
ZebraLancer: Private and Anonymous
Crowdsourcing System atop Open Blockchain

Yuan Lu, Qiang Tang, Guiling Wang
Department of Computer Science, New Jersey Institute of Technology

Email: {yl768, qiang, gwang}@njit.edu

Abstract—We design and implement the first private and
anonymous decentralized crowdsourcing system ZebraLancer1,
and overcome two fundamental challenges of decentralizing
crowdsourcing, i.e. data leakage and identity breach.

First, our outsource-then-prove methodology resolves the ten-
sion between blockchain transparency and data confidentiality,
which is critical in crowdsourcing use-case. ZebraLancer ensures:
(i) a requester will not pay more than what data deserve,
according to a policy announced when her task is published via
the blockchain; (ii) each worker indeed gets a payment based on
the policy, if he submits data to the blockchain; (iii) the above
properties are realized not only without a central arbiter, but
also without leaking the data to the open blockchain.

Furthermore, the transparency of blockchain allows one
to infer private information about workers and requesters
through their participation history. On the other hand, allowing
anonymity will enable a malicious worker to submit multiple
times to reap rewards. ZebraLancer overcomes this problem by
allowing anonymous requests/submissions without sacrificing the
accountability. The idea behind is a subtle linkability: if a worker
submits twice to a task, anyone can link the submissions, or else
he stays anonymous and unlinkable across tasks. To realize this
delicate linkability, we put forward a novel cryptographic con-
cept, i.e. the common-prefix-linkable anonymous authentication.
We remark the new anonymous authentication scheme might be
of independent interest.

Finally, we implement our protocol for a common image
annotation task and deploy it in a test net of Ethereum. The
experiment results show the applicability of our protocol atop
the existing real-world blockchain.

I. INTRODUCTION

Crowdsourcing empowers open collaboration over the Inter-
net. One remarkable example is the solicitation of annotated
data: the famous ImageNet [1] was created in Amazon’s
crowdsourcing marketplace, Mechanical Turk (MTurk) [2].
Another notable example is mobile crowdsensing [3] where
one (called “requester”) can request a group of individuals
(called “workers”) to use their mobile devices to gather
information fostering a data-driven application [4]. Various
monetary incentive mechanisms were introduced [5–11] to
motivate workers to make real efforts. To facilitate these
mechanisms, the state-of-the-art solution necessarily requires
a trusted third-party to host crowdsourcing tasks to fulfill the
fair exchange between the crowd-shared data and the rewards;

1Two popular hypotheses of zebra strips were: (i) camouflage used to
confuse predators by motion dazzle, and (ii) visual cues used by herd peers to
identify. The delicate anonymity in our system can be analog, as it overcomes
the natural tension between anonymity and accountability. On the other hand,
freelancer is a typical position enabled by crowdsourcing.

otherwise, the effectiveness of incentive mechanisms can be
hindered by the so-called “free-riders” (i.e. dishonest workers
reap rewards without making real efforts) and “false-reporters”
(i.e. dishonest requesters try to repudiate the payment).

It is well-known that reducing the reliance on a trusted third-
party is desirable in practice, and the same goes for the use-
case of crowdsourcing. First, numerous real-world incidents
reveal that the party might silently misbehave in-house for
self-interests [12]; or, some of its employees [13] or attackers
[14] can compromise its functionality. Second, the party often
fails to resolve disputes. For instance, requesters have a good
chance to collect data without paying when using MTurk,
which is biased towards requesters over workers [15]. Third, a
centralized platform inevitably inherits all the vulnerabilities of
the single point failure. For example, Waze, a crowdsourcing
map application, suffered from 3 unexpected server downs
and 11 scheduled service outages during 2010 to 2013 [4].
Last but not least, a centralized platform hosting all tasks
also increases the worry of massive privacy breach. One fresh
lesson to us is the tremendous private data leakage of the
leader in crowdsourcing economy, Uber [16].

In contrast, an (open) blockchain is a distributed, transparent
and immutable public “bulletin board” organized as a chain of
blocks. The blockchain is usually managed and replicated by
a peer-to-peer (P2P) network collectively. Each block includes
some messages committed by network peers, and is validated
by the whole network according to a pre-defined consensus
protocol. This ensures reliable delivery of messages via the
untrusted Internet. More interestingly, the messages contained
in each block can be program code, the execution of which is
enforced and verified by all blockchain network peers; hence,
a more exotic application of smart contract [17] is enabled.
Essentially, the smart contract can be viewed as a “decentral-
ized computer” that faithfully handles all computations and
message deliveries (except the adversary can choose the order
of messaging) related to a specified task. It becomes enticing
to build a decentralized crowdsourcing platform atop.

Unfortunately, this new fascinating technology also brings
about new challenges, which were never that severe in the
centralized setting before [18]. One notable feature of the
blockchain is its transparency. The whole chain is replicated
by the whole network to ensure consistency, thus the data
submitted to the blockchain will be visible to the public. This
causes an immediate problem violating data privacy as many

853

2018 IEEE 38th International Conference on Distributed Computing Systems

2575-8411/18/$31.00 ©2018 IEEE
DOI 10.1109/ICDCS.2018.00087

of the crowdsourced data maybe sensitive. Sometimes, the data
are simply valuable to the requester who paid to get them.
What is worse, since the block confirmation (which corre-
sponds to the time when the submitted answers are actually
recorded in a block) normally takes some time after the data
is submitted to the network, a malicious worker can simply
copy the data committed by others, and submit the same
data as his own to run the free-riding attack. Without data
confidentiality, the incentive mechanisms could be rendered
completely ineffective.

Furthermore, most crowdsourcing systems [2, 4] and in-
centive mechanisms [6–8] implicitly require participants to
authenticate on requesting and submitting in order to prevent
misbehaviors. When decentralizing crowdsourcing atop open
blockchain, this basic requirement might cause the history of
submitting/requesting to become public knowledge recorded
in the blockchain (which was originally “protected” in a data
center such as the breached one of Uber’s). This breached par-
ticipation history could leak considerable amount of informa-
tion about workers/reqeusters [19] to the public, and therefore
seriously impairs their privacy. Notably, if a worker/requester
frequently joins traffic monitoring tasks, then anyone can read
the blockchain ledger and figure out location traces of them.

To address the above fundamental privacy challenges, we
have to resolve two natural tensions: (i) the tension between
blockchain transparency and data confidentiality, and (ii) the
tension between anonymity and accountability. Simple solu-
tions utilizing some standard cryptographic tools (e.g. encryp-
tion and/or group signature) to protect the data confidentiality
and the anonymity do not work well: the encryption of
data immediately prevents smart contracts from enforcing the
rewards policy, as the decrypting key is not accessible to the
blockchain peers; to allow fully anonymous participation will
give a dishonest worker an opportunity of submitting multiple
times to one crowdsourcing task, and thus he may claim more
rewards than what is supposed, and a malicious requester
can anonymously submit many colluded answers to herself
to downgrade the actual workers.

Our contributions. In this paper, we construct a general
blockchain based protocol to enable the first private and
anonymous decentralized data crowdsourcing system2. Our
protocol can realize a class of incentive mechanisms for
crowdsourcing without relying on a trusted party. The rewards
promised by a requester can be enforced according to pre-
specified policies. More importantly, we also protect the data
confidentiality and the worker/requester anonymity while still
holding them accountable. Specifically,

1) A blockchain based protocol is proposed to realize a
decentralized crowdsourcing system satisfying: (i) the fair
exchange between data and rewards, i.e., a worker will
be paid the correct amount according to the pre-defined

2A couple of recent attempts on decentralized crowdsourcing have been
made, [20–22], however, none of them address the above privacy and
anonymity issues. See section II for details.

policy, if and only if he submits data independent with
other submissions; (ii) the data confidentiality, i.e., the
submitted data is confidential to anyone other than the
requester; and (iii) anonymity and accountability.
Intuition behind data confidentiality is an outsource-then-
prove methodology that: (i) the requester is enforced to
deposit the budget of her incentive policy to a smart
contract; (ii) answers encrypted under the requester’s
public key are collected by the smart contract; (iii) the
evaluation of the reward is outsourced to the requester
who then needs to send the blockchain an instruction to
reward each answer. The instruction is ensured to follow
the promised incentive policy, because the requester is
also required to attach a valid succinct zero-knowledge
proof to attest its correctness.
The worker anonymity of our protocol can ensure: (i) the
public including the requester and the implicit registration
authority is not able to tell whether a data comes from
a given worker; (ii) if a worker joins multiple tasks
announced via the blockchain, no one can link these
tasks. More importantly, we also address the threat of
multi-submission exacerbated by anonymity misuse. In
particular, if a worker anonymously submits more than
the allowed numbers in one task, our scheme allows the
blockchain to tell and drop the invalid submissions. We
similarly achieve the requester anonymity.

