density of each bin. Based
on domain experience in voice assessment in POLQA, we
set nine bins according to the POLQA scale: bin0 = [0, 0.5],
bin1 = (0.5, 1), bin2 = [1, 1.5], . . . , bin8 = (4.5, 5]. We set an
initial window width to 1/100 of range of sample points, and
plot the scatterplot of all measured POLQA scores in an ascend-
ing order. Let f(x) denote the scatterplot function, where x
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is from 1 to the number of POLQA sample points. First, for
each bin bina, we compute its distribution density by inte-
grating the value of the scatterplot function in its range as
follows:

ya =

∫ f−1(0.5a+0.5)

f−1(0.5a)

f(x) dx, i = 0, . . . , 8. (5)

After that, we sort ya in ascending order. Let S(ya)min repre-
sent the bin with minimum ya, S(ya)med represent the bin that
has the median value of ya, and S(ya)max represent the bin with
maximum ya. We dynamically calculate the window size by the
sorting results, as follows:

win_size =

⎧⎪⎨
⎪⎩

0.5 + 0.125 · S
100

·N, if S = 0, . . . , 4

1 + 0.25 · (S − 4)

100
·N, if S = 5, . . . , 8.

(6)

Finally, we use the adaptive window size calculated by (6) to
perform LOESS regression to the POLQA score based on the
selected features.3

IV. CROWDMi SYSTEM

CrowdMi consists of two major components, CrowdMi
Client and CrowdMi Server. It operates in two phases: 1) train-
ing phase that collects data and build voice quality model and
2) test phase that crowdsources user data to assess voice quality,
as illustrated in Fig. 1. The CrowdMi Client is implemented as
an App in Android smartphones, and its main functionality is
to collect user data in different locations and network scenarios
through crowdsourcing, and send back to the CrowdMi Server.
The CrowdMi Server runs our wireless analytics algorithm. In
the training phase, it mines the collected data to build a model
to model the mobile voice quality based on the collected net-
work conditions. When the model is built and calibrated, in the
testing phase, it takes the realtime data collected from the each
of the CrowdMi Clients and calculates the mobile voice quality
for the CrowdMi Client, which is the current voice quality of
the place where the CrowdMi Client locates.

A. CrowdMi Client

The CrowdMi Client in smartphones automatically monitors
the network conditions of the phones and collects the data.
In the training phase, each of such phones is operated by test
engineers and connected with a POLQA box, the standardized
voice quality measuring system. The POLQA box includes
several prerecorded audio clips of reference speech, and a
standardized objective voice quality measurement system
that takes input voice clips, compares such speech with the
reference speech, and calculates the quality of the voice. When
training phase starts, phones with the CrowdMi Client call

3We omit the description of the well-known LOESS algorithm. Please refer
to [28] for details.

Fig. 1. Architecture of the CrowdMi system.

each other, play audio clips generated by the POLQA box,
record the audio clips received from the other phone, and at the
same time record the network conditions of the phone during
the call. After each call ends, each POLQA box calculates the
quality score of the recorded audio clips, and the client uploads
the score and network indicators to the CrowdMi Server. The
CrowdMi Server uses such data to build a model for voice
quality assessment. In the testing phase, the CrowdMi Client
leverages the existing numerous mobile users and is installed in
their phones. The phone needs not to connect to POLQA box
and only runs the CrowdMi Client. The client does not make
phone calls, and runs in the background just to collect network
indicators of the phone. It sends data back to the CrowdMi
Server periodically, reporting the network conditions of the
phone in different locations.

The screenshots of the CrowdMi App running in training
phase in VoLTE scenario is shown in Fig. 2. To help domain
engineers diagnose the network issues, the App also include
rich log information and the visualization of assessment results
sent back from the CrowdMi Server, such as KPIs, quality
assessment scores, and location traces. Such information can be
displayed in realtime and is shown in various types, which dras-
tically facilitates the voice assessment of the network. Fig. 3
shows an example of a CrowdMi Client in a testing vehicle
during training phase. It is worth to note that the POLQA box
needs not to be connected, and the visualization features can
be turned OFF when doing the large-scale crowdsourcing in the
testing phase. The App runs silently in the background and does
not disrupt any other cellphone usages.

B. CrowdMi Server

The CrowdMi Server builds a voice quality model and
assesses the voice quality of the cellular networks in differ-
ent locations and coverage conditions. In the training phase, the
server collects data from clients, and runs our CrowdMi mining
algorithm to model the mobile voice quality using the received
voice quality scores and network indicators. After the model
is built, it is stored in the server. In the testing phase, for each
client, the server periodically estimates the voice quality using
the computed model, and such estimation is the voice quality
assessment of the network in the client’s location.
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Fig. 2. Screenshots of the CrowdMi App running in LTE network scenario. (a) Front page of the app. (b) Log information during data collection. (c) Visualization
of network conditions. (d) Visualization of network conditions. (e) Visualization of moving traces during data collection.

Fig. 3. Example scenario of a CrowdMi Client smartphone in training phase.

