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Abstract—Sensor nodes deployed outdoors are subject to environmental detriments and often need to cache data for an extended

period of time. This paper introduces sensor nodes which are robust to environmental damages, and proposes to utilize Network

Coding to back up data in the robust sensors for future data retrieval in an energy efficient way. Our goal is to help regular sensors

select robust sensors to back up their data with low energy consumption, such that when needed, all the data can be retrieved by

querying only a subset of robust sensors. We formally formulate this backup problem, theoretically prove its NP-Completeness,

discover two novel theoretical guidelines for problem solving, and propose two algorithms accordingly to tackle this NP-C problem. The

guidelines are based on random linear network coding and provide lower bounds of the number of robust sensors that each regular

sensor should choose for data backup, such that the required fault tolerance is provided. A centralized algorithm and a distributed

algorithm are developed based on the guidelines such that regular sensors can back up their data efficiently. Both analysis and

simulation show our algorithms are effective in achieving fault tolerance, low energy consumption, and high retrieval efficiency.

Index Terms—Heterogeneous sensor networks, data backup, network coding
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1 INTRODUCTION

DUE to the small size and low cost of a sensor node, a
wireless sensor network composed of a large number

of such nodes can be deployed close to the phenomena or
events of interest, monitoring them and generating data.
The generated precious data may not be able to be collected
constantly and immediately considering many constraints
in the physical world, especially in remote and hostile areas.
For example, in Great Duck Island, a sensor network has
been monitoring the habitat of wild birds [1]. The habitat
data can only be collected from the sensors occasionally to
minimize the interference on birds’ natural life. To let sen-
sors increase the transmission power and remotely send
data to human operator drains the battery power quickly or
simply is infeasible if the distance between a data collector
and the sensor network is too large. Therefore, a sensor net-
work has to act as a distributed data storage before data col-
lection. The duration that data have to be cached in a sensor
network varies from minutes to months.

The environments in which a sensor network needs to
cache data for an extended period of time before data collec-
tion are generally remote or less accessible. Especially in
these environments, sensor nodes, which are tiny electronic
devices, are subject to environmental damages, such as rain
and fire. When a sensor node dies due to the physical dam-
ages, the data in the node are lost. Therefore, it is important
to back up the data. To simply duplicate data in multiple

tiny sensor nodes cannot provide enough fault tolerance
because sensors are likely to fail at the same time when the
harsh environmental attributes act on them. For example,
after a storm, most of these small electronic devices may fail
simultaneously. Even though after they are dried in sun-
shine and are able to work again, it is not likely that the lost
data can be recovered. To deal with the problem, we pro-
pose to incorporate sensor nodes which are robust to envi-
ronmental damages. We assume they are water-proof, can
tolerate high temperature and withstand other environmen-
tal attributes. Considering such robust sensor nodes are of
higher cost, we propose to construct heterogeneous sensor
networks with both regular and robust sensors. The focus of
the paper is to design schemes for regular sensors to back
up data in robust sensors.

Our objective is to design energy-efficient data-backup
schemes for the proposed heterogeneous sensor networks
to achieve high fault tolerance in harsh environment. Con-
sidering in harsh environment, all regular sensors may
lose data after a storm and some robust sensors may fail
due to energy depletion or other reasons, a desired scheme
should be able to tolerate the failure of all regular sensors
and a portion of the robust sensors. In other words, by
accessing any b out of n robust sensors (b4n), all the data
stored in the network can be recovered. Existing distrib-
uted data storage systems [2], [3], [4], [5] cannot be directly
applied to solve our problem either because they cannot
achieve the desired fault tolerance or because their system
requirement is too high. For example, cluster based stor-
age systems [2], [3] cannot tolerate the failure of all storage
nodes in a cluster. Some coding-based data storage sys-
tems [4], [5] can tolerate that, but they are under the pre-
requisite that there are more storage nodes than the data
nodes. This means we have to budget more robust sensors
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than regular sensors and the cost of a sensor network is
greatly increased. Moreover, the energy consumption of
communication for backup is not considered in many
existing schemes. This paper aims to develop energy-effi-
cient data backup schemes which can provide required
level of fault tolerance.

To achieve the goal, we first theoretically analyze the
problem, formulate it as a weighted backup problem, and
prove its NP-Complete nature. We also discover two novel
theoretical guidelines based on random linear network
coding satisfying any of the two can guarantee the desired
fault tolerance requirement: all data can be recovered by
accessing any b out of the n robust sensors. Based on the
two guidelines, two backup schemes are designed to
achieve fault tolerance and energy efficiency simulta-
neously. Theoretical analysis and performance evaluation
show that our schemes greatly outperform comparable
ones in terms of fault tolerance, energy consumption and
retrieval efficiency.

The remainder of the paper is organized as follows. We
formulate the problem and prove its NP-Completeness in
Section 2. Section 3 presents an overview of our solution.
Guideline 1 and the algorithm based on it are presented in
Section 4. Section 5 presents Guideline 2 and the algorithm
designed on it. The discussion about coefficient matrix is
presented in Section 6. Section 7 reports the simulation
results. The related work is discussed in Section 8. Finally,
we conclude the paper in Section 9.

2 PROBLEM FORMULATION

In this section, we first introduce the notations and data
structure employed. Then we formally define the problem
and prove it is an NP-Complete problem.

2.1 Notations and Data Structure

We consider a wireless sensor network composed of k regu-
lar sensors and n robust sensors, where k � n. Without loss
of generality, we normalize the data storage of regular sen-
sors to be one unit and robust sensors have s-unit data stor-
age, where s � 1. In the backup, a regular sensor backs up
its one-unit data in some robust sensors. As each robust
node can store s-unit data, a data collector has to query at
least b robust sensors to recover all the data, where

b ¼ p k
s q � n. To ensure the above inequality, we assume

ns � k; otherwise, the problem becomes unsolvable.
We use three types of graphs to illustrate and analyze the

data backup scenario, Deployment Graph, Backup Graph and
Storage Graph, based on which, we formulate Weighted
Backup Problem and formally prove its NP-Complete nature.

Deployment graph. Given a Bipartite Graph G ¼ ððVg þ
VrÞ; EÞ, which contains two sets of vertices, Vg and Vr. Vgð¼
fu1; u2; . . . ; ukgÞ is the set of regular sensors, and Vrð¼
fv1; v2; . . . ; vngÞ is the set of robust sensors. An edge
ðu; vÞ 2 E, u 2 Vg and v 2 Vr, if and only if there is a routing
path between sensor u and sensor v. W is a set of weights
associated to each edge ðu; vÞ 2 E, which is the routing cost
between u and v.

Backup graph. Given a Deployment Graph G, the Backup

Graph Gb ¼ ððVg þ VrÞ; EbÞ is a graph such that all the

vertices are the same as that in G, and an edge ðu; vÞ 2 Eb,
u 2 Vg and v 2 Vr, if and only if ðu; vÞ 2 E is inG and regular
sensor u backs up its data in robust sensor v.

Storage graph. For a Backup Graph Gb, assume each
robust sensor in Vr has s units of storage. The Storage Graph
Gs is a graph constructed in the way such that, for each ver-
tex in Vr, duplicate it and its connected edges s times.

Fig. 1a is an example of a Deployment Graph with four
regular sensors and three robust sensors, where wðu;vÞ is the
routing cost (weight) between vertices u and v. In the net-
work represented by such Deployment Graph, if regular
sensors f1; 2; 3; 4g back up their data to robust sensors
f1; 2g, f1; 3g, f1; 3g, and f2; 3g, respectively, the constructed
Backup Graph is as shown in Fig. 1b. Fig. 1c is the corre-
sponding Storage Graph with each robust sensor having
two units of storage.

2.2 Problem Definition

The formal definition of the Weighted Backup Problem is
presented as follows.