2) To achieve the above goal of anonymity while preserving
accountability, we propose a new cryptographic primitive,
called common-prefix-linkable anonymous authentication.
In most of the time, a user can authenticate on mes-
sages and also the validity of his certificate without
being linked. The only exception is when the same key
holder authenticates two messages with the same prefix,
everyone can link the authentications. In all other cases,
authentications are unlinkable. Namely, the anonymity is
strong, as everyone (including the registration authority)
cannot tell the actual identities behind anonymous au-
thentications. Such a primitive may be of independent
interests for its balance between anonymity and account-
ability.
To utilize the new primitive in our protocol, a worker has
to commit to the task via an anonymous authentication.
The task will be the common prefix so that the special
linkability will prevent multi-submission to the same task.
A requester can also use it to authenticate in each task
she publishes, and convince workers that she cannot
maliciously submit to downgrade their rewards.

3) To show the feasibility of applying our protocol, we
implement the system we call ZebraLancer for a common
image annotation task on top of Ethereum, a real-world
blockchain infrastructure. Intensive experiments and per-
formance evaluations are conducted in an Ethereum test
net. Since current smart contracts support only primitive
operations, tailoring such protocols compatible with ex-
isting blockchain platforms is non-trivial.

854

II. RELATED WORK

We thoroughly review related works, and briefly discuss the
insufficiencies of the state-of-the-art solutions.

Centralized data crowdsourcing systems. MTurk [2] is the
most commercially successful data crowdsourcing platform.
But it has a well-know vulnerability allowing false-reporters
gain short-term advantage [15]. Also, MTurk collects plain-
texts of answers, which causes considerable worry of data
leakage. Last, the pseudo IDs in MTurks can be trivially linked
by a malicious requester. Dynamo [23] was designed as a
privacy wrapper of MTurk. Its pseudo ID can only be linked by
the pseudo ID issuer, but still it inherited all other weaknesses
of MTurk. SPPEAR [24] considered a couple of privacy issues
in data crowdsourcing, and thus introduced a couple more
authorities, each of which handled a different functionality.
Distributing one authority into multiple reduces the excessive
trust, but, unfortunately, it is still not clear how to instantiate
all those different authorities in practice.

Decentralized data crowdsourcing. We also note there are
several attempts [20–22, 25] using blockchain to decentralize
data crowdsourcing, but neither of them considers privacy and
anonymity which are fundamentally arguable for basic utility.

Anonymous data crowdsourcing. Li and Cao [26] pro-
posed a framework to allow workers generate their own
pseudonyms based on their device IDs. But the protocol sacri-
ficed the accountability of workers, because workers can forge
pseudonyms without attesting that they are bound to real IDs,
which gave a malicious worker chances to forge fake pseudo
IDs and cheat for rewards. Rahaman et al. [27] proposed
an anonymous-yet-accountable protocol for crowdsourcing
based on group signature, and focused on how to revoke
the anonymity of misbehaved workers. Misbehaved workers
could be identified and further revoked by the group manager.
The authors in [24] similarly relied on group signature but
introduced a couple of separate authorities. Our solution can
be considered as a proactive version that can prevent worker
misbehavior, and without relying on a group manager.

Accountable anonymous authentication. The pioneering
works in anonymous e-cash [28, 29] firstly proposed the notion
of one-time anonymous authentication. The concept later was
studied in the context of one-show anonymous credential [30].
Some works [31, 32] further extended the notion of one-
time use to be k-time use, and therefore enabled a more
general accountability for anonymous authentications. In [33],
the authors considered a special flavor of accountability to
periodically allow k-time anonymous authentications.

Conceptually similar to the linkability appeared in one-show
credential [30], linkable group/ring signatures [34, 35] were
proposed to allow a user to sign messages on behalf of his
group unlinkably up to twice. In [36], a more general concept
of event-oriented linkable group signature was formulated to
realize more fine-grained trade-off between accountability and
anonymity: a user can sign on behalf of his group unlinkably
up to k times per event, where an event could be a common

reference string (e.g., the unique address to call a smart con-
tract deployed in the blockchain). But its main disadvantage
is that the group manager can reveal the actual identities of
users, when they have no intention but occasionally submit
twice per event.

Our new primitive can be considered as a special cryp-
tographic notion to formalize the subtle balance between
event-oriented linkability and irrevocable anonymity. Partic-
ularly, our scheme ensures that no authority can revoke users’
anonymity (which is strictly stronger than [36]).

Privacy-preserving smart contracts. Privacy-preserving
smart contract is a recent hot topic in blockchain research.
Most of them are for general purpose consideration [37, 38],
and thus deploy heavy cryptographic tools including general
secure multi-party computation (MPC). Hawk [39] did provide
a general framework for privacy-preserving smart contracts
using light zk-SNARK, but mainly for reward receiver to prove
to the contract. Our work can be considered as a very specially
designed MPC protocol, and a lot of dedicated optimizations
of zk-SNARK exist which can directly benefit our protocol.
Last, cryptocurrencies like Zcash [40] and Ethereum [41] also
leverage zk-SNARK to build a public ledger that supports
anonymous transactions. We note that they consider more basic
blockchain infrastructures, on top of which we may build our
application for crowdsourcing.

III. PRELIMINARIES

Blockchain and smart contracts. A blockchain is a global
ledger maintained by a P2P network collectively following a
pre-defined consensus protocol. Each block in the chain will
aggregate some transactions containing use-case specific data
(e.g., monetary transfers, or program codes).

In general, we can view the blockchain as an ideal pub-
lic ledger [42] where one can write and read data in the
clear. Moreover, it will faithfully carry out certain pre-defined
functionalities. The last property captures the essence of
smart contracts, that every blockchain node will run them
as programs and update their local replicas according to the
execution results, collectively. More specifically, the properties
of the blockchain can be informally abstracted as the following
ideal public ledger model [39]:

1) Reliable delivery of messages. The blockchain can be
modeled as an ideal public ledger that ensures the live-
ness and persistence of messages committed to it [42].
Detailedly, a message sent to the blockchain is in the
form of a validly signed transaction broadcasted to the
whole blockchain network, and then it will be solicited
by a block and written into the blockchain.
Although the blockchain ensures persistence in asyn-
chronous network (under honest majority assumption), its
liveness still requires a-prior network delay [43]. We will
assume synchronous network model as well as liveness
through the paper, such that a valid message will be
agreed by the whole blockchain network within a certain
time, after it is sent. Also we remark that a network

855

adversary can reorder transactions that are broadcasted
to the network but not yet written into a block.

2) Correct computation. The blockchain can be seen as a
state machine driven by messages included in each block
[44]. Specifically, miners and full nodes will persistently
receive newly proposed blocks, and faithfully execute
“programs” defined by current states with taking mes-
sages in new blocks as inputs. Moreover, the computing
results can be written into the chain, and therefore be
reliably delivered to the whole network.

3) Transparency. All internal states of the blockchain will
be visible to the whole blockchain (intuitively, anyone).
Therefore, all message deliveries and computations via
the blockchain are in the clear. For example, when a
smart contract decrypts some ciphertexts with using a
decrypting key, the key will be learnt by everyone.

4) Blockchain address (Pseudonym). A message committed
to the blockchain should be sent in a pseudonym, a.k.a.
blockchain address. In practice, a blockchain address
is usually bound to the hash of a public key. More
importantly, the message should be correctly singed by
using the corresponding secret key, and the security of
digital signatures can further ensure that one cannot send
messages in the name of the blockchain address, unless
she has the secret key.
Also, the program code of a smart contract deployed in
the blockchain can be referred by a unique blockchain
address, such that one can call the blockchain network
to execute the contract, through sending the blockchain a
message that points to this address.

zk-SNARK. A zero-knowledge proof (zk-proof) allows a party
(i.e. prover) to generate a cryptographic proof convincing
another party (i.e. verifier) that some values are obtained by
faithfully executing a pre-defined computation on some private
inputs (i.e. witness) without revealing any information about
the private state. The security guarantees are: (i) soundness,
that no prover can convince a verifier if she did not compute
the results correctly; sometimes, we require a stronger sound-
ness that for any prover, there exists an extractor algorithm
which interacts with the prover and can actually output the
witness (a.k.a. proof-of-knowledge); (ii) zero-knowledge, that
the proof distribution can be simulated without seeing any
secret state, i.e., it leaks nothing about the witness. Both above
will hold with an overwhelming probability.

The zero-knowledge succinct non-interactive argument of
knowledge (zk-SNARK) further allows such a proof to be
generated non-interactively. More importantly, the proof is
succinct, i.e., the proof size is independent on the complexity
of the statement to be proved, and is always a small constant.
More precisely, zk-SNARK is a tuple of three algorithms.
A setup algorithm can output the public parameters to es-
tablish a SNARK for a NP-complete language L = {~x |
∃~w, s.t., C(~x, ~w) = 1}. The Prover algorithm can leverage the
established SNARK to generate a constant-size proof attesting

the trueness of a statement ~x ∈ L with witness ~w. The Verifier
algorithm can efficiently check the proof.

IV. PROBLEM FORMULATION

In this section, we will give more precise definitions about
the problem and its security requirements.

