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Abstract

In spite of its importance, passenger demand prediction is a

highly challenging problem, because the demand is simulta-

neously influenced by the complex interactions among many

spatial and temporal factors and other external factors such

as weather. To address this problem, we propose a Spatio-

TEmporal Fuzzy neural Network (STEF-Net) to accurately

predict passenger demands incorporating the complex inter-

actions of all known important factors. We design an end-to-

end learning framework with different neural networks mod-

eling different factors. Specifically, we propose to capture

spatio-temporal feature interactions via a convolutional long

short-term memory network and model external factors via

a fuzzy neural network that handles data uncertainty sig-

nificantly better than deterministic methods. To keep the

temporal relations when fusing two networks and empha-

size discriminative spatio-temporal feature interactions, we

employ a novel feature fusion method with a convolution

operation and an attention layer. As far as we know, our

work is the first to fuse a deep recurrent neural network and

a fuzzy neural network to model complex spatial-temporal

feature interactions with additional uncertain input features

for predictive learning. Experiments on a large-scale real-

world dataset show that our model achieves more than 10%

improvement over the state-of-the-art approaches.

1 Introduction

Accurate future passenger demand prediction is very
important in the field of transportation. Knowing the
future demands, a Transportation Network Company
(TNC) can wisely pre-allocate resources (vehicles and
drivers) to meet the demands, such that the best service
can be provided to passengers with a minimum wait-
ing time, and unnecessary driving around on road can
be prevented, reducing energy consumption and traf-
fic jam. However, passenger demand prediction is very
challenging considering the future demands are simul-
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taneously influenced by many factors, including contin-
uous spatial and temporal factors, as well as many dis-
crete external factors, such as weather and being day-
time or nighttime. These factors have complex and non-
linear interactions with future demands and capturing
the interactions in one model to make prediction is very
difficult. Moreover, data of external factors are often
either inaccurate or too coarse due to data-collection
sensors’ sparse deployment and unavoidable errors.

To predict passenger demands in the near future,
previous works have proposed various models. One of
the most well-known methods uses the Auto-Regressive
Integrated Moving Average (ARIMA) [1, 2], but it only
considers the temporal feature interaction. Recent stud-
ies [3, 4] propose deep learning models considering both
temporal and spatial feature interactions, which out-
perform previous methods considering only one type of
factor. However, they handle the spatial and temporal
feature interactions sequentially, resulting in informa-
tion loss. In addition, they ignore other important dis-
crete external factors, e.g., the weather. Although the
model proposed in [5] considers the weather impact, it
fails to consider inaccuracies within the collected data.

To tackle this challenging problem with desir-
able performance, we propose a deep Spatio-TEmporal
Fuzzy neural Network (STEF-Net) to predict the pas-
senger demands for a city area. In our network, we
fuse all related factors to model the complex interactions
among them, including spatial-temporal dependencies,
external information and temporal relevance, and design
an end-to-end learning framework with different neu-
ral networks modeling different types of feature interac-
tions. Specifically, our model simultaneously captures
the spatial and temporal dependencies via a Convolu-
tional Long Short-Term Memory network (ConvLSTM).
A ConvLSTM replaces the full connections in a tradi-
tional LSTM with convolutional operations such that
the spatial feature interactions can be simultaneously
captured and information loss can be avoided compared
to sequential processing by stacking convolutional layers
and LSTMs. Regarding the uncertain accuracy of exter-
nal factors, we propose to model them via a fuzzy neural
network. A fuzzy neural network, which combines the
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fuzzy theory and neural networks, can learn the fea-
ture representation with high error tolerance and train-
able rules. It shows significantly better performance
than deterministic neural networks for this data type.
We design a new feature fusion method using a convo-
lution operation to connect the two separate networks
without losing temporal information. We further pro-
pose to capture the temporal relevance of the high-level
fused data via an attention layer, considering the future
demands are unequally influenced by past ones. Our
model is evaluated on the real data from Didi Chuxing,
the biggest TNC in China, which is similar to Uber in
the United States. The experimental results show that
our model outperforms the state-of-the-art models.