Definition 2.1 (Weighted Backup Problem). Given a network
represented by Deployment Graph G ¼ ððVg þ VrÞ; EÞ, we
assume each robust sensor in Vr has s (s � jVgj=jVrj) storage
units. Let b ¼ p jVgj

s q � jVrj. Our problem is: each regular sen-

sor in Vg forwards its data to some robust sensors in Vr for
backup, such that: (1) by picking any arbitrary b robust sensors
from Vr, one can recover the data from all the sensors in Vg, and
(2) the total forwarding cost is minimized.

The Weighted Backup Problem is NP-Complete. Before
we present the proof, we first present Lemma 2.1 and its cor-
ollary, Corollary 2.1. Thenwe prove the NP-Completeness of
the problem.

Lemma 2.1. Consider a network that can be represented by a
Deployment Graph G, the data from all the regular sensors in
G can be recovered if and only if the degree of each vertex in Vg

in the constructed Storage Graph Gs is no less than s.

Corollary 2.1. The data from all the regular sensors in Vg in a
Deployment Graph G can be recovered if and only if the con-

structed Backup Graph Gb ¼ ððVg þ VrÞ; EbÞ has a Hitting Set

with size no larger than jVrj. That means, in Gb, every vertex
in Vg connects to at least a vertex from Vr.

Fig. 1. Definition of graphs.
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Lemma 2.1 and Corollary 2.1 can be proved by contra-
diction. In Lemma 2.1, if in Storage Graph there exists a
vertex in Vg that has degree less than s, then this vertex
does not have any edge in the corresponding Backup
Graph because every edge in Backup Graph should be
duplicated s times in the Storage Graph. That means this
regular sensor does not backup its data to any robust sen-
sors, and thus its data cannot be recovered. Same for Cor-
ollary 2.1, the data of a regular sensor cannot be recovered
if it does not connect to at least a vertex from Vr. Assume
each regular sensor backs up its data to at least one robust
sensor. From Corollary 2.1 we can see that, among all the
robust sensors, if we pick up a set of b sensors, the picked
sensors can recover the data of all the regular sensors if
and only if the size of the Hitting Set of the Backup Graph
constructed from the picked robust sensors and all the reg-
ular sensors is no larger than b. Thus, the objective of
Weighted Backup Problem in Definition 2.1 can be rewrit-
ten as follows:

Given a Deployment Graph G ¼ ððVg þ VrÞ; EÞ, select a
set of edges E0 � E, which is subjected to:

� Subj. (1). Constructing a graph Gb ¼ ððVg þ V 0
r Þ; EbÞ

with: (1) all the vertices from Vg in G, (2) an arbitrary

set of b vertices V 0
r � Vr, and (3) Eb � E0 such that Eb

connects Vg and V 0
r in G, one should have the size of

the Hitting Set of Gb no larger than b.
� Subj. (2).

P
ðu;vÞ2E0 wðu;vÞ is minimized.

2.3 NPC Proof

Theorem 2.1. The Weighted Backup Problem is NP-Complete.

Proof of Theorem 2.1. To facilitate the proof, we formulate
the decision version of the Weighted Backup Problem as,
given a positive value W0, is there a set of edges E0 � E
that solves the problem with

P
ðu;vÞ2E0 wðu;vÞ � W0?

Prove to be in NP. It is obvious to see that Weighted
Backup Problem 2 NP, since a nondeterministic algo-
rithm only needs to guess a subset of edges and check in
polynomial time to determine whether that subset satis-
fies both Subj. (1) and Subj. (2) and with the sum of the
weights less than or equal toW0.

Component construction. We reduce Weighted Hitting
Set Problem [6] to Weighted Backup Problem by apply-
ing component construction to the problem.

Let an arbitrary instance of the Weighted Backup
Problem be given by the graph G ¼ ðVg þ Vr; EÞ as

defined in Definition 2.1. We construct a graph instancebG ¼ ð bVg þ bVr; bEÞ through the following steps:

1) Duplicate Vg (jVrj
b
) times and assign them to bVg.

Thus, j bVgj ¼ðjVrj
b
Þ � jVgj.

2) Among all the vertices in Vr, select (
jVrj
b
) combina-

tions and assign to bVr.
3) For each combination in bVr, associate them one by

one to a set of vertices in bVg. Each combination is

considered as a subgraph of bG.
4) In each subgraph generated in Step 3, for each ver-

tex u in bVg and v in bVr, connect them and associate
them to corresponding weight if there is an edge
ðu; vÞ 2 E in the original graphG.

5) If there is a solution with a subset of edges E0 � E
for the Weighted Backup Problem in original
graph G, repeat Step 3; change E to E0 in the set-
ting of Step 4 and then repeat Step 4.

6) For each vertex u in bG, its weight cwu is the sum of
all its edges’ weights.

Fig. 2 is an example of this construction with four regu-
lar sensors, three robust sensors, and b ¼ 2. The con-

structed graph bG is divided into (jVrj
b
)¼ (32) ¼ 3 subgraphs,

where the red rectangles and lines are the vertices and
edges added in Step 5.

We now claim the Weighted Backup Problem has a
solution with E0 � E and

P
ðu;vÞ2E0 wðu;vÞ � W0, if and

only if the Weighted Hitting Set Problem in the con-

structed graph bG has a solution bV � ð bVg þ bVrÞ andP
u2bV cwu � ðb� 1Þ �W0.

Reduction. If there is a solution with E0 � E andP
ðu;vÞ2S wu;v � W0 that satisfies Subj. (1), according to

Step 5, we add each combination of Vr and the corre-

sponding edges in E0 to bG. Obviously, each combination

of Vr is the Hitting Set of each subgraph of bG. For exam-
ple, in Fig. 2, the vertices f10; 20g are the Hitting Set for
vertex set f1; 2; 3; 4g in the left in subgraph 1, and f10; 30g
and f20; 30g are for subgraph 2 and 3, respectively.
Furthermore, all vertices added in Step 5 together are the

Hitting Set of the entire graph bG. Now we check the
weight. In original graph G, to satisfy Subj. (1), the sum
of all the weights in S is no larger than W0, In the con-

structed graph bG, according to Step 5, by adding (jVrj
b
)

combinations of sensors from Vr, each vertex in Vr is

Fig. 2. Proof of Theorem 2.1.

1994 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 10, OCTOBER 2015



added exactly ðb� 1Þ times in this step, and thus each
edge in the solution E0 and the corresponding weight are
added exactly ðb� 1Þ times. Since all vertices added in

Step 5 together are the Hitting Set of bG and we duplicate
E0 exactly ðb� 1Þ times, in total the sum of the weights of
all the vertices are no larger than ðb� 1Þ �W0.

Conversely, if there is a solution bV � ð bVg þ bVrÞ to the
constructed Weighted Hitting Set Problem withP

u2bV cwu � ðb� 1Þ �W0, simply pick all the unique verti-

ces from bVr and the corresponding edges. It is easy to
see the picked edges are the solution to the Weighted
Backup Problem. Moreover, since every picked edge

appears exactly ðb� 1Þ times for (jVrjb ) combinations, the

sum of the weights of all the picked edges are less than
ðb� 1Þ �W0=ðb� 1Þ ¼ W0.

Conclusion. Therefore, the Weighted Hitting Set Prob-
lem is reducible to the Weighted Backup Problem. Since
all the component construction and reduction are done
in polynomial time, the original Weighted Backup Prob-
lem is NP-Complete. tu

Take Fig. 2 as an example. If W0 ¼ 26, the figure is a “yes”
instance to the Weighted Backup Problem as the sum of
weights of all the red edges is 25 � W0.

3 SOLUTION OVERVIEW

The objectives of the addressed problem are to meet the
required fault tolerance and minimize energy consumption.
The problem is NP-Complete and no polynomial-time algo-
rithm can provide an optimal solution. Our realistic goal is
to design algorithms which can meet the fault tolerance
requirement and have a low energy consumption even
though the consumption is not minimized.