V. PILOT TRIAL

A. Setting

To verify our CrowdMi system, we conduct a pilot trial in
a VoLTE network of different geographic areas with various
network qualities in a major network carrier. Our objective
in conducting this evaluation study is to test accuracy of the
voice quality model and evaluate the diagnosability of the
system for finding relevant network indicators to the voice
quality. The trial lasts for 9 months, from December 2013
to August 2014. During the 9 months, we install CrowdMi
Clients to 50 smartphones with Android 4.3 System that sup-
ports VoLTE functionality. The clients measure all the needed
network/RF/device performance indicators, and collect and
upload test logs on a rotation basis.

To collect voice data, we select the prerecorded List-11
Harvard Sentences of Female American English voices [29],
each with 10 s length, as the audio input for the POLQA box.
All the testing phones are in time synchronization half-duplex
mode. When a phone calls another one, and plays the audio
clip, the receiver starts to compute POLQA score by comparing
the received audio signal against the reference audio signal,
and at the same time, it starts to play the same audio clip back
to the caller.

B. Data

Most of the data collections are performed by drive tests con-
sidering that mobility is an important factor to voice quality.

TABLE II
SELECTED FEATURES

Fig. 4. Record distribution in RF groups.

Among all the data logs, 77% are drive tests and 23% are sta-
tionary tests. We randomly select wireless environment for each
test case. In this way, we generate POLQA records in diverse
wireless environments with different qualities of coverage and
interference. In total, we collected 317 logs of POLQA test
cases, where 299 are valid and 18 are error logs and thus dis-
carded. The valid logs consist of 8987 POLQA voice records.
According to Table I, all the records are classified into six
groups by the measured RSRP and SINR values. Fig. 4 shows
the distribution.

C. Feature Selection

We apply SSD to select discriminative network indicators
that have high impact on the voice quality. Table II shows the
top nine selected ones. From this table, we can see that majority
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Fig. 5. Selected features (blue) plotted together with the computed POLQA scores (blue). (a) RLC.DL.Throughput. (b) RTP.Rx.Throughput.
(c) Handover.Happening.

Fig. 6. MAPE in training dataset.

of the selected indicators are related to throughput and audio
transmission, which is under our expectation.

To show the high correlation of the selected features to the
voice quality, we select RLC.DL.Throughput (the throughput
of the RLC layer), RTP.Rx.Throughput (the realtime audio
transmission throughput), and Handover.Happening (whether a
handover happens or not), from Table II, and plot them with the
computed POLQA score in Fig. 5. As expected, the POLQA
score is high when the throughput indicators are high as shown
in Fig. 5(a) and (b), and the score is low when handover happens
frequently as shown in Fig. 5(c). The indicators are strongly
correlated to the POLQA scores.

D. Accuracy of the CrowdMi Model

In CrowdMi, after feature selection, we use the selected fea-
tures to perform K-Medoids clustering. In each cluster, we
design A-LOESS algorithm to regress the features, and estimate
the POLQA score based on the network indicators.

To evaluate the accuracy of our A-LOESS algorithm, we use
75% of the data as training dataset and the rest 25% as testing
dataset. We compare our designed A-LOESS model with two
other models, original LOESS with first-order smoothing and
original LOESS with second-order smoothing. We use mean
absolute percentage error (MAPE) to measure the error of the
models as follows:

e =
1

n

n∑
t=1

∣∣∣∣∣
SPOLQA
i − SEst

i

SPOLQA
i

∣∣∣∣∣ (7)

where SPOLQA
i is the true POLQA score and SEst

i is the esti-
mated POLQA score by models for the ith record, respectively.

The training and test MAPE of all the compared models in
each RF group is shown in Figs. 6 and 7, respectively. From
Fig. 6, we can see that, all the training MAPEs of A-LOESS are
lower than 10% except for group “poor coverage and low inter-
ference.” Actually, the high MAPE in this group is not caused

Fig. 7. MAPE in test dataset.

by our model, but insufficient records collected from the trial
as shown in Fig. 4. We can overcome this issue by conduct-
ing a few additional tests in environments of such RF group.
Comparing with other two methods, the error of A-LOESS in
training set is the lowest for all the six groups. Similarly, from
Fig. 7, we can see that A-LOESS performs better than the other
two methods in test datasets. Overall, the MAPE of our scheme
is maintained at a very low level and is lower than the com-
pared schemes, which indicates great model accuracy of our
CrowdMi system. Moreover, the reliability between training
and test set is robust, as the difference of MAPE between train-
ing and test is small, which is no larger than 12.58%, also from
group “poor coverage low interference.” This shows CrowdMi
is a valid approach that can be applied for POLQA assessment
in LTE networks.

VI. CONCLUSION

In this paper, we design CrowdMi, a wireless analytics sys-
tem, to assess mobile voice quality by crowdsourcing and ana-
lyzing the network conditions of cellphones. CrowdMi mines
hundreds of network and RF indicators to build a causal rela-
tionship between voice quality and network conditions, and
carefully calibrates the model according to the widely accepted
POLQA voice assessment standard. It avoids the costly analysis
of audio clips and achieves high scalability and diagnosability.
We fully implement the CrowdMi, including a server running
the CrowdMi mining algorithm, and clients installed in Android
smartphones that collect data through user crowdsourcing. We
deploy our system and conduct a pilot trial in VoLTE networks
in the United States, which shows the high usability of the
system.
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