In summary, our contributions include: (1) To the
best of our knowledge, our work is the first to combine
a fuzzy neural network and deep learning techniques to
handle data uncertainty and learn complex interactions
among multiple factors, which can achieve better per-
formance than solely using deep learning. (2) We pro-
pose a new feature fusion method using a convolution
operation, which can preserve the temporal relations of
the outputs, capture the spatial information and achieve
better performance than commonly used weighted ad-
dition. (3) We adopt an attention layer on every time
step to provide explainable results on when the histor-
ical information influences most in the prediction and
how the weather can influence the prediction. (4) Ex-
tensive experiments are conducted on real data to eval-
uate our model. Our model significantly outperforms
state-of-the-art models in prediction accuracy.

2 Literature Review

2.1 Deep learning and fuzzy learning Deep
learning [6] has been successfully applied in many fields,
such as computer vision and intelligent transportation
[7]. Among all deep learning techniques, Convolutional
Neural Networks (CNNs) and Recurrent Neural Net-
works (RNNs) are two popular models. CNNs [8] are
often deployed to model data with spatial feature inter-
actions while RNNs are often used to process data with
temporal feature interactions. A special RNN called
LSTM is widely adopted to overcome the vanishing gra-
dient problem in traditional RNNs [9]. However, nei-
ther CNNs nor LSTMs are perfect models for addressing
spatial-temporal problems.

To handle imperfect data, fuzzy learning is a pow-
erful tool and shows better performance than determin-
istic methods [10]. Combining fuzzy theory and neural
networks can improve complex data representation with
probability distribution over cross-layer units [11]. Even
though they have been widely applied in control systems
[11] and portfolio management [12], no existing work ap-

plies fuzzy neural networks in demand prediction.

2.2 Passenger demand/traffic flow prediction
Passenger demand prediction is closely related to traffic
flow prediction. Both have the same-format of data and
are influenced by external factors. We review both in
this section. Traditional approaches to predict future
passenger demands only consider temporal information,
such as ARIMA [1, 2] or ANN [13].

Recent advances in deep learning [6] motivate re-
searchers to apply deep learning techniques for passen-
ger demand and traffic flow prediction. Recent studies
employ CNNs to capture complex spatial feature in-
teractions [4] or RNNs (including LSTMs) to capture
temporal feature interactions [14, 15]. Pioneering works
combine CNNs and RNNs to capture both spatial and
temporal feature interaction in the data recently. Yao
et al. [16] propose a multi-view model, which employs a
CNN and an LSTM to capture the spatial and tempo-
ral feature interactions sequentially, but not simultane-
ously, which can potentially lead to temporal informa-
tion loss. The above works either captures only one of
the spatial and temporal feature interactions or captures
both sequentially. None of the methods fully captures
spatial-temporal feature interactions simultaneously.

ConvLSTMs [17] are another deep learning model,
which combines CNNs and LSTMs. A ConvLSTM can
simultaneously capture the spatial and temporal feature
interactions. It replaces the fully connected layer in
the traditional LSTM with a convolutional layer, which
shows better performance than the traditional LSTM
in precipitation nowcasting. A follow-up work [5] uses
ConvLSTMs to predict the passenger demands. The
model is composed of a ConvLSTM and a LSTM to pro-
cess the weather information, the travel time rate and
demand intensity and simply fuses the results from the
two networks. However, The model fails to consider the
inaccuracy of external data and the inaccuracy of sim-
ple prediction result fusion. AttConLSTM, a multi-step
model built upon the attention-based encoder-decoder
framework for passenger demand prediction is proposed
in [3]. However, it fails to consider external factors,
which greatly influences passenger demands. Different
from all previous models, our model captures temporal-
spatial feature interactions simultaneously without in-
formation loss, employs fuzzy neural network to handle
external data inaccuracy and includes a new and effec-
tive feature fusion method based on convolutions.