Data crowdsourcing model. As illustrated in Fig.1, there
are four roles in the model of data crowdsourcing, i.e.,
requesters, workers, a platform and a registration authority.
A requester, uniquely identified by R, can post a task to
collect a certain amount of answers from the crowd. When
announcing the task, the requester promises a concrete reward
policy to incentivize workers to contribute (see details about
the definition of reward policy below). A worker with a
unique ID Wj , submits his answer Aj and expects to receive
the corresponding reward. The platform, a medium assisting
the exchange between requesters and workers, is either a
trusted party or emulated by a network of peers. The platform
considered in this paper is jointly maintained by a collection
of network peers, and in particular, we will build it atop a open
blockchain network. The registration authority (RA), can play
an important role of verifying and managing unique identities
of workers/requesters, by binding each identity to a unique
credential (e.g. a digital certificate).

Fig. 1. The model of data crowdsourcing: workers and requesters obtain
unique credentials bound to their identities at a registration authority (RA);
authenticated requesters and authenticated workers can make fair exchange
between data and rewards through a third-party platform (arbiter).

RA is a necessary demand of real-world crowdsourcing
systems such as MTurk and Waze to prevent malicious partic-
ipants. Moreover, many auction-based incentive mechanisms
[7, 8] are built upon the non-collusion game theory that
implicitly requires RA to ensure one bid from one unique
identity. In practice, RA can be instantiated by (i) the platform
itself, (ii) the certificate authority who provides authentication
service, or (iii) the hardware manufacturer who makes trusted
devices that can faithfully sign on messages [45]. Our solution
should be able to inherit these established RAs in real-world.

In this paper, w.l.o.g., we assume that each unique identity
is only allowed to submit one answer to a task. Also, we
consider settings that the value of crowd-shared answers can
be evaluated by a well-defined process such as auctions or
qualities, and also the corresponding rewards, c.f. [9–11] about

856

quality-aware rewards, and [7, 8] about auction-based incen-
tives. These incentives share the similar essence as follows.

Suppose an authenticated requester publishes a task T with
a budget τ to collect n answers from n workers. An authen-
ticated worker who is interested in it will then submit his
answers. Then the reward of an answer Aj will be determined
by a function parameterized by some variables, denoted by
a1, . . . , am, i.e., the reward of Aj can be defined as a function
Rj := R(Aj ; a1, . . . , am, τ) parameterized by some variables,
denoted by a1, . . . , am, τ . Remark that τ is the budget of the
requester, and we will use Rj := R(Aj ; τ) for short.

Particularly, in some simple crowdsourcing tasks (e.g.,
multiple choice problems), the quality of an answer can be
straightforwardly evaluated by all answers to the same task, i.e.
Rj = R(Aj ;A1, . . . , An, τ), with using either majority voting
or estimation maximization iterations [9–11]. More generally,
[46] proposed a universal method to evaluate quality: (i) some
workers are requested to answer a complex task; (ii) other
different workers are then requested to grade each answer
collected in the previous stage. What’s more, our model
actually captures the essence of many auction-based incentive
mechanism such as [7, 8], when the parameters a1, . . . , am
represent the bids of workers (and other necessary auxiliary
inputs). So our protocol design and implementations will focus
on instantiating quality-aware incentives, and it should be
extendable to the scope of auction-based incentives trivially.

Security models. Next, we specify the basic security require-
ments for our (decentralized) crowdsourcing system.

Data confidentiality. This property requires that the com-
munication transcripts (including the blocks in the blockchain)
do not leak anything to anyone (except the requester) about
the input parameters a1, . . . , am of the incentive policy R.
Because these parameters might actually be the valuable data
submitted by workers. We can adapt the classical semantic
security [47] style of definition from cryptography for this
purpose: the distribution of the public communication can be
simulated with only public knowledge.

Anonymity. Private information of worker/requester can be
explored by linking tasks they join/publish [19]. Intuitively,
we might require two properties for workers’ anonymity: (i)
unlinkability between a submission and a particular worker
and (ii) unlinkability among all tasks joined by a particular
worker. However, (i) indeed can be implied by (ii), because
the break of first one can obviously lead up to the break of
the latter one. Similarly, the anonymity of requester can be
understood as the unlinkability among all tasks published by
her. The requirement of worker anonymity can be formulated
via the following game. An adversary A corrupts a requester,
the registration authority (RA), and the platform (e.g. the
blockchain); suppose there are only two honest workers, W0

and W1. In the beginning, the adversary announces n tasks.
For each task Ti, suppose there are a set of participating
workers WTi

. After seeing all the communications, for any
Ti 6= Tj , A cannot tell whether WTi ∩ WTj = ∅ better

than guessing. We note that the anonymity should hold even
if all entities, including the requester and the platform (except
W0 and W1), are corrupted. The requester anonymity can be
defined via the above game similarly, and we omit the details.

Security against a malicious requester. A malicious re-
quester may avoid paying rewards (defined by the pre-specified
R), e.g. launches the false-reporting attack. Security in this
case can be formulated via the following security game: an
adversary A corrupts the requester and executes the protocol
by specifying a task with a budget τ . Let us define a bad
event B1 to be that there exists a worker Wj , who receives
payment smaller than Rj := R(Aj ; τ). We require that for
every polynomial time A, Pr[B1] is negligibly small.

Security against malicious workers. A dishonest worker may
try to harvest more rewards than what he deserves. Security in
this case can be formulated as follows: an adversaryA corrupts
one worker,3 and participates in the protocol interacting with
a requester (and the platform). A submits some answers A :=
{A1, . . . , An}, n ≥ 1. Let us define the bad event B2 as that A
receives a payment greater than max{Ai∈A}Rj := R(Aj ; τ)
from the requester. We require that for all polynomial time A,
Pr[B2] is negligibly small.

We remark that the above securities against a malicious re-
quester and malicious workers have capture the special fairness
of the exchange between crowd-shared data and rewards.

V. PRIVATE AND ANONYMOUS DECENTRALIZED DATA
CROWDSOURCING: PROTOCOL

In this section, we will construct a private and anony-
mous protocol to address the critical challenges of decen-
tralizing crowdsourcing, without sacrificing security against
“free-riders” and “false-reports”. The crowdsourcing platform
will be built upon an existing network of blockchain. More
specifically, we will tackle the new privacy and anonymity
challenges brought by the blockchain.

As we briefly mentioned in previous sections, the sys-
tem will implicitly have a separate registration service that
validates each participant’s unique identity before issuing a
certificate. Such setup alleviates some basic problems that
every worker is allowed to submit no more than a fixed number
k of answers. For simplicity, we consider here k = 1.
Intuitions. Our basic strategy is to let the smart contract to
enforce the fair exchange between submitted answers and the
corresponding rewards, but without revealing data or identities
(or certificates). Let us walk through the high level ideas first.

The requester firstly codifies a reward policy parameter-
ized by her budget (i.e. R(·; τ)) into a smart contract. She
broadcasts a transaction containing the contract code and the
budget. Once the smart contract is included in the blockchain,
it can be referred by a unique blockchain address, and the

3We remark that we focus on resolving the new challenges introduced
by blockchain, and put forth the best possible security, as if there is a fully
trusted third-party serving as the crowdsourcing platform. For example, it is
not clear how to handle worker collusion even in the centralized setting, thus
such a problem is out of the scope of this paper.

857

budget should be deposited to this address (otherwise, no one
would participate). After that, any worker who is interested in
contributing could simply submit his answer to the blockchain,
via a transaction pointing to the contract’s address.

As pointed out above, we have to protect the confidentiality
of the answers, in order to ensure that answers from different
workers are independent. So the workers encrypt the answers
under the requester’s public key. Now the contract cannot see
the answers so it cannot calculate the corresponding rewards.
But the requester can retrieve all the encrypted answers and
decrypt them off-chain, and further learn the rewards they
deserve. It would be necessary that the requester will correctly
instruct the smart contract how to proceed forward. Concretely,
we will leverage the practical cryptographic tool of zk-SNARK
to enforce the requester to prove: she indeed followed the pre-
specified reward policy calculating the rewards. Detailedly, the
requester should prove her instruction of rewards is computed
as follows: (i) obtain all answers by decrypting all encrypted
answers using a secret key corresponding to the public key
contained in the smart contract; (ii) use all those answers and
the announced R(·; τ) to compute the quality of each answer.

A more challenging issue arises regarding anonymity-yet-
accountability. Also as briefly pointed before, we would like
to achieve a balance between anonymity and accountability.
Here we put forth a new cryptographic primitive to resolve
the natural tension. A user can anonymously authenticate
messages (which are composed of a fixed length prefix and the
remaining part). But if the two authenticated messages share
a common prefix, anyone can tell whether they are done by a
same user or not. Moreover, no one can link any two message-
authentication pairs, as long as these messages have different
prefixes. Having this new primitive in hand, our protocol
can be designed by letting each worker to anonymously
authenticate on the message of αC ||c, when he submits the
encrypted answer c = Enc(pk, a) to a contract C (that has a
unique address αC and specifies the crowdsourcing task). This
implies that the submissions from the same worker to one task
can be linked and thus counted, but two submissions of any
worker to two different tasks will not be linkable. Also, the
number of maximum allowed submissions in each task can be
easily tuned (by counting linked submissions).