We adopt the random linear network coding framework
to provide the required fault tolerance. Based on network
coding, regular sensors back up data on robust sensors in
an encoded format; encoded data on robust sensors are
retrieved and original data can be recovered. Inside this
framework, our algorithms specify how a regular sensor
determines at which robust sensors its data is backed up,
such that by querying b out of n robust sensors, all the data
generated in the network can be recovered.

Our strategy is to first discover conditions satisfying
which the fault tolerance requirement can be met, and then
design centralized and distributed algorithms which can
satisfy those conditions and have low energy consumption.

In this section, we first introduce the background of ran-
dom linear network coding. Then we present the assump-
tions and energy model in data backup and recovery. After
that, we present how to use the network coding technique to
do data backup and recovery. Finally, we present Lemma 3.1
which is the foundation of our discovered conditions. We
name the conditions Guideline 1 and Guideline 2. The two
guidelines and the designed algorithms based on them are
presented in Sections 4 and 5, respectively.

3.1 Background on Random Linear Network Coding

Random linear network coding is widely used in data stor-
age system [7]. In network coding, each one-unit data di is

viewed as an element over the finite field GF ð2qÞ. m-unit
original data Dð¼ fd1; . . . ; dmgÞ for a source node can be
encoded into s-unit data Xð¼ fx1; . . . ; xsgÞ and stored in a
storage node with at least s-unit space. Here m can be equal
to or less than or more than s. To perform the encoding, an
m� s coefficient matrix G is chosen, each element of which
is uniformly and independently generated on GF ð2qÞ. The
encoded data X ¼ D �G. Thus, in addition to storing X,
each storage node also needs to store the coefficient matrix
G for encoding and decoding. The coefficient matrix occu-
piesmsq bits.

To recover n-unit data which originated from one or
more source data nodes with a high probability, a data col-
lector needs to retrieve n-unit encoded data along with their
coefficients from one or multiple storage node. A linear sys-
tem of n linear equations and n variables is generated and
then solved to retrieve original n-unit data.

A necessary condition to encode and decode successfully
is that the coefficient vectors must be linearly independent.
As shown in [8], in a large enough field, the probability of
linear independency in coefficients is close to 1 and thus the
success ratio of decoding is close to 1. For example, the
probability is over 99:6 percent when q ¼ 8. Our work is
based on the above result.

3.2 Assumptions and Energy Model

In the paper, we make the following assumptions:

� In the network, robust sensors are assumed to be
synchronized since a regular sensor backs up data in
multiple robust sensors and the version consistency
is an issue. The synchronization can be achieved by
many mature techniques with low overheads [9],
[10], [11]. The synchronization between regular sen-
sors is not required. The synchronization between a
regular sensor and a robust sensor is not required
either.

� In terms of the energy consumption, we adopt the
energy model proposed in [12]. According to [12],
the energy consumed in transmitting and receiving a
message with l-bits over a distance d is denoted by
ETxðl; dÞ and ERxðlÞ, respectively. The distance d is
called transmission distance. The formulas to calcu-
late ETxðl; dÞ and ERxðlÞ are as follows:

ETxðl; dÞ ¼ l� ðEelec þ �daÞ;
ERxðlÞ ¼ l� Eelec;

where Eelec is the electronics energy depending on
factors such as the digital coding, modulation, filter-
ing, and spreading of the signal, � 2 f�fs; �mpg is the
transmitter amplifier in the free-space ð�fsÞ model or
the multipath ð�mpÞ model, and a is the path-loss
exponent, with 2 � a � 4. The energy model has
been widely adopted in many applications and
protocol designs [13], [14], [15].

3.3 Data Storing and Recovery

In our heterogeneous sensor network, the data produced by
all the k regular sensors are to be backed up in the n robust
sensors in an encoded and redundant way, such that by
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querying any b robust sensors, the original data can be
recovered. To be simplicity, we normalize the data gener-
ated in each regular sensor to be one unit between two con-
secutive backups. In the backup, each regular sensor sends
this one unit data to a number of robust sensors.1 Since all
the backup processes are the same, in the following, we
only focus on one-time backup. In each data backup, a
robust sensor stores s-unit encoded data. s is calculated by

p k
b q. When a robust sensor receives data fromm regular sen-

sors, it encodes m-unit data into s-unit data using random
linear network coding. It is obvious that m4k. In addition,
a robust sensor also stores a coefficient matrix, which is
used for the every encoding and decoding.

In the data recovery, a data collector retrieves all the
coefficients from b robust sensors, and k� f-unit encoded
data. Here f is the backup frequency between two data
retrievals.2 Then a linear system involving k equations and
k variables is built and used to decode the original
k� f-unit data.

We use the data backup in Fig. 1b as an example to illus-
trate the data backup and recovery process. In this example,
regular sensor u1 backs its data up at robust sensor v1 and
v2. u2 backs its data up at v1 and v3. u3 backs its data up at v1

and v3. u4 backs its data up at v2 and v3. Therefore, robust
sensor v1 receives three-unit data in total from three regular
sensors, u1, u2, and u3. v2 receives two-unit data from u1

and u4. v3 receives three-unit data from u2, u3, and u4. (As
for why the regular sensors choose these robust sensors to
do backup, it is determined by our algorithms, which will
be presented in the next two sections.) Given this backup
structure, robust sensors v1 and v3 will generate six coeffi-
cients (a 3� 2 coefficient matrix), while v2 generates four
coefficients (a 2� 2 coefficient matrix), since v1 and v3 need
to encode three-unit data into two-unit data while v2 needs
to encode two-unit data into the same size data. Once the
coefficient matrices are determined in the network initiali-
zation phase, they are used throughout the network lifetime
for each data backup.

The above backup plan calculated by our algorithm guar-
antees that by querying any two robust sensors, all the four
unit data can be recovered. Without loss of generality, we
assume v1 and v2 are queried. In the following, we will
show the data encoding and decoding process at v1 and v2.

Let dj denote the data from regular sensor uj, and x
ðlÞ
i

denote the lth unit encoded data in robust sensor vi. Let g
ðlÞ
i;j

denote the coefficient of robust sensor vi for encoding the
data received from regular sensor uj to generate the lth unit
encoded data. The encoding process at v1 and v2 is illus-
trated at Figs. 3a and 3b, respectively. After receiving data
from regular sensors, the robust sensors multiply them by
their coefficient matrices and generate the encoded data.

The encoding process can be viewed from a different per-
spective. All the data generated by this simple network (d1,
d2, d3 and d4) is a row of data. Based on the coefficient matri-
ces of v1 and v2, a global 4� 4matrixM can be generated, as
shown in Fig. 3c. In matrix M, certain coefficients are zero
because corresponding regular sensor and robust sensor do

Fig. 3. A data backup example.

1. The size of data generated in each regular sensor can be varied.
The backup in each robust sensor is only performed on a predefined
unit of data size, which is q bits as mentioned in Section 3.1. When the
data size is larger than predefined data size, the data are separated into
several blocks, each of which is encoded in the robust sensor separately.

2. The backup in every robust sensor is performed at a frequency
predefined by the application, such as once an hour. The frequency can
be dynamically adjusted based on data generating speed, weather con-
dition, and failure model of the regular sensors. If a regular sensor fails
before the next backup, its data are lost and cannot be recovered. How-
ever, since the weather information is known beforehand, this fre-
quency can be adjusted such that data can be backed up before the next
storm and such that they will not be lost.
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not have this backup relationship. Multiplying the row of
data with the coefficient matrix results in the encoded data.
Thus, to recover the data, we can simply multiply the
encoded data with the inverse of the coefficient matrix.