3 Problem Formulation

Being consistent with existing works, we make the
following definitions. Based on the definitions, we
present the problem statement of this paper.
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Definition 3.1. Region In this paper, we predict the
passenger demands in different areas in a city. The
whole city is partitioned into W × H equal-size grids.
A grid is called a region, which is denoted by r. Let
ri,j denote the region with the coordinate i, j, where
i ∈ [0,W ) and j ∈ [0, H).

Definition 3.2. Service request A service request
sk made by a passenger is composed of the request
ID, pick-up coordinates sk,pc (longitude and latitude),
and pick-up time sk,pt. (Note that we do not consider
drop-off location and time for demand predictions.) A
service request sk = {sk,pc, sk,pt}. A valid request’s
pick-up location should be in the city. If it is outside
the city, it is discarded. The total number of available
legal requests is denoted by N .

Definition 3.3. Passenger demands Time is di-
vided into equal intervals. The tth time interval, starting
from 0, is the interval of [t× C, (t+ 1)× C), where C
is a constant representing the interval’s time span. The
passenger demand of a region ri,j is accumulated in the
specific tth time interval based on the requests’ pick-up
time. The passenger demand in region ri,j at the tth

time interval is denoted by dti,j .
(3.1)
dti,j = |{k ∈ [0, N) : sk,pc ∈ ri,j∧sk,pt ∈ [t×C, (t+1)×C)}|.

The whole area’s demands are denoted by D, which
means

(3.2) Dt = {dti,j |∀i ∈ [0,W ),∀j ∈ [0, H)}.

We can imagine that Dt is a demand snapshot of the
whole area at the tth time interval, where every pixel is
the demand of that particular location.

Definition 3.4. External information Let et de-
note the external information set at the tth time interval.
The external factors impacting the passenger demands
considered in the paper includes the weather, the day
in a week and being daytime or nighttime. The process
details of the external information will be given in next
section.

Problem statement The problem is defined as fol-
lows. Suppose the current time interval is t. Given
the historical passenger demands and the external in-
formation at the tth time interval, our goal is to predict
the passenger demands in all regions in the city at the
(t+ 1)th time interval. Specifically, in our problem, we
take the historical data, demands and external informa-
tion in the last k time intervals as input and the output
is the predicted passenger demands at the (t+1)th time

Raining 

Figure 1: Different hourly demands in different days

interval. Let D̂
t+1

denote the predicted passenger de-

mands at the (t+ 1)th time interval. D̂
t+1

is a function
f of the previous k time intervals’ data.
(3.3)

D̂
t+1

= f(Dt−k,Dt−k+1, ...,Dt, et−k, et−k+1, ..., et).

Our goal is to minimize the difference between D̂
t+1

and the true passenger demands Dt+1.

4 STEF-Net

4.1 Preliminary analysis In this section, we con-
duct a preliminary data analysis to provide some in-
tuition on how passenger demands are influenced by
different factors. We use a dataset from Didi Chux-
ing, China. The data contains over 5.24 million ser-
vice requests from 11/01/2016 to 11/30/2016. Fig. 1
shows the total passenger demands over different hours
in different days. We pick two Mondays and a Friday
as representatives of weekdays and a Saturday as that
of weekends. We select a rainy Monday and a sunny
Monday to show the impact of weather on passenger
demands. Except the rainy Monday, all the other days
are sunny. In the figure, the x axis is the hour of the
day and the y axis is the passenger demands during the
hour. We can see the passenger demands have different
patterns in different days, at different time of the day,
and under different weathers. For example, at the noon
time, the demand drops on Monday and Friday but it
increases on Saturday. About the weather factor, on the
rainy Monday, it starts to rain at 2pm. Comparing the
sunny Monday with the rainy Monday, we can see that
the patterns of passenger demands on the two days be-
fore rain are similar while the patterns become different
after rain comes. Specifically, the number of passenger
demands keeps decreasing on rainy Monday while there
is an increase on sunny Monday. The figure shows the
passenger demands are determined by complex interac-
tions among many factors.
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Figure 2: Our deep learning model STEF-Net