Last, we also need to augment the smart contract by building
the zk-SNARK verification algorithm in it. In particular, when
the smart contract receives the signed instruction and proof, the
verification algorithm will be executed. All inputs of the ver-
ification algorithm are immutable common knowledge stored
in the blockchain, e.g., the budget, the encrypted answers and
the requester’s public key. If a dishonest requester reports a
false instruction, her proof cannot be verified and the contract
will simply drop the instruction. What’s more, if the smart
contract does not receive a correct instruction within a time
limit, it can directly disseminate the budget to all workers
evenly as punishment, since the budget has been deposited. In
this way, the requester cannot gain any benefit by deviating
from the protocol, and she will be self-enforced to respond

properly and timely, resulting in that each worker will receive
the expected reward. On the other hand, a dishonest worker
can never claim more rewards than that he is supposed to get,
as the reward is calculated by the requester herself.

Fig. 2. Subtle linkability of the common-prefix-linkable anonymous authen-
tication scheme. All involved algorithms except Setup are shown in bold.

A. Common-prefix-linkable anonymous authentication

Before the formal description of ZebraLancer’s protocol, let
us introduce the new primitive for achieving the anonymous-
yet-accountable authentication first. As briefly shown in Fig.2,
our new primitive can be built atop any certification procedure,
thus we include a certification generation procedure that can
be inherited from any existing one. Also, we insist on non-
interactive authentication, thus all the steps (including the
authentication step) are described as algorithms instead of
protocols. Formally, a common-prefix-linkable anonymous au-
thentication scheme is composed of the following algorithms:

- Setup(1λ). This algorithm outputs the system’s master
public key mpk, and system’s master secret key msk,
where λ is the security parameter.

- CertGen(msk, pk). This algorithm outputs a certificate
cert to validate the public key.

- Auth(m, sk, pk, cert,mpk). This algorithm generates an
attestation π on a message m that: the sender of m indeed
owns a secret key corresponding to a valid certificate.

- Verify(m,mpk, π). This algorithm outputs 0/1 to decide
whether the attestation is valid or not.

- Link(mpk,m1, π1,m2, π2). This algorithm takes two
valid message-attestation pairs, i.e. (m1, π1), (m2, π2),
as inputs. If m1,m2 have a common-prefix with length
λ, and π1, π2 are generated from the same certificate, it
outputs 1; otherwise outputs 0.

The first one characterizes a special accountability require-
ment in anonymous authentication. It requires that no efficient
adversary can authenticate two messages with a common-
prefix without being linked, if using the same certificate.
More generally, if an attacker corrupts q users, she cannot

858

authenticate q+1 messages sharing a common-prefix, without
being noticed. Formally, consider the following cryptographic
game between a challenger C and an attacker A:

1) Setup. The challenger C runs the Setup algorithm and
obtains the master keys.

2) CertGen queries. The adversary A submits q public keys
with different identities and obtains q different certifi-
cates: cert1, . . . , certq .

3) Auth. The adversary A chooses q + 1 messages
p||m1, . . . , p||mq+1 sharing a common-prefix p (with
|p| = λ) and authenticates to the challenger C by
generating the corresponding attestations π1, . . . , πq+1.

Adversary A wins if all q + 1 authentications pass the
verification, and no pair of those authentications were linked.

Definition 1 (Common-prefix-linkability). For all probabilis-
tic polynomial time algorithm A, Pr[A wins in the above
game] is negligible on the security parameter λ.

Next is the anonymity guarantee in normal cases. We would
like to ensure the anonymity against any party, including the
public, the registration authority, and the verifier who can ask
for multiple (and potentially correlated) authentication queries.
Also, our strong anonymity requires that no one can even
link whether the same people is authenticating for different
messages, if these messages have different prefixes. The basic
requirement for anonymity is that no one can recognize
the real identity from the authentication transcript. But our
unlinkability requirement is strictly stronger, as if one can
recognize identity, obviously, she can link two authentications
by first recovering the actual identities.

To capture the unlinkability (among the authentications of
different-prefix messages), we can imagine the most stringent
setting, where there are only two honest users in the system,
the adversary still cannot properly link any of them from a
sequence of authentications. Formally, consider the following
game between the challenger C and adversary A.

1) Setup. The adversary A generates the master key pair.
2) CertGen. The adversary A runs the certificate generation

procedure as a registration authority with the challenger.
The challenger submits two public keys pk0, pk1 and
the adversary generates the corresponding certificates for
them cert0, cert1. A can always generate certificates for
public keys generated by herself.

3) Auth-queries. The adversary A asks the challenger to
serially use (sk0, pk0, cert0) and (sk1, pk1, cert1) to do
a sequence of authentications on messages chosen by her.
Also, the number q of authentication queries is chosen by
A. The adversary obtains 2q message-attestation pairs.

4) Challenge. The adversary A chooses a new message m∗

which does not have a common prefix with any of the
messages asked in the Auth-queries, and asks the chal-
lenger to do one more authentication. C picks a random
bit b and authenticates on m∗ using skb, pkb, certb. After
receiving the attestation πb, A outputs her guess b′.

The adversary wins if b′ = b.

Definition 2 (Anonymity). An authentication scheme is un-
linkable, if ∀ probabilistic polynomial-time algorithm A,
|Pr[A wins in the game]− 1

2 | is negligible. 4

Construction. Now we proceed to construct such a primitive.
Same as many anonymous authentication constructions, we
will also use the zero-knowledge proof technique towards
anonymity. In particular, we will leverage zk-SNARK to give
an efficient construction. For the above concept of common-
prefix-linkable anonymous authentication, we need to further
support the special accountability requirement. The idea is
as follows, since the condition that “breaks” the linkability
is common-prefix, thus the authentication will do a special
treatment on the prefix. In particular, the authentication shows
a tag committing to the prefix together with the user’s secret
key, and then presents zero-knowledge poof that such a tag is
properly formed, i.e., computed by hashing the prefix and a
secret key. To ensure other basic security notions, we will also
compute the other tag that commits to the whole message. The
user will further prove in zero-knowledge that the secret key
corresponds to a certified public key.

We remark that our main goal is to construct a decentralized
crowdsourcing, such a new anonymous authentication primi-
tive could be further studied systematically in future works.
Concretely, we present the detailed construction as follows:

- Setup(λ). This algorithm establishes the public parame-
ters PP that will be needed for the zk-SNARK system.
Also, the algorithm generates a key pair (msk,mpk)
which is for a digital signature scheme.5

- CertGen(msk, pki): This algorithm runs a signing al-
gorithm on pki,6 and obtains a signature σi. It outputs
certi := σi.

- Auth(p||m, ski, pki, certi, PP): On inputing a message
p||m having a prefix p.
The algorithm first computes two tags (or interchange-
ably called headers later), t1 = H(p, ski) and t2 =
H(p||m, ski), where H is a secure hash function. Then,
let ~w = (ski, pki, certi) represent the private wit-
ness, and ~x = (p||m,mpk) be all common knowl-
edge, the algorithm runs zk-SNARK proving algorithm
Prover(~x, ~w, PP) for the following language LT :=
{t1, t2, ~x = (p||m,mpk) | ∃~w = (ski, pki, certi) s.t.
CertVrfy(certi, pki,mpk) = 1∧pair(pki, ski) = 1∧t1 =
H(p, ski) ∧ t2 = H(p||m, ski)}, where the CertVrfy
algorithm checks the validity of the certificate using a
signature verification, and pair algorithm verifies whether

4We remark that our definition of anonymity is strictly stronger than that
definition of the event-oriented linkable group signature [36], in which the
RA can revoke user anonymity under certain conditions.

5To be more precise, the public parameter generation could be from
another algorithm, for simplicity, we put it here. In the security game for
anonymity, the adversary only generates the msk,mpk, not the public
parameter.

6Here we assume there is an external identification procedure to check
the actual identity with the public key, and the user key pairs are generated
using common algorithms, e.g., for a digital signature, here we ignore the
details.

859

two keys are a consistent public-secret key pair. This
prove algorithm yields a proof η for the statement ~x ∈ L
(also for the proof-of-knowledge of ~w).
Finally, the algorithm outputs π := (t1, t2, η).

- Verify(p||m,π,mpk, PP): this algorithm runs the veri-
fying algorithm of zk-SNARK Verifier on ~x, π and PP ,
and outputs the decision bit d ∈ {0, 1}.

- Link(m1, π1,m2, π2): On inputting two attestations π1 :=
(t11, t

1
2, η1) and π2 := (t21, t

2
2, η2), the algorithm simply

checks t11
?
= t21. If yes, output 1; otherwise, output 0. We

also use Link(π1, π2) for short.

Security analysis (sketch). Here we briefly sketch the security
analysis for the above construction.

Regarding correctness, it is trivial, because of the complete-
ness of the underlying SNARK.