When a data collector needs to retrieve data, it requests
the encoded data and coefficient matrices from robust sen-
sors v1 and v2, as illustrated in Fig. 4. Note that it only needs
to request the coefficient matrices once and stores them to
avoid unnecessary communication overhead. Then the col-
lector can build the 4� 4 coefficient matrix M out of the
received matrices from v1 and v2 and calculate its inverse.
Multiplying the four-unit row of encoded data and the
inverse can recover the original four-unit data. Note that the
matrix inverse must exist in order to recover the original
data. Our algorithms calculate the backup schedule, follow-
ing the schedule can guarantee the existence of M’s inverse
with a high probability. In the paper, the detailed process of
data collection from b robust sensors to a certain data collec-
tor to recover original data is not considered. There are sev-
eral existing methods [16], [17] about how to collect the data
in an energy efficient way.

In the following, we provide a preliminary analysis. Then
in the next two sections, we present our algorithms and
prove they can provide such a guarantee.

3.4 Preliminary Analysis

Our objective is that a data collector can recover all the original
k-unit data after it queries arbitrary b robust sensors. By que-
rying arbitrary b robust sensors, the k� k coefficientmatrixM
can be obtained from the constructed system of linear equa-
tions. Obviously, whether there is a solution in the linear sys-
tem and the original k unit data can be recovered depends on
whether coefficient matrix M is nonsingular, which means
the determinant of matrix M is not 0. Before presenting the
necessary and sufficient conditionwe have derived to guaran-
teeM is nonsingular, we first define two graphs.

Backup SubGraph. Given a Backup Graph Gb ¼ ððVg þ VrÞ;
EbÞ, a corresponding Backup SubGraph Gb

sub ¼ ððVg þ V 0
r Þ;

Eb
subÞ is a graph in which V 0

r is an arbitrary subset of Vr con-

taining b vertices, and Eb
sub is the corresponding subset of Eb

connecting V 0
r and Vg. Given a data backup scheme expressed

by a Backup Graph, querying b arbitrary robust sensors can
be expressed by the correspondingly generated Backup
SubGraph.

Storage SubGraph. The Storage SubGraph Gs
sub ¼ ððVgþ

V þ
r Þ; Es

subÞ is a bipartite graph constructed from a Backup

SubGraph Gb
sub ¼ ððVg þ V 0

r Þ; Eb
subÞ by the following two

operations: (1) for each vertex in V 0
r , duplicate it and its con-

nected edges s times to construct V þ
r and Es

sub; (2) identify
the smallest degree vertex in V 0

r and remove b� s� k verti-
ces in V þ

r which are duplicated from this vertex and their
corresponding edges.

Note that after the first operation in Storage SubGraph
construction, V þ

r has b� s vertices, which can be greater
than or equal to k. If bs > k, bs� k vertices need to be
removed from V þ

r to construct a bipartite graph. Since
s > bs� k, we can choose one vertex in V 0

r and remove
bs� k vertices which are duplicated from this vertex. To
maintain most of graph information, we choose the vertex
with smallest degree in V 0

r and remove bs� k vertices dupli-
cated from this vertex. Among all vertices in V þ

r , these
bs� k vertices must have smallest number of edges as well
and removing them results in the least information loss.
After the second operation, both V þ

r and Vg have k vertices

in the graph. So in Gs
sub ¼ ððVg þ V þ

r Þ; Es
subÞ, jV þ

r j ¼ jVgj ¼ k.
Considering a Backup SubGraph representing a data

collector’s querying b arbitrary robust sensors, a k� k coeffi-
cient matrix M can be obtained from the corresponding
Storage SubGraph. We discover that to check the singularity
of M is equivalent to check whether there exists a perfect
matching in the Storage SubGraph, motivated by Edmond’s

Fig. 4. A data recovery example.
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Theorem [18], which states a connection between the deter-
minant of a matrix and graph matchings in a bipartite
graph. We express the discovery in Lemma 3.1.

Lemma 3.1. The k� k coefficient matrix M is nonsingular
with a high probability if and only if there exists a perfect
matching in Gs

sub.

Lemma 3.1 can be easily proved based on Edmond’s The-
orem. A key thing in Lemma 3.1 is perfect matching. In a
bipartite graph, a perfect matching is a set of edges such that
no two edges share a common vertex and no vertex is iso-
lated. Based on Lemma 3.1, to develop a data backup scheme
satisfying our objectives reduces to select edges from
Deployment Graph G such that there always exists a perfect
matching in any arbitrarily generatedGs

sub. Based on the theoret-
ical foundation, we derive Guideline 1 and Guideline 2.

4 GUIDELINE 1 AND ASSOCIATE ALGORITHM

4.1 Guideline 1

Guideline 1 specifies the minimum number of robust sen-
sors that a regular sensor should randomly choose to back
up its data such that the required level of fault tolerance can
be provided without imposing any other conditions.

Guideline 1. It is sufficient to guarantee that a data collec-
tor can decode all the data with a high probability by query-
ing any arbitrary b robust sensors, if every regular sensor
randomly chooses at least d5 ns

k lnðkÞe robust sensors to back

up its data.
Guideline 1 is derived from the following two theorems:

Theorem 4.1 and Theorem 4.2. Theorem 4.1 indicates that
VðlnðkÞÞ is the minimum magnitude of the number of robust
sensors at which a regular sensor should back up its data to
achieve the required level of fault tolerance. We use c1lnðkÞ to
denote the lower bound. Theorem 4.2 presents the value of c1.

Theorem 4.1. If every vertex in Vg (a regular sensor) selects verti-
ces in Vr (robust sensors) independently and randomly, it must
select VðlnðkÞÞ robust sensors to ensure detðMÞ 6¼ 0 with a
high probability.

Proof of Theorem 4.1. To ensure detðMÞ 6¼ 0 with a high
probability, every vertex in V þ

r is at least covered by one
vertex in Vg in Gs

sub. Otherwise, if there is even one vertex

in V þ
r with no edge, there is 1 column of zeros in the con-

structed coefficient matrixM, resulting in a singularM. In
other words, all vertices in Vg can be viewed as a big vertex,

and the big vertex needs to cover every vertex in V þ
r . Then

it becomes to a classic problem—coupon collector’s prob-
lem.3 The big vertex acts as the collector, which collects k
different vertices randomly. According to [18], the big ver-
tex needs to at least randomly connect vertex in V þ

r for
bklnðkÞ times to cover all k vertices with a high probability
under some b. (More details are presented in the proof of
Theorem 4.2.) Then for each vertex in Vg, the number of
random connections is bklnðkÞ=k ¼ blnðkÞ, which is at the

magnitude of lnðkÞ. SinceGs
sub is linearly transformed from

Gb
sub andGb

sub is a subset ofG
b, the number of random con-

nections for every regular sensor is at the magnitude of

lnðkÞ in Gb. Therefore, each regular sensor node must con-
nect VðlnðkÞÞ robust sensors when the connections are
made independently and uniformly. tu

Theorem 4.2. When c1 � 5 ns
k , there exists a perfect matching in

any arbitrarily generated Gs
sub with a high probability.

Before theoretically deriving the value of c1, we first pres-
ent a lemma about perfect matchings in bipartite graphs[19].

Lemma 4.1. Let Gbi be a bipartite graph with vertex classes Vg

and V þ
r , where jVgj ¼ jV þ

r j ¼ k. Suppose Gbi has no isolated
vertices and it does not have a perfect matching. Then there is
a set A 	 Vg or V þ

r such that:

i) GðAÞ ¼ fvj : ðvi; vjÞ 2 EðGbiÞ for some vi 2 Ag has
jAj � 1 elements,

ii) the subgraph spanned by A [ GðAÞ is connected and
iii) 24 jAj4ðkþ 1Þ=2.

Lemma 4.1 is used to analyze the scenario that a per-
fect matching exists in Gs

sub with no isolated vertices in
Vg and V þ

r .