4.2 Overview of our deep learning model We
propose a deep learning model, STEF-Net, to predict
the passenger demands incorporating the complex in-
teractions between various factors. Our model is illus-
trated in Fig. 2, which is mainly composed of four
components. (1) As shown in the left side of the fig-
ure, we employ a stacking ConvLSTM to capture the
spatial-temporal feature interaction with the passenger
demands. The input is the historical passenger demands
with location and time information, and the output is
the prediction using only spatial-temporal information.
(2) As shown in the right side of the figure, in parallel,
we employ a fuzzy neutral network to capture the ex-
ternal information’s interactions on passenger demands.
The input is the data about external information and
the output is the prediction using external information.
(3) As shown on the bottom of the figure, the outputs
from the stacked ConvLSTMs and the fuzzy neural net-
work are fused into one network to generate the final
output. We propose a new feature fusion method us-
ing convolution on the data from the same time period,
which keeps the temporal relation of the outputs from
the two networks. Considering the passenger demands
are unequally influenced by different time intervals, we
further propose to adapt an attention layer on the high-
level fused data to capture the temporal relevance. The
data are then reshaped into the output format, which
matches the regions in a city. (4) As shown in the right
corner of the figure, we employ a loss function to mea-
sure the difference between the predicted value and true
value. A neural network’s goal is to minimize the loss
defined by an objective function. In the following, every

component is presented in detail.

4.3 Modeling spatio-temporal features We pro-
pose to simultaneously capture the deep spatial and
temporal dependencies in passenger demands by stack-
ing ConvLSTMs. A ConvLSTM is a neural net-
work model that combines convolutional operation and
LSTM units, where an LSTM is known to well handle
temporal feature interaction without the vanishing gra-
dient problem, while convolutional networks are known
to gracefully handle spatial feature interactions. A Con-
vLSTM uses the convolution operation to replace the
full connections in traditional LSTMs. In an LSTM,
all the elements are 1D tensors, which accepts the input
from T×L dimensions and generates outputs into T×L′
dimensions. T is the length of the time sequences, L is
the length of one input vector, and L′ is the length of one
output vector. A ConvLSTM transfers all the inputs,
memory cell values, hidden states, and various gates in
an LSTM into 3D tensors, where the first two dimen-
sions are considered as the spatial information, rows and
columns and the last dimension is the channels.

To adapt ConvLSTM in our problem, we treat the
first two dimensions in the passenger demand data as
rows and columns at one time interval. The ConvL-
STM in our problem can be considered as a function
RT×W×H×L → RT×W×H×L′ , where T , L and L′ are
the same as those in the traditional LSTM, and W and
H are the length of rows and columns, corresponding to
the width and height of the grids in the city-wide area
in our problem. Several ConvLSTM layers are stacked
in our neural network. In the last ConvLSTM layer, the
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length of the output vector is set 1, which means the out-
put is a 4D tensor with the size of T ×W ×H× 1. This
is equivalent to a 3D tensor with the size of T ×W ×H.

4.4 Modeling external uncertain features Pas-
senger demands are influenced by many external fac-
tors in addition to location and time which are handled
in the previous section. We need to identify the factors
and obtain corresponding data to train our model. Note
that existing data about external factors are likely in-
accurate or of coarse granularity, and thus we propose
for the first time to employ a fuzzy neural network to
model the data. In the section, we first present our
factor selection and data pre-processing, and then we
present our fuzzy neural network modeling.