Regarding unforgeability, we require an uncertified attacker
cannot authenticate. The only transcripts can seen by the
adversary are headers and the zero-knowledge attestation.
Headers include one generated by hashing the concatenation
of p||m, sk. In order to provide a header, the attacker has
to know the corresponding sk, as it can be extracted in the
random oracle queries. Thus there are only two different ways
for the attacker: (i) the attacker generates forges the certificate,
which clearly violates the signature security; (ii) the attacker
forges the attestation using an invalid certificate, which clearly
violates the proof-of-knowledge of the zk-SNARK.

Regarding the common-prefix-linkability, it is also fairly
straightforward, as the final authentication transcript contains
a header computed by H(p, sk) which is an invariable for a
common prefix p using the same secret key sk.

Regarding the anonymity/unlinkability, we require that after
seeing a bunch of authentication transcripts from one user,
the attacker cannot figure out whether a new authentication
comes from the same user. This holds even if the attacker
can be the registration authority that issues all the certificates.
To see this, as the attacker will not be able to figure the
value of the sk from all public value, thus the headers/tags
can be considered as random values. It follows that H(p, sk)
and a random value r cannot be distinguished (similarly for
H(p||m, sk)). More importantly, due to the zero-knowledge
property of zk-SNARK, given r, a simulator can simulate a
valid proof η∗ by controlling the common reference string of
the zk-SNARK. That said, the public transcript t1, t2, η can be
simulated by r1, r2, η

∗ where r1, r2 are uniform values, and
η∗ is a simulated proof, all of which has nothing to do with
the actual witness sk.

Summarizing the above intuitive analysis, we have the
following theorem:

Theorem 1. Conditioned on that the hash function to be
modeled as a random oracle and the zk-SNARK is zero-
knowledge, the construction of the common-prefix-linkable
anonymous authentication satisfies anonymity. Conditioned on
the underlying digital signature scheme used is secure, and
the zk-SNARK satisfies proof-of-knowledge, our construction

of the common-prefix-linkable anonymous authentication will
be unforgeable. It is also correct and common-prefix linkable.

B. The protocol for ZebraLancer

Now we are ready to present a general protocol for a class
of crowdsourcing tasks having proper quality-aware incentives
mechanisms defined as in Section IV. As zk-SNARK requires
a setup phase, we consider that a setup algorithm generated
the public parameters PP for this purpose, and published
it as common knowledge.7 Our descriptions focuses on the
application atop the open blockchain, and therefore omits
details of sending messages through the underlying blockchain
infrastructure. For example, “one uses blockchain address α
to send a message m to the blockchain” will represent that he
broadcasts a blockchain transaction containing the message
m, the public key associated to α, and the signature properly
generated under the corresponding secret key.

Remark that here we let each worker/requester to generate a
different blockchain address for each task (i.e. a one-task-only
address) as a simple solution to avoid de-anonymization in
the underlying blockchain.8 For concrete instantiations of the
underlying infrastructures, see our implementations discussed
in Section VI.

Protocol details. The details of ZebraLancer protocol can be
described as follows:

• Register. Everyone registers at RA to get a certificate
bound to his/her unique ID, which is done off-line only
once for per each participant.

A requester, having a unique ID denoted by R, creates
a public-secret key pair (pkR, skR), and registers at the
registration authority (RA) to obtain a certificate certR
binding pkR to R. Each worker, having a unique ID
denoted by Wi, also generates his public and secret key
pair (pki, ski), and registers his public key at RA to
obtain a certificate certi binding pki and Wi.

• TaskPublish. A requester anonymously authenticates and
publishes a task contract with a promised reward policy
via the blockchain.

When the requester R has a crowdsourcing task, she
generates a fresh blockchain account address αR, and a
key pair (epk, esk) (which will be used for workers to
encrypt submissions) for this task only.
R then prepares parameters Param, including the encryp-
tion key epk, the number of answers to collect (denoted
by n), the deadline, the budget τ , the reward policy R,

7This in practice can be done via a secure multiparty computation protocol
[48] to eliminate potential backdoors.

8Our anonymous protocol mainly focuses on the application layer such as
the crowdsourcing functionality that is built on top of the blockchain infras-
tructure. If the underlying blockchain layer supports anonymous transaction,
such as Zcash [40], the worker and the requester can re-use account addresses.
We further remark that the anonymity in network layer are out the scope of
this paper, we may deploy our protocol on existing infrastructure such as Tor.

860

SNARK’s public parameters PP , RA’s public key mpk,
and also πR = Auth(αC ||αR, skR, pkR, certR, PP).9
The requester then codes a smart contract C that contains
all above information for her task. After compiling C ,
she puts C ’s code and a transfer of the budget into
a blockchain transaction, and uses the one-task-only
address αR to send the transaction into the blockchain
network. When a block containing C is appended to the
blockchain, C gets an immutable blockchain address αC

to hold the budget and interact with anyone.10

See Algorithm 1 below for a concrete example of task
contract. (The important component of verifying zk-
proofs is done by calling a library libsnark.Verifier inte-
grated into the blockchain infrastructure, and implemen-
tation details will be explained in Section VI).

• AnswerCollection. The contract collects anonymously au-
thenticated encrypted answers, only when an answer is
sent from a worker who didn’t submit before.

If a registered worker Wi is interested in contributing,
he first validates the contract content (e.g., checking the
parameters), then generates a one-task-only blockchain
address αi. He encrypts his answer Ai under the task’s
public key epk to obtain ciphertext Ci.
He then uses common-prefix-linkable anonymous au-
thentication scheme to generate an attestation πi =
Auth(αC ||αi||Ci, ski, pki, certi, PP).9 Then he uses his
one-task-only address αi to send Ci, πi to the blockchain
network (with a pointer to αC , i.e. the unique address of
the contract C).
Then, C runs Verify(αC ||αi||Ci, πi,mpk, PP), and also
executes Link(πi, π∗) for each valid authentication attes-
tation π∗ that was received before (including requester’s,
namely πR). Such that, C can ensure Ci is the first
submission of a registered worker. For unauthenticated
or double submissions, C simply drops it.11

The contract C will keep on collecting answers, until
it receives n answers or the deadline (in unit of block)
passes. It also records each address αi that sends Ci.
Remark that Link algorithm will be executed O(n2)
times, but it is a simple equality check over a pair of

9We remark that the requester should authenticate her one-task-only
blockchain address αR along with the task contract, and workers will join
the task only if the task contract is indeed sent from a blockchain address as
same as the authenticated αR. So a malicious requester cannot “authenticate”
a task by copying other valid authentications. In addition, each worker has
to authenticate his one-task-only blockchain address αi with his answer
submission as well. The task contract will check the submission is indeed
sent from an address same to the authenticated αi. Otherwise, a malicious
worker can launch free-riding through copying and re-sending authenticated
submissions that have been broadcasted but not yet confirmed by a block.

10We emphasize that αC will be unique per each contract. In practice, αC
can be computed via H(αR||counter), where H is a secure hash function,
and counter is governed by the blockchain to be increased by exact one
for each contract created by the blockchain address αR. It’s also clear that
the requester R can predicate αC before C is on-chain, such that she can
compute πR off-line and let it be a parameter of contract C .

11We remark that our protocol can be extended trivially to allow each
worker to submit some k answers in one task by modifying the checking
condition programmed in the smart contract of crowdsourcing task.

Algorithm 1: Example using quality-aware incentive
Require : This contract’s address αC ; requester’s one-time

blockchain address αR; requester’s authenticating
attestation πR; RA’s public key mpk; budget τ ;
public key epk for encrypting answers; SNARK’s
public parameters PP ; number of requested answers
n; deadline of answering in unit of block TA;
deadline of instructing reward in unit of block TI .

1 List keeping answers’ ciphertexts, C ← ∅;
2 Map of anonymous attestations and authenticated one-time

blockchain addresses of workers, W ← ∅;
3 if getBalance(αC) < τ ∨ ¬Verify(αC ||αR, πR,mpk, PP)

then
4 goto 21 ; . Budget not deposited or requester not identified.

5 timerA ← a timer expires after TA;
6 while ||C|| < n ∧ timerA NOT expired do
7 if αi sends πi, Ci then
8 if ¬Link(πi, πR) ∧ ∀π∗ ∈W .keys() ¬Link(πi, π∗) ∧

Verify(αC ||αi||Ci, πi,mpk, PP) then
9 W .add(πi → αi); C.add(Ci);

10 timerI ← a timer expires after TI ; . Start to wait instruction
11 while timerR NOT expired do
12 if αR sends R := (R1, . . . , Rn) and πreward then
13 P ← (epk, τ, C1, . . . , Cn);
14 if libsnark.Verifier((P ,R), πreward, PP) then
15 for each (πi → αi) ∈W do
16 transfer(αC, αi, Ri);

17 goto 21;

18 R← τ/||W ||; . Reward all if no correct instruction
19 for each (πi → αi) ∈W do
20 transfer(αC , αi, R);

21 transfer(αC , αR, getBalance(αC)); . Refund the remaining
22 function getBalance(addr)
23 return the balance of addr in the blockchain ledger;

24 function transfer(src, dst, value)
25 if getBalance(src) < value then
26 return false;

27 the balance of src subtracts value in the blockchain ledger;
28 the balance of dst adds value in the blockchain ledger;

return true;
29 . The contract program is driven by a “discrete” clock that

increments with validating each newly proposed block
30 . libsnark.Verifier is a library embedded in the runtime

environment of smart contract such as EVM

hashes, such that the cost of running it for several times
will be nearly nothing in practice.