Proof of Theorem 4.2. Based on Lemma 4.1, Gs
sub has no

perfect matching only in the following two cases:

� Case I: there exists a set A satisfying Lemma 4.1.
� Case II: Gs

sub has one or more isolated vertices,
denoted as I.

Thus, the probability thatGs
sub has no perfect matching

is P ð9I S 9AÞ � P ð9IÞ þ P ð9AÞ.
We first analyze P ð9AÞ in case I. From Lemma 4.1, the

size of A varies from 2 to ðkþ 1Þ=2. Therefore,

P ð9AÞ ¼ P
[ðkþ1Þ=2

a¼2

ð9A; jAj ¼ aÞ
 !

�
Xðkþ1Þ=2

a¼2

P ð9A; jAj ¼ aÞ:

(1)

Furthermore, set A can be the subset of Vg (case I.a) or
the subset of V þ

r (case I.b). In case I.a, A 	 Vg. In case I.b,

A 	 V þ
r . Then we have:

P ð9AÞ �
Xðkþ1Þ=2

a¼2

ðP ð9A 	 Vg; jAj ¼ aÞ

þ P ð9A 	 V þ
r ; jAj ¼ aÞÞ:

(2)

In the following, we will calculate P ð9A 	 Vg; jAj ¼ aÞ
and P ð9A 	 V þ

r ; jAj ¼ aÞ, respectively.
Case I.a. A 	 Vg. When set A exists in Gs

sub, there must

be a set A0 in Gb
sub, which contains the same elements as

set A. One example is shown in Fig. 5, in which k ¼ 6,
s ¼ 2 and b ¼ 3. Then set A ¼ f1; 2; 3g in Gs

sub is illus-

trated in Fig. 5a, and set A0 ¼ f1; 2; 3g inGb
sub is illustrated

in Fig. 5b. Since Gs
sub is equivalently converted from Gb

sub,
then we have P ð9A0

g; jA0j ¼ aÞ ¼ P ð9A 	 Vg; jAj ¼ aÞ.
Now, let us consider a general case. Suppose there are

a nodes in a set A1 	 Vg and a� 1 nodes in a set A2 	 V þ
r

in Gs
sub, where GðA1Þ ¼ A2. Then there must be p a�1

s q

3. In the coupon collector’s problem, there are n types of coupons
and at each trial a coupon is chosen randomly. Each randomly selected
coupon can be one of the n types at equal probability. The random
selections are mutually independent. Letm be the number of trials. The
goal is to study the relationship between m and the probability of col-
lecting at least one coupon of each of the n types.
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nodes A0
2 	 V 0

r in Gb
sub. Such value can be proved by

contradiction.
Proof by contradiction. Let Q denote the quotient and R

denote the remainder of a�1
s , respectively. Then we have

p a�1
s q ¼ Q if R ¼ 0 and p a�1

s q ¼ Qþ 1 if R > 0. Assume

jA0
2j ¼ D < p a�1

s q in Gb
sub. Then after constructing a Stor-

age Subgraph Gs
sub, there must be D� s nodes in A1 in

Gs
sub. If R ¼ 0, jA0

2j ¼ D < Q and then jA1j ¼ D� s <

Q� s ¼ a� 1. If R > 0, jA0
2j ¼ D < Qþ 1 and then

D � Q. Then we have jA1j ¼ D� s � Q� s. Since R > 0,
Q� s < Q� sþR ¼ a� 1 and thus jA1j < a� 1. There-
fore both cases conflict the assumption that jA1j ¼ a� 1.
Similarly, we can prove that jA0

2j can not be greater than

p a�1
s q. Thus, the number of nodes in set A0

2 in Gb
sub is

p a�1
s q.
The probability that set A ¼ A1 with GðAÞ ¼ A2 satis-

fying Lemma 4.1 in Gs
sub is equal to the probability that

all the edges starting from A1 connect A0
2 in Gb

sub. Note
that every node in Vg picks c1lnðkÞ neighbors from the set
Vr inG according to Theorem 4.1. We calculate the proba-
bility P ð9A0 	 Vg; jA0j ¼ aÞ by allowing c1alnðkÞ edges
starting from A1 to land in A0

2

S ðVr � V 0
r Þ shown in

Fig. 5b. Since jA0
2j ¼ p a�1

s q and jðVr � V 0
r Þj ¼ n� p k

s q, we

have jA0
2

S ðVr� V 0
r Þj ¼ n� p k

s q þ p a�1
s q. The the proba-

bility that a edge starting from A1 to land in

A0
2

S ðVr � V 0
r Þ is

n�pksqþpa�1
s q

n . There are (ka) choices for A1

and (
pksq

pa�1
s q) choices for A

0
2. Then we have:

P ð9A 	 VgÞ
¼ P ð9A0 	 VgÞ

�
Xðkþ1Þ=2

a¼2

k

a

� � p k
s q

p a�1
s q

 !
ð1� p k

s q � p a�1
s q

n
Þc1alnðkÞ



Xðkþ1Þ=2

a¼2

k

a

� � k
s

a�1
s

 !
ð1� k� aþ 1

ns
Þc1alnðkÞ:

(3)

We can always bound the above summation by the

maximum value of (ka)(
k
s

a�1
s
)ð1� k�aþ1

ns Þc1alnðkÞ times k.

Therefore, in order to let the probability to be close to 0,

it needs to show that:

kP ð9A 	 Vg; jAj ¼ aÞ ¼ oð1Þ; 8a 2 ½2; ðkþ 1Þ=2� (4)

as k ! 1.

From Stirling’s approximation, we obtain the bound
k
a

� � � ðeka Þa. Let Y ¼ 1� k�aþ1
ns , we have

P ð9A 	 VgÞ � k
ek

a

� �a ek

a� 1

� �a�1
s

Yc1alnðkÞ ¼ eF

F ¼ lnðkÞ þ aln
ek

a

� �
þ a� 1

s
ln

ek

a� 1

� �
þ c1alnðkÞlnðYÞ:

(5)

When eF ¼ oð1Þ, it is sufficient to have F < 0 and thus
the coefficient of lnðkÞ be negative. Since k tends to þ1,
we need to have:

aþ a� 1

s
þ ac1lnðYÞ þ 1 < 0; (6)

which gives us a bound for c1:

c1 > � 1þ aþ a�1
s

alnðYÞ : (7)

Notice that Y < 1, since ns � k and k > a. It is possible
to satisfy this inequality for a positive c1. This bound
should be true for every a 2 ½2; ðkþ 1Þ=2�. So we have:

1þ aþ a�1
s

a
� 5

2
(8)

and

Y � 1� kþ 1

2ns
: (9)

Then according to Taylor Approximation, we have

� 1

lnðYÞ <
2ns

kþ 1
(10)

and

� 1þ aþ a�1
s

alnðYÞ <
2ns

kþ 1
� 5
2
<

5ns

k
: (11)

Therefore, a sufficient condition for 9A 	 Vg is

c1 � 5ns

k
(12)

Case I.b. A 	 V þ
r . With similar analysis, we can obtain

a bound if A 	 V þ
r . When set A exists in Gs

sub, there must

be a set A0 in Gb
sub. Set A

0 contains p jAj
s q elements, which

can also be proved by the similar contradiction presented
in case I.a. As the example shown in Fig. 6, in which
k ¼ 6, s ¼ 2 and b ¼ 3, set A ¼ f1; 2; 3g in Gs

sub is illus-

trated in Fig. 6a, and set A0 ¼ f10; 20g in Gb
sub is illustrated

in Fig. 6b. Then we have P ð9A0 	 V 0
r ; jA0j ¼ aÞ ¼ P ð9A 	

V þ
r ; jAj ¼ aÞ.