4.4.1 Factor selection and data pre-processing
Our model aims to include all highly correlated factors
and chooses (1) the weather, (2) the day in a week, and
(3) being daytime or nighttime. Obviously, weather
greatly influences a passenger’s choice between taking
uber and walking, waiting and then taking a bus.
When it rains heavily or when it is very cold or
very hot, people tend to take a more comfortable
way of transportation. In our model, the weather
is represented by temperature, dew point, humidity,
pressure, wind speed, and weather condition. The
first five variables are numerical variables. The last
one, weather condition, is represented by ten different
categories: clear, partly cloudy, scattered cloud, mostly
cloudy, haze, light rain, shower, mist, patches of fog,
and fog. The categories are indexed from 1 to 10.
The numbers are embed using one-hot vectors with 10
dummy variables. The second factor, the day in a week,
refers to the seven days in a week, which also affluences
people’s daily transportation behavior. This factor is
a categorical variable and is represented by a one-hot
vector with 7 dummy variables. The third factor is
whether it is dark outside and it is differentiated by
the sunrise and sunset time of the day. In summary, to
represent all the three factors, we choose 24 variables
in total in our model. The external information is 1D
tensor.

4.4.2 Fuzzy neural network modeling We adopt
a fuzzy neural network to learn the representation of
the external information. The fuzzy neural network is
composed of two hidden layers, membership function
layer and logic rule layer. The architecture is shown
in Fig. 3. The membership function layer calculates
the degree that an input node belongs to a certain
fuzzy set. Let xi denote the ith element in the input.
In the membership function layer, every element is

… … …

…

…

…

Input layer

Membership 

function layer

Fuzzy rule layer

x2x1 xi

hi,jh1,1 h1,2 h1,jh2,1 h2,2 h2,j hi,1 hi,2

o1 o2 oj

Figure 3: Illustration of the fuzzy neural network

split by multiple Gaussian distributions. Let j index
the Gaussian distribution for the ith element. One
distribution is denoted by (µi,j , δi,j). The membership
function layer’s output is calculated as follows,

(4.4) hi,j = e

−(xi−µi,j)
2

δ2
i,j .

The logic rule layer performs the “AND” fuzzy logic
operation as follows,

(4.5) oj =
∏
i

hi,j .

Through the rule layer, the output can present the
probability that it is related to every unit. In the fuzzy
neural network, all time intervals’ external information
shares the same member function layer and logic rule
layer.

The output from the fuzzy neural network of one
interval’s external information is reshaped into two
dimensions to match the passenger demands in a whole
city, which is W ×H. The outputs from the past T time
intervals’ external information are a 3D tensor with the
shape size of T ×W ×H.

4.5 Feature fusion module In the above two sec-
tions, the passenger demand data and external informa-
tion are mapped into the same feature representation
format from two separate networks. They need to be
combined to predict the next time interval’s demand.

Previous works employ weighted addition [5, 4] to
fuse the two components. In this paper, we propose
to use convolutional operation to fuse the outputs from
two networks. In addition, to keep the temporal feature
interaction, we first fuse the data from the same time
interval and then apply an attention layer to generate
the final output.

The outputs of the passenger demand and external
information at the tth are denoted by Ot,p and Ot,e,
respectively. Let Ot,f denote the output after fusion
with convolution denoted by ⊕. The illustration of
fusion with convolution is shown in Fig. 4. The
calculation can be presented by the following equation,

(4.6) Ot,f = Ot,p ⊕Ot,e.
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⊕

Convolution

Figure 4: The fusion method with convolution

We concatenate the two by adding a new dimension,
which can be imaged as the channel in a CNN. After
concatenation, Ot,f ∈ RW×H×2. To make the output’s
dimension consistent, we apply a convolutional opera-
tion with window size w × h (w � W&h � H) with
1 channel, which outputs a 2D tensor with the size of
W×H. In this way, our fusion with convolution method
only needs w × h parameters while the weighted addi-
tion requires 2 ×W ×H parameters in previous works
[5, 4]. In addition, the convolutional operation can fur-
ther learn the spatial information on the fused data.