• Reward. The requester computes and prove to the smart
contract how to reward each anonymous answer.
The requester R keeps listening to the blockchain, and
once C collects n submissions, she retrieves and de-
crypts all of them to obtain the corresponding answers
A1, . . . , An (if there are not enough submissions when
the deadline passes, the requester simply sets the remain-
ing answers to be ⊥ which has been considered by the
incentive mechanism R).
Next, the requester computes the reward for each answer

861

Ri = R(Ai;A1, . . . , An, τ) as specified by the policy
codified in C . More importantly, she generates a zero
knowledge proof πreward, with the secret key esk as
witness to attest the validity of the instruction. In par-
ticular, the proof is for the following NP-language L =
{R,P | ∃esk s.t. ∧nj=1Aj = Dec(esk, Cj) ∧nj=1 Rj =

R(Aj ;A1, . . . , An, τ) ∧ pair(esk, epk) = 1}, where P
denotes Param together with ciphertexts C1, . . . , Cn;
while R := (R1, . . . , Rn) is the instruction about how
to reward each answer. After computing R and πreward,
R puts them into a blockchain transaction, and still use
her one-task-only blockchain address αR to send the
transaction to C (by using a pointer to αC). This finishes
the outsource-then-prove methodology.
Once a newly proposed block contains the reward instruc-
tion R and its attestation πreward, the contract C first
checks that they are indeed sent from αR (by verifying
the digital signature of the underlying blockchain trans-
action). Then it leverages SNARK’s Verifier algorithm to
verify the proof πreward regarding the correctness of R.
If the verification passes, it transfers each amount Ri to
each account αi, and refunds the remaining balance to
αR. Otherwise, pause. If receiving no valid instruction
after a predefined time (in unit of block), the contract
simply transfers τ/n to each αi as part of the policy R.

C. Analysis of the protocol

Correctness and efficiency. It is clear to see that the requester
will obtain data and the workers would receive the right
amount of payments. If they all follow the protocol, under
the conditions that (i) the blockchain can be modeled as
an ideal public ledger, (ii) the underlying zk-SNARK is of
completeness, (iii) the public key encryption is correct, and
(iv) common-prefix-linkable anonymous authentication satis-
fies correctness. Regarding efficiency, we note the on-chain
computation (and storage which are two of the major obstacles
for applying blockchain in general) is actually very light, as
the contract essentially only carries a verification step. Thanks
to zk-SNARK, the verification can be efficiently executed by
checking only a few pairing equalities; moreover, the special
library can be dedicatedly optimized in various ways [49].

Security analysis (sketch). Here we briefly discuss the se-
curity of ZebraLancer protocol. The underlying primitives
including ours are well abstracted, which allows us to argue
in a modular way.

Regarding the data confidentiality of answers, all related
public transcripts are simply the ciphertexts C1, . . . , Cn, and
the zk-SNARK proof π. The ciphertexts are easily simulatable
according to the semantic security of the public key encryp-
tion, and the proof π can also be simulated without seeing the
secret witness because of the zero-knowledge property.

Regarding the anonymity, an adversary has two ways to
break it: (i) link a worker/requester through his blockchain
addresses; (ii) link answers/tasks of a worker/requester through
his authenticating attestations. The first case is trivial, simply

because every worker/requester will interact with each task
by a randomly generated one-task-only blockchain address
(and the corresponding public key.). The second case is more
involved, but the anonymity of workers and requesters can be
derived through the anonymity of the common-prefix-linkable
anonymous authentication scheme.

Regarding the security against a malicious requester, a ma-
licious requester has three chances to gain advantage: (i) deny
the policy announced in Publish phase; (ii) cheat in Reward
phase; (iii) submit answers to intentionally downgrade others
in AnswerCollection phase. The first threat is prevented
because the smart contract is public, and the requester cannot
deny it once it is posted in the immutable blockchain. The
second threat is prohibited by the soundness of the underlying
SNARK, since any incorrect instruction passing the verifi-
cation in the smart contract, directly violates the proof-of-
knowledge of zk-SNARK. The last threat is simply handled the
unforgeability and common-prefix-linkability of our common-
prefix-linkable anonymous authentication scheme.

Security against malicious workers is straightforward, the
only ways that malicious workers can cheat are: (i) sub-
mitting more than one answers in AnswerCollection phase;
(ii) sending the contract a fake instruction in the name of
requester in Reward phase; (iii) altering the policy speci-
fied in the contract. The first threat is simply handled by
the common-prefix-linkability and unforgeability of common-
prefix-linkable anonymous authentication. The second threat
can be approached by predicting others’ answers, and it is pre-
vented due to the semantical security of public key encryption.
The third threat is simply handled by the security of digital
signatures. The last issue is trivial, because the blockchain
security ensures the announced policy is immutable.

Theorem 2. Our protocol satisfies the data confidentiality, the
anonymity, and the security against a malicious requester and
workers, if all the underlying cryptographic primitives and the
blockchain platform satisfy the corresponding securities.

VI. ZEBRALANCER: IMPLEMENTATION OF THE SYSTEM
AND EXPERIMENTAL EVALUATION

We implement the protocol of ZebraLancer atop Ethereum,
and instantiate a series of typical image annotation tasks [10]
with using it. Furthermore, we conduct experiments of these
tasks in an Ethereum test net to evaluate the applicability.
System in a nutshell. As shown in Fig.3, the decentralized
application (DApp) of our system is composed of an on-
chain part and an off-chain part. The on-chain part consists of
crowdsourcing task contracts and an interface contract of the
registration authority (RA). The RA’s contract simply posits
the system’s master public key as a common knowledge stored
in the blockchain. The off-chain part consists of requester
clients and worker clients. These clients can be blockchain
clients wrapped with functionalities required by our system.
Specifically, a client of requester should codify a specific task
with a given incentive mechanism and announces it as a smart
contract. Note that we, as the designers of the DApp, can

862

Fig. 3. The system-level view of ZebraLancer. Our Dapp layer can be built
on top of an existing blockchain, e.g. the Ethereum Byzantium release [41].

provide contract templates to requesters for easier instantiation
of incentive mechanisms, c.f. [50]. The clients further need
an integrated zk-SNARK prover to produce the anonymous
authenticating attestations; moreover, a requester client should
also leverage SNARK prover to generate proofs attesting the
correct execution of incentive policies.

Implementation challenges. The main challenge of deploying
smart contracts in general is that they can only support very
light on-chain operations for both computing and storing.12

Our protocol actually has taken this into consideration. In
particular, our on-chain computation only consists SNARK
verifications, while the heavy computation of SNARK proofs
are all done off the blockchain. Even still, building an
efficient privacy-preserving DApp compatible with existing
blockchain platform such as Ethereum is not straightforward.
For instance, in order to allow smart contracts to call a zk-
SNARK verification library, a contract of this library should
be thrown into a block, but this library is a general purpose
tool that can be too complex to be executed in the smart
contract runtime environment, e.g. Ethereum Virtual Machine
(EVM). Alternatively, we modify the the runtime environment
of smart contracts (i.e. Ethereum Homestead release), so that
an optimized zk-SNARK verification library [49] is embedded
in it as a primitive operation. The modified client is writ-
ten in Java 1.8 with Spring framework, and is available at
github.com/maxilbert/ethereumj.

We remark that Ethereum project recently integrated some
new cryptographic primitives into EVM to enable SNARK
verification as well [41], which ensures our DApp can essen-
tially inherit all Ethereum users to maintain the blockchain
infrastructure to govern the faithful execution of the smart
contracts in our protocol.

Establishments of zk-SNARKs (off-line). As the feasibility

12We remark the communication overhead is not a serious worry, because:
(i) a blockchain network such as Ethereum does not require fully meshed
connections, i.e. requesters and workers only connect a constant number of
Ethereum peers, and to deliver one more message via the blockchain only
brings about a constant cost of communication for each peer; (ii) if necessary,
requesters and workers can even run on top of so-called light-weight nodes,
which eventually allows them receive and send messages only related to
crowdsourcing tasks; (iii) even if there is a trusted arbiter facilitating incentive
mechanisms, the only saving in communication is just an instruction about
how to reward answers (and its attestation).

of ZebraLancer highly depends on the tininess of SNARK
proofs and the efficiency of SNARK verifications, it becomes
critical to establish necessary zk-SNARKs off-line. As for-
mally discussed, our anonymous authentication scheme and in-
centive mechanisms can be stated as well-defined deterministic
constraint relationships. We first translate these mathematical
statements into their corresponding boolean circuit satisfiabil-
ity representations. Furthermore, we establish zk-SNARK for
each boolean circuit, such that all required public parameters
are generated. All the above steps are done off-line, as they
are executed for only once when the system is launched.