Fig. 5. One example of Case I.a.
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We assume a set A2 	 V þ
r with a nodes and a set

A1 	 Vg with a� 1 nodes in Gs
sub. Then we have p a

s q
nodes in set A0

2 	 V 0
r in Gb

sub. To satisfy LEMMA 4.1 with
A ¼ A2 in Gs

sub, we require that all edges that link to A2

land in set A1. To have GðA2Þ ¼ A1 in Gs
sub, all the edges

starting from Vg �A1 must land outside A0
2 of G

b, which
is Vr �A0

2 as shown in Fig. 6b. There are
c1klnðkÞ � c1ða� 1ÞlnðkÞ such edges and every edge has a

probability 1� pasq
n to land outside A0

2 ofG
b. Thus we have:

P ð9A 	 V þ
r Þ ¼ P ð9A0 	 V 0

r Þ

�
Xðkþ1Þ=2

a¼2

k

a� 1

� � p k
s q

p a
s q

� �
ð1� p a

s q
n

Þc1klnðkÞ�c1ða�1ÞlnðkÞ:
(13)

After similar calculations, it can be seen that when
c1 >

nsþn
k�aþ1, P ð9A 	 V þ

r Þ ¼ oð1Þ as k ! 1. Notice that
nsþn
k�aþ1 is an increasing function as a increases. So the maxi-

mum value of k
a�1

� � pksq
pasq

� �
ð1� pasq

n Þc1klnðkÞ�c1ða�1ÞlnðkÞ is

obtained at a ¼ 2 or a ¼ kþ1
2 , whichever is larger. After

we examine the extreme cases, it can be shown that
c1 � 5 ns

k is required to satisfy both extreme cases.

Case II. There exists isolated vertices in Gs
sub. A vertex in

Gs
sub is isolated only when it has no neighbors. It is obvi-

ous that if there are isolated nodes in Gs
sub, they can only

be in V þ
r . It also means that isolated nodes can only be in

Vr of G. In other words, we need to show that each vertex
in Vr is at least covered by one vertex in Vg with a high
probability. The problem also becomes a coupon
collector’s problem as discussed in Theorem 4.1. All reg-
ular sensors acting as a collector to randomly collect n
different robust sensors.

Let C denote the number of total edges required to
cover all n vertices in Vr. According to the analysis results
of the coupon collector’s problem in [18], we have:

P ½C > bnlnðnÞ� � n�ðb�1Þ: (14)

To satisfy such condition, we need to have b � 2 such
that the probability tends to 0. From above calculation

for c1, it suffices to show that

kc1lnðkÞ
bnlnðnÞ > 1 (15)

Thus,

b <
5slnðkÞ
lnðnÞ : (16)

For a reasonable deployment, k is always larger than n,
which means the number of robust sensors is less than
the regular sensors, and s is always larger than 1. Thus
we can always find some b � 2 with c1 � 5 ns

k to satisfy

the condition that each vertex in Vr is covered by at least
one vertex in Vg with a high probability.

Conclusion. Since c1 � 5 ns
k is sufficient for a perfect

matching existing in any arbitrary Gs
sub with a high prob-

ability, we prove the theorem. tu
As k ! 1, the probability of the existence of a perfect

matching approaches 1. Since generally a sensor network is
composed of a large number of regular sensors, the proba-
bility is almost 100 percent.

4.2 A Robust Randomized Algorithm

Following Guideline 1, a robust randomized algorithm is
developed: every regular sensor randomly chooses
d5 ns

k lnðkÞe robust sensors to back up its data. The algo-

rithm is simple and robust.
In the algorithm, the random selection of robust sensors

through the network is a must. This means when we choose
d5 ns

k lnðkÞe closest robust sensors to back up data, the ran-

domness is destroyed and the conditions of previous theo-
rems are violated. (In the future work, we will study
whether we can sacrifice certain randomness to incorporate
selection rules based on backup cost.)

After the sensors’ deployment, energy-efficient routes
between any two sensors can be established by existing
routing protocols [13], [14], [15], which construct routes
based on sensors’ locations and the same energy model
presented in Section 3.2. When the regular sensors start
data backup process, they select robust sensors for
d5 ns

k lnðkÞe times randomly and independently. All robust

sensors’ IDs are preloaded in regular sensors before net-
work deployment. The randomness of the selection can
be easily achieved by randomly selecting robust sensors’
IDs. Then every regular sensor decides the robust sensors
that it backs up its data and sends its data to such robust
sensors via established routes. When a robust sensor is
selected more than once by the same regular sensor, the
algorithm still works effectively according to previous
analysis.

5 GUIDELINE 2 AND ASSOCIATE ALGORITHM

5.1 Guideline 2

Guideline 2 specifies two conditions that must be satisfied
simultaneously such that the required level of fault toler-
ance can be achieved.

Guideline 2. It is sufficient to guarantee that a data collec-
tor can decode all the data with a high probability by

Fig. 6. One example of Case I.b.
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querying any arbitrary b robust sensors, if the following two
conditions are satisfied simultaneously:

� Every regular sensor backs up its data at at least
c2 ¼ n� bþ 1 different robust sensors.

� Every robust sensor receives data from at least s dif-
ferent regular sensors.

Guideline 2 is derived from following theorem.

Theorem 5.1. Given a Deployment Graph G ¼ ððVg; VrÞ; EÞ, in
which the degree of each vertex in Vg is no less than
c2 ¼ n� bþ 1 and the degree of each vertex in Vr is no less
than s, it is sufficient to guarantee the existence of a perfect
matching in any Gs

sub generated from G.

Proof of Theorem 5.1. We prove the theorem by contradic-
tion. Assume a vertex ui in Vg is connected to c0 vertices
in Vr, where c0 � n� b < n� bþ 1. There are always at
least bð¼ n� c0Þ vertices in Vr, which are not connected
to ui in Vg. WhenGs

sub is constructed from these b vertices,
there is always a row of 0 in matrix M. Thus M is singu-
lar. According to Lemma 3.1, there doesn’t exist a perfect
matching.

Assume a vertex vj in Vr is connected to c00 vertices in
Vg, where c00 � s� 1 < s. When Gs

sub is constructed from

such vertex vj, s vertices duplicated from vj in V þ
r must

connect c00 < s vertices in Vg. Then we can always find a
subset A of the set containing such s vertices satisfying
Lemma 4.1. Thus, there doesn’t exist a perfect matching.

Therefore, we prove the theorem. tu

5.2 A Centralized Algorithm

Based on Guideline 2, we develop a centralized algorithm
to determine which regular sensor backs up its data in
which robust sensor such that the energy consumption in
communication is minimized. In the algorithm, a central
server first performs a one-time network discovery to
obtain the location of each sensor and then determines
routes and calculates energy costs between regular sensors
and robust sensors based on the location information.
Then it calculates the backup schedule at the network ini-
tialization phase.

Consider that any arbitrary selection of robust sensors
satisfying the conditions of Guideline 2 can guarantee the
successful decoding of all the data. Thus we aim to select
robust sensors which can minimize energy consumption in
data backup. Note that in Section 2, we have proved the
NP-Completeness of the Weighted Backup Problem and we
cannot have an optimal solution. Based on the random lin-
ear network coding technique and Guideline 2, a centralized
algorithm can be designed to tackle the problem. Its general
idea is to let a robust sensor choose s regular sensors with
least energy cost to receive data from and let each regular
sensor choose c2ð¼ n� bþ 1Þ robust sensors with least
energy cost to send data to. In the following, the process of
the centralized algorithm is presented in details.

Same as the randomized algorithm, after the sensors’
deployment, energy-efficient routes are constructed in the
network by existing routing protocols. The central server
establishes a cost matrix to store the energy cost of the
route between every regular sensor and every robust
sensor. Then the algorithm runs the following three steps

to choose robust sensors for each regular sensor to back up
its data.

� Step 1: each robust sensor selects s regular sensors
with the least energy cost from the cost matrix to
receive backup data.