After fusing the data, we use a bidirectional LSTM
and attention to further capture the temporal relevance.
In the bidirectional LSTM, the data are flattened into
one dimension and fed into LSTMs:

−→
ht =

−−−−→
LSTM

(
wt,
−−−→
ht−1

)
,(4.7)

←−
ht =

←−−−−
LSTM

(
w′t,
←−−
ht+1

)
.(4.8)

wt and w′t are the weights in the forward and backward
LSTMs, respectively. The outputs from the forward and
backward are added in an element-wise way:

(4.9) ht =
−→
ht +

←−
ht.

We keep the number of units in the LSTM being same
as the number of grids, which is equal to W × H. All
the time steps are concatenated into a matrix H:

H = (h1,h2, ...,ht).(4.10)

For all time steps’ values in every grid, we use a linear
transformation and a softmax activation function to get
the attention weights on the time step domain:

a = softmax(WH).(4.11)

The outputs are the weighted sum of the hidden states
and the attention weights in an element-wise way. The
passenger prediction is the outputs after being weighted
by attention.

4.6 Objective function In our model, the objective
function is defined as the mean squared error between
the true passenger demands and predicted passenger

demands. The model is trained based on mini-batches.
Suppose there are m samples in a mini-batch and every
sample is indexed by i, the objective function L(θ) with
trainable parameters θ is defined as follows,

(4.12) L(θ) =
1

m

m∑
i=1

‖D̂
(t+1)

i −D
(t+1)
i ‖2,

It is the mean squared error between the predicted and
true passenger demands in a mini-batch. The optimiza-
tion algorithm in our model is the ADAptive Moment
estimation (Adam) [18], which adaptively changes the
effective learning rate during training.

5 Evaluation

5.1 Evaluation objectives and metrics We eval-
uate STEF-Net by comparing it with state-of-the-art
models on real data with regarding to the accuracy in
passenger demands prediction. The accuracy is mea-
sured by two metrics, Mean Absolute Error (MAE) and
Rooted Mean Squared Error (RMSE). The MAE and
RMSE are two widely employed metrics to evaluate the
performance of a prediction system [4].

5.2 Dataset The dataset used for training and test-
ing is from Didi Chuxing. The data contains over
5.24 million non-duplicating service requests from
11/01/2016 to 11/30/2016 in Chengdu City, China. In
the dataset, every service request record is composed of
the request ID, pick-up time, pick-up coordinates, drop-
off time and drop-off coordinates. (Note that we do not
need drop-off time and drop-off coordinates here.) The
data of the first 23 days is used for training and that
of the last 7 days (one week) for testing. The area is
about 14.41km × 14.39km. We divide the whole area
into 20×20 same-size grids. The length and width of
every grid are both about 700 meters. The time inter-
val is set half an hour. Same as previous studies [4, 3],
the passenger demands are scaled into [0,1] using max-
min scaling. In the final step, the demand values are
recovered by the inverse of max-min scaling.

Regarding the external information, the day of
a week is extracted from the pick-up time. The
weather information and sunrise/sunset information are
crawled from the Weather Underground website [19] us-
ing Python. The website provides historical weather in-
formation in Chengdu. As presented in previous section,
we extract 24 features about the external information.

5.3 Hyperparameters and development envi-
ronment In our network, 3 ConvLSTMs are stacked
and all the ConvLSTMs use 64 filters of size 3×3. A
convolutional layer with one filter is added after the
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stacked ConvLSTMs to convert the data into a 20×20
tensor. The membership layer in the fuzzy neural net-
work is composed of 24×400 units, and the fuzzy rule
layer has 400 units. The outputs from the fuzzy neu-
ral network are reshaped into 20×20 and the following
convolutional layer has one filter with the kernel size of
3×3. In the fusion part, the convolutional layer has one
filter with the kernel size of 3×3. In the fully connected
layers, there are three layers with 100 units, 200 units,
and 400 units, respectively. The output is reshaped into
20×20 to match the prediction in the whole city. The
parameters in the fuzzy neural network are uniformly
initialized from 0 to 1. All the other parameters are
uniformly initialized.