An image annotation crowdsourcing task. To showcase the
usability of our system, we implement a concrete crowdsourc-
ing task of image annotation [10]. The task is to solicit labels
for an image which can later be used to train a learning
machine. The task requests n answers from n workers, and can
be considered as a multi-choice problem. Majority voting is
used to estimate the “truth”. An answer is seen as “correct”, if
it equals to the “truth”. The reward amount of a worker is τ/n
if he answers correctly, otherwise, he receives nothing. In our
terminology, the reward Ri := R(Ai;A1, . . . , An, τ) = τ/n,
if Ai equals the majority; otherwise, Ri = 0. Following [10],
we implement and deploy 5 contracts in the test net to collect
3 answers, 5 answers, 7 answers, 9 answers and 11 answers
from anonymous-yet-accountable workers, respectively.

The smart contracts are written in Solidity, a high-level
scripting language translatable to smart contracts of Ethereum.
We also modify Solidity compiler, such that a programmer can
write a contract involving zk-SNARK verifications at high-
level. We instantiate the encryption to be RSA-OAEP-2048,
the DApp-layer hash function to be SHA-256, and the DApp-
layer digital signature to be RSA signature. Moreover, for zk-
SNARK, we choose the construction of libsnark from [49].
We deploy a test network consisting of four PCs: three PCs
are equipped with Intel Xeon E3-1220V2 CPU (PC-As), and
the other one is equipped with Intel i7-4790 CPU (PC-B); all
PCs have 16 GB main memory and have Ubuntu 14.04 LTS
installed. In the test net, a PC-A and a PC-B play the role of
miners, and the other two PC-As only validate blocks (i.e. full
nodes that do not mine). One full node plays the role of the
requester, and anonymously publishes crowdsourcing tasks to
the blockchain; and the other full node mimics workers, and
sends each anonymously authenticated answer from a different
blockchain address. Miners are only responsible to maintain
the test net and do not involve in tasks.

Performance evaluation. As the main bottleneck is the on-
chain computation of the smart contract, we first measure the
time cost and the spatial cost of miners, regarding the execu-
tions of zk-SNARK verifications used in the above annotation
tasks. These zk-SNARKs are established for common-prefix-
linkable anonymous authentications and incentive mecha-
nisms, respectively. The results of time cost are listed in Table
I. It is clear that zk-SNARK verifications in our system can be
efficiently executed in respect of verification time. Moreover,
our experiment results also reveal that the spatial cost of zk-

863

TABLE I
EXECUTION TIME OF IN-CONTRACT ZK-SNARK VERIFICATIONS.

Verification for
Operands Length Time@

PC-A
Time@
PC-BProof Key Inputs

Anonymous authentication 729B 1.2KB 1.5KB 10.9ms 6.2ms

Majority (3-Worker) 729B 16.0KB 3.4KB 15.5ms 9.1ms

Majority (5-Worker) 730B 21.6KB 4.7KB 16.3ms 9.8ms

Majority (7-Worker) 731B 27.3KB 6.0KB 17.0ms 10.3ms

Majority (9-Worker) 729B 32.9KB 7.3KB 17.5ms 12.1ms

Majority (11-Worker) 730B 38.6KB 8.6KB 17.9ms 13.1ms

SNARK verifications is constant and tiny at both types of PCs
(exactly 17MB main memory). Also, Table I indicates that the
required on-chain storage for the task contracts (i.e. SNARK
proofs, SNARK verification keys, and ciphertexts of answers)
is on an acceptable order of kilobyte13. Therefore, the on-chain
performance of the system can be clearly practical, regarding
time and space costs of blockchain peers.

61

62

78

79

 @PC-A
(3.1GHz E3-1220V2)

 @PC-B
(3.6GHz i7-4790)

Ex
ec

ut
io

n
Ti

m
e

of
 G

en
er

at
in

g
At

te
st

at
io

ns

fo
r A

no
ny

m
ou

s
Au

th
en

tic
at

io
ns

 (s
ec

on
d)

Fig. 4. The time of generating common-prefix-linkable anonymous authen-
tications in two PCs. The box plot is derived from 12 different experiments.

We also consider the cost of anonymity, if one uses the
common-prefix-linkable anonymous authentication. We mea-
sure the running time of generating the authenticating attesta-
tions at PCs. As shown in Fig.4, our experiment results clarify
that about 78 seconds are spent on generating an anonymous
attestation with using PC-A (3.1 GHz CPU). In PC-B (3.6GHz
CPU), the running time can be shortened to about 62 seconds.
Those are not ideal, but acceptable by the anonymity-sensitive
workers. We remark that our protocol can be trivially extended
to support non-anonymous mode, in case that one gives up
the anonymity privilege: s/he can generate a public-private
key pair (for digital signatures), and then registers the public
key at RA to receive a certificate bound to the public key;
to authenticate, s/he can simply show the certified public key,
the certificate, along with a message properly signed under

13We note that there are many alternatives to minimize the on-chain storage
in the implementations, e.g. to use off-chain storages [51, 52]. So, when
a requester is publishing a data-intensive crowdsourcing task (e.g. image
labeling, voice captioning) via the blockchain, it is not necessary for her to
store all the data (e.g. images, audios) in the chain. These trivial techniques
are beyond the scope of this paper, in which we only focus on the technical
feasibility of decentralizing crowdsourcing instead.

the corresponding secret key, which essentially costs nearly
nothing regarding the computational efficiency.

VII. CONCLUSION & OPEN PROBLEMS

ZebraLancer can facilitate the fair exchange between the
crowd-shared data and their corresponding rewards, without
the involvement of any third-party arbiter. Moreover, it shows
the practicability to resolve two natural tensions in decentral-
ized crowdsourcing atop open blockchain: one between data
confidentiality and transparency, and the other one between
participants’ anonymity and their accountability.

Along the way, we put forth a new anonymous authenti-
cation scheme. Besides the strong anonymity that cannot be
revoked by any authority, it also supports a delicate linkability
only for messages that share the common prefix and are
authenticated by the same user. A concrete construction of
the scheme is proposed, and it shows the compatibility to
real-world blockchain infrastructure. We envision the scheme
could be of independent interests. Also, we develop a general
outsource-then-prove technique to use smart contracts in a
privacy-preserving way. This technique can further extend the
scope of applications atop some existing privacy-preserving
blockchain infrastructures such as [39–41].

Open questions. Since this work is the first attempt of decen-
tralizing crowdsourcing system atop the real-world blockchain
in a privacy-preserving way, the area remains largely un-
explored. Here we name a few open questions. First, there
are many incentive mechanisms using reputation systems,
can we further extend our implementations to support those
incentives? Second, as the current smart contract technology is
at an infant stage and can only allow tiny on-chain storage, can
we further optimize our implementations with using off-chain
storage [51, 52] or information oracle [53] to assist more large-
scale tasks, e.g. to collect annotations for millions of images
(i.e. the scale of ImageNet dataset)? Third, our anonymous
protocol currently either relies on the underlying blockchain to
support anonymous transaction, or requires workers/requesters
use one-time blockchain account to submit data and receive
reward. Can we design a (DApp-layer) protocol to solve the
drawbacks? Last but not least, as all existing studies and
platforms rely on trusted registration authorities (RAs) to
establish identities for crowdsourcing, it is tempting to further
remove RAs by leveraging blockchain in a more complex way.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
of this paper for their valuable comments.

REFERENCES

[1] J. Deng, W. Dong, R. Socher et al., “Imagenet: A large-scale hierarchical
image database,” in Proc. IEEE CVPR 2009, pp. 248–255.

[2] Mechanical Turk. [Online]. Available: https://www.mturk.com/mturk/
[3] R. Ganti, F. Ye, and H. Lei, “Mobile crowdsensing: current state and

future challenges,” IEEE Commun. Mag., vol. 49, no. 11, pp. 32–39,
2011.

[4] Waze. [Online]. Available: https://status.waze.com

864

[5] Y. Wen, J. Shi, Q. Zhang et al., “Quality-driven auction-based incentive
mechanism for mobile crowd sensing,” IEEE Trans. Veh. Technol.,
vol. 64, no. 9, pp. 4203–4214, 2015.

[6] Y. Zhang and M. Van der Schaar, “Reputation-based incentive protocols
in crowdsourcing applications,” in Proc. IEEE INFOCOM 2012, pp.
2140–2148.

[7] D. Zhao, X.-Y. Li, and H. Ma, “How to crowdsource tasks truthfully
without sacrificing utility: Online incentive mechanisms with budget
constraint,” in Proc. IEEE INFOCOM 2014, pp. 1213–1221.

[8] D. Yang, G. Xue, X. Fang, and J. Tang, “Crowdsourcing to smartphones:
Incentive mechanism design for mobile phone sensing,” in Proc. ACM
MobiCom 2012, pp. 173–184.