� Step 2: each regular sensor selects c2 robust sensors
with the least energy cost from the cost matrix to
back up its data.

� Step 3: remove the redundant edges, the removal of
which will not violate the two conditions in the
Guideline 2.

After the first two steps, both two conditions in the
Guideline 2 can definitely be satisfied. Note that, the min-
imum units of data that have to be sent by all regular sen-
sors, which is c2 � k, is generally larger than the
minimum units of data that have to be received by robust
sensors, which is n� s. Thus in the Backup Graph, only
c2 � k edges are required ideally. However, since the
backup selections between regular sensors and robust
sensors may not be overlapped, the edges selected after
the first two steps can be at most c2 � kþ n� s. This
means there are redundant selections. The final step is to
remove the redundant edges in the graph. The algorithm
examines every edge from highest cost to lowest cost. If
the removal of a edge does not violate the two conditions
in the Guideline 2, then this edge is a redundant backup
edge and is removed from the Backup Graph. The algo-
rithm is formally presented in Algorithm 1.

Algorithm 1. A Centralized Algorithm

Output:
B: a k� n backup matrix. bij ¼ 1 indicates regular sensor ui

backs up data in robust sensor vj and 0 indicates otherwise.
bi� and b�j represent the corresponding row/vector of B.
W : a k� n energy cost matrix. wij indicates the energy cost
from regular sensor ui to robust sensor vj. wi� and w�j repre-
sent the corresponding row/vector ofW .

1: Calculate routes between any two sensors.
2: for all vj 2 Vr do
3: for all ui 2 Vg do
4: Put route cost from ui to vj in wij.
5: end for
6: end for
7: for all vj 2 Vr do
8: Choose s regular sensors with least energy cost in W for

backup.
9: Update b�j and w�j.
10: end for
11: for all ui 2 Vg do
12: Choose c2 robust sensors with least energy cost inW .
13: Update bi� and wi�.
14: end for
15: Find a wij with the largest value inW .
16: while wij is nonzero do
17: Remove bij from B and wij fromW , the removal of which

will not make regular sensor ui back up data at less than
c2 robust sensors, and robust sensor vj receive less than s

units of data.
18: Go to find wij with the next highest value inW .
19: end while
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6 DISCUSSION ABOUT COEFFICIENT MATRIX

The coefficient matrix is dynamically determined after the
deployment. The determination process is as follows: Before
the deployment, each robust sensor is preloaded with a
large matrix which works for all the regular sensors. After
the deployment and the backup relationship is determined
by our algorithms, only a subset of this large matrix is
needed and thus the unused columns/rows are deleted to
save space, resulting in the coefficient matrix that we need.

7 PERFORMANCE EVALUATION

7.1 Simulation Methodology and Setting

In this section, we evaluate the randomized algorithm based
on Guideline 1 and the centralized algorithm based on
Guideline 2. Our objective in conducting the evaluation
study is two-fold: (1) Evaluating the efficiency of our algo-
rithms in minimizing energy consumption while providing
required fault tolerance; (2) Testing the performance of our
algorithms under different system parameters.

To evaluate our algorithms, four metrics are employed:
(1) total energy consumption per backup, (2) energy con-
sumption per node, (3) number of storage units needed for
data backup per robust node and (4) whether the required
level fault tolerance is achieved.

Since the centralized algorithm requires cost information
about the communication between a regular sensor and a
robust sensor, we evaluate the centralized algorithm under
the situation when the cost can be obtained from other
applications running in the sensor network, and the situa-
tion when the cost is not available and needs to be discov-
ered by a flooding.

We compare our algorithms with DISC protocol [3],
which has the same objective as ours. In DISC protocol, the
network is composed of data nodes and storage nodes, and
the network is divided into clusters. In each cluster, one of
the storage nodes is randomly selected as the cluster head
for data backup. In one backup, all data nodes back up their
data in their cluster, and every cluster head then backs up
its data in a neighbor cluster. In our implementation, every
robust sensor is viewed as a storage node and every regular
sensor is viewed as a data node in DISC.

To have a fair comparison, we let the cluster heads in
DISC back up data at neighboring clusters multiple times
following their selection algorithm to achieve the compara-
ble fault tolerance as our designed algorithms. If we back
up data only once strictly following DISC, one cluster’s data
are stored in only two robust sensors in different clusters.
Then the data recovery will fail with a high probability,
since a large amount of robust sensors don’t have any data.
According to THEOREM 5.1, at least n� bþ 1 different
robust sensors need to store data. Then at least ðn� bþ 1Þ=2
different robust sensors should be selected in both current
cluster and neighbor cluster to achieve required fault toler-
ance. Since the robust sensors for backup are randomly
selected, it turns to be a version of the coupon collector’s
problem. According to [18], the expected value of backups
that need to be performed to cover m different robust sen-
sors is mlnðmÞ. Thus, mlnðmÞ (m ¼ ðn� bþ 1Þ=2) backups
are performed to achieve the required fault tolerance, which

is recovering all data by accessing arbitrary b storage sen-
sors in DISC. We divide the network into four clusters and
ensure n=4 � m in the evaluation such that enough robust
sensors for backup are provided in each cluster.

We evaluate the performance through simulation. In the
simulation, 200 regular sensors are randomly deployed in a
40m� 40m area. Each sensor’s communication range is
10 m. The energy model is the free space mode presented in
Section 3.2. According to [12], the communication energy

parameters are set as: Eelec ¼ 50nJ=bit, �fs ¼ 10pJ=bit=m2

and a ¼ 2. The central server broadcasts its location informa-
tion, which are 64 bits including longitude and latitude in the
data type of float. Sensing data include a timestamp and a
measurement, which are 64 and 32 bits respectively. We
adopt the routing algorithm proposed in [15] to establish
routes. The communication overhead in route construction is
not considered.We set s to be 6 unlesswe evaluate the impact
of robust sensor’s storage s. We also set ns=k ¼ 1:5. Corre-
spondingly, the number of robust sensors is 50, which is k=4,
unless we evaluate the impact of number of robust sensors.
In each simulation, the network topology is different by ran-
domly redeploying all sensor nodes in the network. All simu-
lation results are the average of 100 time simulations.

7.2 Evaluation of Total Energy Consumption

We evaluate total energy consumption under different s
and n. The number of robust sensors n ranges from 34 to 64,
which is from 1=6 to 1=3 of the number of regular sensors k.
Fig. 7 shows the total energy consumption of the three algo-
rithms. The green line is the energy consumption of the cen-
tralized algorithm with cost discovery overhead. From the
figure, we can see that our schemes outperform DISC. The
cost discovery does not introduce a big overhead. When n is
34, the total energy consumption under randomized algo-
rithm is 0:2485 J. It is 34:2 percent less than that under DISC,
which is 0:3776 J. The total total energy consumption under
centralized algorithm is 0:0067 J, which is about 98:2 percent
less than that under DISC.

As n increases, total energy consumption of all the algo-
rithms increases. The performance under DISC increases
much faster than under our algorithms. The reason is that
the number of backup times increases as n increases.
Among the two of our algorithms, the performance under
the centralized algorithm is better than that under the ran-
domized algorithm. This shows that the centralized algo-
rithm performs better with a smaller n.

Fig. 7. Total energy consumption under different n (s ¼ 6).
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We vary the number of storage units in a robust sensor
from 1 to 10. The results are shown in Fig. 8. From the figure,
we can see that our schemes outperform DISC under differ-
ent s. When s is 1, the total energy consumption under ran-
domized algorithm is 0:3547 J. It is 93:9 percent less than that
under DISC, which is 5:8425 J. The total energy consumption
under centralized algorithm is 0:7512 J, which is 87:1 percent
less than that under DISC. As s increases, the randomized
algorithm keeps an almost constant energy consumption,
but the centralized algorithm consumes less. The reason is
that under given ns=k and k, c1 doesn’t change while c2
decreases with less number of robust sensors, which reduces
the number of backup messages. This shows that the ran-
domized algorithm performs better with a smaller s.