In our model, to be consistent with the previous
studies we compare with [5, 3], we by default use
previous 8 time intervals’ data to predict the current
time interval’s passenger demands, It means the current
time interval’s passenger demands are predicted based
on the historical 4 hours’ data. We also use 2 hours’
data to predict the demands to see how the time length
can influence the prediction accuracy.

Our model is developed on the top of Keras [20] with
the backend of Tensorflow [21]. The model is running
on a desktop with an Intel Xeon 3.10GHz×4 CPU and
a GeForce GTX 1050 Ti GPU. The model is trained by
mini-batches. Every mini-batch has 16 samples. Every
model is trained using 50 epochs and the results are
generated after that.

5.4 Baselines For a thorough comparison with ex-
isting methods, we compare our model with three cat-
egories of methods, time-series (ARIMA), regression-
based (Ridge and XGBoost) and neural network-based
methods (ST-ResNet, AttConLSTM and FCL-Net).
The methods are presented as follows:

• ARIMA [2]: ARIMA uses both moving average
and autoregressive to predict the next time inter-
val’s passenger demands.

• Ridge linear regression [22]: Ridge linear re-
gression uses a linear equation to model the rela-
tionship between historical features and future pas-
senger demand. We reshape all features in this pa-
per to a vector and feed vectors into the linear re-
gression.

• XGBoost [23]: XGBoost (2016) is a widely used
boosting method with a tree structure. All features
are also reshaped into vectors to feed the XGBoost
model.

• AttConLSTM[3]: AttConLSTM (2018) fuses
attention and ConvLSTM into an auto-encoder
model. It stacks CNNs and ConvLSTMs to en-

Model name
2 hours 4 hours

MAE RMSE MAE RMSE
ARIMA 3.61 6.42 2.85 4.91
Ridge linear 3.50 6.32 3.47 6.25
XGBoost 3.48 6.18 3.29 5.87
ST-ResNet 2.90 5.15 2.86 5.02
AttConLSTM 2.63 4.58 2.60 4.55
FCL-Net 2.58 4.46 2.52 4.39
STEF-Net 2.31 4.05 2.27 3.89

code and decode the passenger demands and ex-
tracts passenger demands patterns as references in
an attention network.

• FCL-Net [5]: FCL-Net (2017) employs ConvL-
STM and LSTM to extract information from de-
mands, time and weather. It fuses the outputs from
two networks by addition.

• ST-ResNet [4]: ST-ResNet (2017) uses ResNet
to capture the spatial and temporal information
on demands from three categories, recent, near
and distant. Only weather information at the
current time interval is considered. It fuses data
by addition. Because the distant demands require
at least three weeks for one sample, we only take
the recent and near categories.

All the models follow the settings in their original
papers, and all of them are trained 50 epochs.

5.5 Results

5.5.1 Comparisons with baselines We present the
comparison results with baselines in Table 5.5.1. From
this table, we can see our model outperforms all the
others regarding to both metrics. When the historical
data is 4 hours, our model can achieve 3.89 in RMSE
and 2.27 in MAE. The results at least 9.9% better in
MAE and 11.3% better in RMSE than the best one
among all baseline methods and about 34.6% better
in MAE and 37.8% better in RMSE than the worst
among all baselines. Ridge linear regression performs
worst because it only considers the linear relation among
features. Note that after the model is trained, we use 2
hour data and 4 hour data to predict future demands,
respectively. When more historical data is utilized to
predict, the performance improves.