[9] D. Peng, F. Wu, and G. Chen, “Pay as how well you do: A quality based
incentive mechanism for crowdsensing,” in Proc. ACM MobiHoc 2015,
pp. 177–186.

[10] N. Shah and D. Zhou, “Double or Nothing: multiplicative Incentive
Mechanisms for Crowdsourcing,” J. Mach. Learn. Res., vol. 17, no. 1,
pp. 5725–5776, 2016.

[11] H. Jin, L. Su, D. Chen, K. Nahrstedt, and J. Xu, “Quality of information
aware incentive mechanisms for mobile crowd sensing systems,” in Proc.
ACM MobiHoc 2015, pp. 167–176.

[12] P. Muncaster. China’s Internet wunderkind in the dock over alleged
fraud. [Online]. Available: http://www.theregister.co.uk/2012/07/03/
qihoo fraud traffic comscore

[13] H. Wei. Alipay apologizes for leak of personal info. [Online]. Available:
http://www.chinadaily.com.cn/china/2014-01/07/content 17219203.htm

[14] H. Kelly. Apple account hack raises concern about cloud
storage. [Online]. Available: http://www.cnn.com/2012/08/06/tech/
mobile/icloud-security-hack/

[15] B. McInnis, D. Cosley, C. Nam, and G. Leshed, “Taking a HIT:
Designing around rejection, mistrust, risk, and workers’ experiences in
Amazon Mechanical Turk,” in Proc. ACM CHI 2016, pp. 2271–2282.

[16] K. B. Mike Isaac and S. Frenkel. Uber hid 2016 breach,
paying hackers to delete stolen data. [Online]. Available: https:
//www.nytimes.com/2017/11/21/technology/uber-hack.html

[17] N. Szabo, “Formalizing and securing relationships on public networks,”
First Monday, vol. 2, no. 9, 1997.

[18] A. Kate. Blockchain privacy: Challenges, solutions, and
unresolved issues. [Online]. Available: http://www.isical.ac.in/∼rcbose/
blockchain2017/lecture/Kate Slides.pdf

[19] K. Yang, K. Zhang, J. Ren, and X. Shen, “Security and privacy in mobile
crowdsourcing networks: challenges and opportunities,” IEEE Commun.
Mag., vol. 53, no. 8, pp. 75–81, 2015.

[20] F. Buccafurri, G. Lax, S. Nicolazzo, and A. Nocera, “Tweetchain: An
alternative to blockchain for crowd-based applications,” in International
Conference on Web Engineering 2017. Springer, pp. 386–393.

[21] C. Tanas, S. Delgado-Segura, and J. Herrera-Joancomart, “An integrated
reward and reputation mechanism for MCS preserving users privacy,”
in International Workshop on Data Privacy Management and Security
Assurance 2015, pp. 83–99.

[22] M. Li, J. Weng, A. Yang, and W. Lu, “CrowdBC: A Blockchain-
based Decentralized Framework for Crowdsourcing,” 2017. [Online].
Available: http://eprint.iacr.org/2017/444.pdf

[23] N. Salehi, L. C. Irani, M. S. Bernstein et al., “We are dynamo:
Overcoming stalling and friction in collective action for crowd workers,”
in Proc. ACM CHI 2015, pp. 1621–1630.

[24] S. Gisdakis, T. Giannetsos, and P. Papadimitratos, “Security, privacy, and
incentive provision for mobile crowd sensing systems,” IEEE Internet
of Things Journal, vol. 3, no. 5, pp. 839–853, 2016.

[25] A. Muehlemann, “Sentiment protocol: A decentralized protocol
leveraging crowd sourced wisdom,” 2017. [Online]. Available:
https://eprint.iacr.org/2017/1133.pdf

[26] Q. Li and G. Cao, “Providing efficient privacy-aware incentives for
mobile sensing,” in Proc. IEEE ICDCS 2014, pp. 208–217.

[27] S. Rahaman, L. Cheng, D. D. Yao, H. Li, and J.-M. J. Park, “Provably
secure anonymous-yet-accountable crowdsensing with scalable sublinear
revocation,” Proceedings on Privacy Enhancing Technologies, vol. 2017,
no. 4, pp. 384–403, 2017.

[28] D. Chaum, “Blind signatures for untraceable payments,” in Advances in
Cryptology 1983, pp. 199–203.

[29] D. Chaum, A. Fiat, and M. Naor, “Untraceable electronic cash,” in
Advances in Cryptology – CRYPTO 1988, pp. 319–327.

[30] J. Camenisch and A. Lysyanskaya, “An efficient system for non-
transferable anonymous credentials with optional anonymity revocation,”

in Proc. EUROCRYPT 2011, pp. 93–118.
[31] S. Xu and M. Yung, “K-anonymous secret handshakes with reusable

credentials,” in Proc. ACM CCS 2004, pp. 158–167.
[32] I. Teranishi, J. Furukawa, and K. Sako, “K-times anonymous authenti-

cation,” in International Conference on the Theory and Application of
Cryptology and Information Security (Asiacrypt) 2004, pp. 308–322.

[33] J. Camenisch, S. Hohenberger, M. Kohlweiss, A. Lysyanskaya, and
M. Meyerovich, “How to win the clonewars: efficient periodic n-times
anonymous authentication,” in Proc. ACM CCS 2006, pp. 201–210.

[34] T. Nakanishi, T. Fujiwara, and H. Watanabe, “A linkable group signature
and its application to secret voting,” Trans. of Information Processing
Society of Japan, vol. 40, no. 7, pp. 3085–3096, 1999.

[35] J. K. Liu, V. K. Wei, and D. S. Wong, “Linkable spontaneous anonymous
group signature for ad hoc groups,” in Australasian Conference on
Information Security and Privacy 2004, pp. 325–335.

[36] M. H. Au, W. Susilo, and S.-M. Yiu, “Event-oriented k-times revocable-
iff-linked group signatures,” in Australasian Conference on Information
Security and Privacy 2006, pp. 223–234.

[37] A. Kiayias, H.-S. Zhou, and V. Zikas, “Fair and robust multi-party
computation using a global transaction ledger,” in Proc. EUROCRYPT
2016. Springer, pp. 705–734.

[38] G. Zyskind, O. Nathan, and A. Pentland, “Enigma: Decentralized
computation platform with guaranteed privacy,” 2015. [Online].
Available: https://arxiv.org/abs/1506.03471

[39] A. Kosba, A. Miller, E. Shi et al., “Hawk: The blockchain model of
cryptography and privacy-preserving smart contracts,” in Proc. IEEE
S&P 2016, pp. 839–858.

[40] D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox, “Zcash Protocol
Specification.” [Online]. Available: https://github.com/zcash/zips/blob/
master/protocol/protocol.pdf

[41] Ethereum Team. Byzantium HF Announcement. [Online]. Available:
https://blog.ethereum.org/2017/10/12/byzantium-hf-announcement/

[42] J. A. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone
protocol: Analysis and applications,” in Proc. EUROCRYPT 2015.
Springer, pp. 281–310.

[43] R. Pass, L. Seeman, and A. Shelat, “Analysis of the blockchain protocol
in asynchronous networks,” in Proc. EUROCRYPT 2017. Springer, pp.
643–673.

[44] V. Buterin, “A next-generation smart contract and decentralized
application platform,” 2014. [Online]. Available: https://github.com/
ethereum/wiki/wiki/White-Paper

[45] S. Saroiu and A. Wolman, “I am a sensor, and I approve this message,”
in Proc. ACM HotMobile 2010, pp. 37–42.

[46] Y. Baba and H. Kashima, “Statistical quality estimation for general
crowdsourcing tasks,” in Proc. ACM SIGKDD 2013, pp. 554–562.

[47] S. Goldwasser and S. Micali, “Probabilistic encryption & how to play
mental poker keeping secret all partial information,” in Proc. ACM STOC
1982, pp. 365–377.

[48] E. Ben-Sasson, A. Chiesa, M. Green, E. Tromer, and M. Virza, “Secure
sampling of public parameters for succinct zero knowledge proofs,” in
Proc. IEEE S&P 2015, pp. 287–304.

[49] E. Ben-Sasson, A. Chiesa, D. Genkin et al., “SNARKs for C: Verifying
program executions succinctly and in zero knowledge,” in Advances in
Cryptology – CRYPTO 2013, pp. 90–108.

[50] C. Frantz and M. Nowostawski, “From institutions to code: Towards
automated generation of smart contracts,” in Proc. IEEE FAS*W 2016,
pp. 210–215.

[51] Swarm. [Online]. Available: http://swarm-guide.readthedocs.io
[52] J. Benet, “IPFS: Content Addressed, Versioned, P2P File System.”

[Online]. Available: https://github.com/ipfs/papers/raw/master/ipfs-
cap2pfs/ipfs-p2p-file-system.pdf

[53] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town crier: An
authenticated data feed for smart contracts,” in Proc. ACM CCS 2016,
pp. 270–282.

865