7.3 Energy Consumption per Node

Weevaluate the energy consumption per node under different
n and s. n ranges from 34 to 64. Fig. 9 shows the energy con-
sumption per node under three algorithms. From the figure,
we can see that our algorithms outperformDISC. For example,
when n is 34, the energy consumption per node under ran-

domized algorithm is 1:06� 10�3 J, which is 35:0 percent less

than that under DISC, which is 1:63� 10�3 J. The energy con-

sumption per node under centralized algorithm is 2:85� 10�5

J, which is 98:3 percent less than that under DISC. The reason
is that the data backup between cluster heads consumes a lot
of energy in DISC. It can also be observed that as n increases,
energy consumption per node increases under all three algo-
rithms. The reason is that as n increases, the total number of
messages transmitted from every regular sensor increases
faster than the number of robust sensors, and thus the energy
consumption per node increases.

Fig. 10 shows the energy consumption per node under differ-
ent s. From the results, our algorithms have better perform-
ances than DISC. For example, when s is 1, the energy
consumption per node under randomized algorithm and

centralized algorithm is 7:09� 10�4 J and 1:50� 10�3 J,
which are 93:9 and 87:2 percent less than that under DISC,

which is 1:17� 10�2 J. From the results, we can also see that
energy consumption per node under both centralized algo-
rithm and DISC decreases as s increases, and the energy con-
sumption per node under randomized algorithm increases
as s increases. The reason is that as s increases, the number of
robust sensors decreases with given ns=k and s. In central-
ized algorithm, the total number of messages transmitted
from every regular sensor decreases faster than the total
number of sensors. Thus the energy consumption per node
decreases under centralized algorithm. In randomized algo-
rithm, the total number of messages transmitted from every
regular sensor is a constant value under given ns=k. Thus the
energy consumption per node increases under randomized
algorithm as total number of sensors decreases.

7.4 Storage Size Required for One Backup in a
Robust Node

We evaluate the size of storage units required for one
backup in a robust sensor on average under different s and
n. A small variance on such metric indicates that the storage
requirement of the algorithm is stable.

n ranges from 34 to 64. Fig. 11 shows the size of storage
units used in a robust sensor under three algorithms. From
the result, we can see that the size of storage units taken on a
robust sensor is much lower under our algorithms than that

Fig. 8. Total energy consumption under different s (ns/k ¼ 1.5).

Fig. 9. Energy consumption per node under different n (s ¼ 6).

Fig. 10. Energy consumption per node under different s (ns/k ¼ 1.5).

Fig. 11. Storage units under different n (s ¼ 6).
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under DISC. For example, when n ¼ 34, the size of storage
units required on a robust sensor under our algorithms is
576 bits on average, which is 87:0 percent less than that under
DISC, which is 4439:1 bits on average. Moreover, the storage
units required in a robust sensor under our algorithms are
constant. The storage units required are not stable under
DISC. The reason is that by using network coding, our algo-
rithms only need to store s units data in each robust sensor.
In DISC, since each cluster head may need to store original
data from other cluster heads, the difference of number of
storage units between robust sensors is large.

Fig. 12 shows the the size of storage units required in a
robust sensor under different s. From the results, we can see
that the value increases under our algorithms as s increases.
The value decreases and becomes more unstable under
DISC as s increases. Our algorithms only need s units stor-
age in a robust sensor. Then as s increases, the number of
storage units on every robust sensor increases. Moreover,
the requirement of storage units under our algorithms is
still much lower than that under DISC. It is obvious that
DISC takes lots of storage in robust sensors to meet the
required level of backup fault tolerance.

7.5 Evaluation of Fault Tolerance

In all the above simulation settings, both our centralized
and randomized algorithms can achieve the required fault
tolerance, which is, querying any b robust nodes can recover
all the data generated by the sensor networks. For DISC, if a
cluster head backs up data multiple times, the required fault
tolerance can also be achieved; however, the energy con-
sumption on data backup is high, which has been shown in
previous sections. If we strictly follow DISC protocol, which
is a cluster head backs up data on one neighbor storage
node, only 6:06 percent times, the required fault tolerance is
achieved.

8 RELATED WORK

Networked data storage and backup have been intensively
studied in the past. Depending on methodology, existing
works can be classified into two categories: schemes using
network coding and schemes not. Mechanisms based on
network coding are studied in [4], [5], [8], [20], [21], [22],
[23], [24], [25], [26], [27], [28]. Albano and Chessa provide
an abstract model of in-network storage by using erasure
codes in [4]. A decentralized erasure code for data storage is
proposed in [5], in which data sources are distributed in the

network. Wang et al. in [8] present a partial network coding
(PNC) scheme for collecting recent data in wireless sensor
networks. Storing large files in a distributed manner is stud-
ied in [20]. Dimakis et al. investigate the problem of con-
structing fountain codes for distributed storage in sensor
networks in [21]. Regenerating codes with existing available
nodes to repair failure nodes in distributed storage systems
is studied in [22]. Liu et al. in [23] use Slepian-Wolf Code to
minimize the communication cost in a network with a single
sink. Hu et al. propose a mutually cooperative recovery
(MCR) mechanism for multiple node failures in distributed
storage systems in [24]. A network coding scheme based on
sociality of wireless sensor networks is proposed in [25].
Yang et al. propose a compressed network coding based
distributed data storage scheme based on compressed sens-
ing and network coding theories in [26]. To guarantee data
integrity and availability, Zeng et al. in [27] propose a dis-
tributed fault/intrusion-tolerant data storage scheme based
on network coding and homomorphic fingerprinting. In
[28], Wu studies the problem of constructing network codes
to achieve an optimal tradeoff between storage efficiency
and network bandwidth.

Without using network coding, data storage using other
techniques are presented in [2], [3], [29], [30], [31], [32], [33].
A Geographic Hash Table system for data-centric storage is
proposed by Ratnasamy et al. in [29], which hashes keys
into geographic coordinates, and stores a key-value pair at
the sensor node geographically nearest the hash of its key.
Tanushetty et al. present a concept of multiple hash loca-
tions for storing sensed data to provide efficient resiliency
for data centric storage in [30]. A distributed data storage
protocol for large-scale heterogeneous WSNs with mobile
sinks is proposed in [31], which guarantees robustness in
data collection by intelligently managing data replication
among selected storage nodes in the network. Liao and
Yang propose a power-saving data storage scheme for WSN
based on grid architecture in [32]. A distributed data storage
algorithm that generates redundant data based on Luby
transform coding is proposed in [34]. Sheng et al. in [33]
study the deployment problem of storage nodes to mini-
mize the total energy cost in data storage system, and pres-
ent an optimal algorithm based on dynamic programming.
A line based data dissemination protocol in wireless sensor
networks with mobile sinks is studied in [35]. DISC in [3]
randomly chooses cluster heads in neighboring clusters to
conduct data backup, and uses a Bloom filter based search
engine to retrieve data and minimize energy consumption.
Hashmi et al. in [2] propose to rotate cluster heads to do
backup to balance network energy consumption.

None of the existing works focuses on designing a data
backup scheme in heterogenous sensor networks to maxi-
mize the fault tolerance and minimize the communication
cost, and cannot be directly applied to solve the problem in
this paper.

9 CONCLUSION

In this paper, a weighted backup problem in heterogeneous
wireless sensor networks is formulated and studied. We for-
mally prove its NP-completeness. Leveraging random lin-
ear network coding, we derive two design guidelines,

Fig. 12. Storage units under different s (ns/k ¼ 2).
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satisfying which, the required fault tolerance can be pro-
vided. Based on the two guidelines, we design two data
backup schemes, which outperform existing solutions.
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