5.5.2 Qualitative results In this section, we illus-
trate how the passenger demands are influenced by the
historical data. Using heatmaps, we plot the atten-
tion weights under different weather conditions (sunny
or rainy) at 8pm on two different days in Fig. 5. In
each day, we plot the attention weights of the last time
step and the second to the last time step, which repre-
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(a) The second last time step
in a sunny day

(b) The last time step in a
sunny day

(c) The second last time step

in a rainy day

(d) The last time step in a

rainy day

Figure 5: The attention probabilities of the historical
time steps that influence the current passenger demands
under different weather conditions

sent the intermediate history and next intermediate his-
tory. Note that there are 20×20 grids, and thus in the
heatmaps, every small square represent one geographic
grid. Center grids represent the downtown area of the
city and border grids represent suburban areas. Com-
paring Fig. 5(a) with Fig. 5(b), and comparing Fig.
5(c) with Fig. 5(c), we can see that the current passen-
ger demands in the city center are more influenced by
the second to the last time step than by the last one
while those in the border area are more influenced by
the last time step regardless of the weather. Compar-
ing figures in the sunny day and rainy day in Fig. 5,
we can also see that the weather greatly influences the
passenger demands. When the outside is rainy, the pas-
senger demands are less influenced by the last time step
in the center of the city (downtown). The rainy weather
may incur passengers in the downtown area to change
their travel plan by pre-scheduling their activities, e.g.,
reducing the outdoor activities, while the users in the
suburbs are not influenced much.

5.5.3 Ablation studies: comparisons with vari-
ants of STEF-Net In our evaluation, we also com-
pare STEF-Net with its variants to explore how differ-
ent components influence the prediction performance.
We explored the following variants,

• ConvLSTM → CNN&LSTM : 3 convolutional
layers with the 64 windows of size 3×3 and 3 LSTM
layers with 64 units in each layer are stacked to

Model name MAE RMSE
ConvLSTM → CNN&LSTM 2.32 4.01
ConvLSTM → LSTM 2.36 4.09
Fuzzy → LSTM 2.58 4.51
No attention layers 2.59 4.35
No external data 2.40 4.24
Weighted addition 2.38 4.09
STEF-Net 2.27 3.89

replace ConvLSTMs for the demand information
processing.

• ConvLSTM → LSTM: 3 LSTM layers with 64
units in each layer are stacked to replace ConvL-
STMs for the demand information processing.

• Fuzzy → LSTM: 3 LSTM layers with 64 units in
each layer are stacked to replace the fuzzy neural
network for the external information processing.

• No attention layers: no attention layers are used
after the outputs from the ConvLSTM and the
fuzzy neural network are fused.

• No external information: no external informa-
tion is used in the model. Features from the Con-
vLSTM are directly fed to the attention layer.

• Weighted addition: weighted addition is used to
replace our convolutional operation in data fusion.

The results are shown in Table 5.5.3. We can see
that our model, STEF-Net, has the best performance
among all variants. Specifically, our model can achieve
the smallest RMSE and MAE compared to its variants.
Comparing to these variants, we can see that the ConvL-
STM can effectively capture the spatio-temporal infor-
mation, which performs better than both CNN&LSTM
and LSTM, and the fuzzy neural network can outper-
form the LSTM in processing the external information.
In addition, we can see that attention layers can fur-
ther capture the temporal relevance and improve the
performance. Among all the components, fuzzy neu-
ral network can significantly improve the performance
comparing to the LSTM. The feature fusion method can
further capture the temporal feature interaction and the
weighted addition performs worse than the fusion with
convolution. Comparing the results between our model
with the model withoout external information, we can
see that the external information is important in pre-
dicting the passenger demands, which matches our in-
tuition of fusing it into our model.

6 Conclusion

In this paper, we propose a Spatio-TEmporal Fuzzy
neural Network (STEF-Net) to accurately predict pas-
senger demands in the near future. Our model can ef-
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fectively capture complex input dependencies, including
spatial, temporal and external factors, which may influ-
ence future passenger demands. In the proposed ap-
proach, we combine deep learning with a fuzzy neural
network to model spatio-temporal and external infor-
mation, respectively. We employ a new feature fusion
method with convolution followed by an attention layer,
to fuse two neural networks into one and keep tempo-
ral relations for further temporal relevance modeling.
Extensive experiments on real-world dataset show that,
our model outperforms the state-of-the-art approaches
with over 10% improvement in RMSE.
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