
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

A Deep Learning Model for Transportation Mode
Detection Based on Smartphone Sensing Data

Xiaoyuan Liang , Yuchuan Zhang, Guiling Wang, and Songhua Xu

Abstract— Understanding people’s transportation modes is
beneficial for empowering many intelligent transportation sys-
tems, such as supporting urban transportation planning. Yet, cur-
rent methodologies in collecting travelers’ transportation modes
are costly and inaccurate. Fortunately, the increasing sensing and
computing capabilities of smartphones and their high penetration
rate offer a promising approach to automatic transportation
mode detection via mobile computation. This paper introduces a
light-weighted and energy-efficient transportation mode detection
system using only accelerometer sensors in smartphones. The
system collects accelerometer data in an efficient way and
leverages a deep learning model to determine transportation
modes. Different architectures and classification methods are
tested with the proposed deep learning model to optimize the
system design. Performance evaluation shows that the proposed
new approach achieves a better accuracy than existing work in
detecting people’s transportation modes.

Index Terms— Transportation mode, deep learning, smart-
phone, accelerometer.

I. INTRODUCTION

THE increasing sensing and computing capabilities of
smartphones offer a promising new approach to monitor-

ing human activities [1], [2], including means to detect travel-
ers’ transportation modes, which are particularly important for
developing many transportational applications. For example,
(1) knowledge of people’s transportation modes is useful for
improving urban transportation planning [3], [4]. The new
method would transform the way how transportation demand
information is gathered for supplementing the traditional infor-
mation acquisition practice based on telephone interviews
and questionnaires, which is expensive and time consuming
to conduct [5]. (2) The knowledge can also improve the
performance of localizing and positioning systems. With the
awareness of transportation modes, localizing systems can
more precisely narrow down users’ locations [3]. (3) The
information facilitates targeted and customized advertisements
and services [5] based on the transportation modes the users

Manuscript received February 3, 2019; revised July 28, 2019; accepted
October 2, 2019. This work was supported in part by the National Science
Foundation under Grant CMMI-1844238. The Associate Editor for this article
was F. Chu. (Corresponding author: Xiaoyuan Liang.)

X. Liang and G. Wang are with the Department of Computer Science,
New Jersey Institute of Technology, Newark, NJ 07102 USA (e-mail:
xl367@njit.edu; gwang@njit.edu).

Y. Zhang is with the Big Data Engine Department, MicroStrategy, Annan-
dale, VA 22182 USA (e-mail: yz596@njit.edu).

S. Xu is with the Department of Information System, New Jersey Institute
of Technology, Newark, NJ 07102 USA (e-mail: songhua.xu@njit.edu).

Digital Object Identifier 10.1109/TITS.2019.2951165

are taking. (4) The acquired information can also help improve
smartphone users’ physical habits for environment protection
purpose. For example, the C O2 footprint as well as the
calories burned by individuals can be better monitored with
the information [4], [6]. In this way, the data can help users
build green transportation habits to protect the environment.

Most previous studies use data from Global Positioning
System (GPS) to detect people’s transportation modes [5]–[7].
However, GPS-based methods suffer from the following draw-
backs [3], [4]: (1) GPS signals are not available everywhere.
GPS requires an unobstructed view to satellites, limiting its
applicability in metropolitan areas with highrises or in shielded
areas; (2) a GPS sensor consumes a significant amount of
energy and may rapidly deplete the battery of a mobile device.
To address these issues, some existing work uses alternative
sensors to detect transportation modes. For example, Jahangiri
and Rakha [4] propose leveraging an accelerometer coupled
with a gyroscope and a rotation vector sensor to detect
five transportation modes. Fang et al. [8] use a deep neural
network to classify five transportation modes based on the
data from the accelerometer, magnetometer and gyroscope.
Hemminki et al. [3] propose using an accelerometer sensor
to detect six transportation modes. However, the detection
accuracy of the above works, less than 90%, still needs
improvement when only using the accelerometer sensor. In
contrast, our proposed approach can detect all common trans-
portation modes, including being stationary, walking, bicy-
cling, taking bus, driving a car, taking subway, and taking
train, using data only acquired from accelerometer sensors
in smartphones. The key design objectives of our new work
include low energy consumption, applicability in all situations
and detection accuracy.

To achieve aforementioned three objectives, we propose a
deep learning framework to efficiently detect a user’ trans-
portation mode using only data read from her smartphone’s
accelerometer sensor. Previous studies [8]–[10] using deep
learning in transportation mode detection usually involve other
sensors to extract trajectory data, which are energy-consuming,
and mainly employ dense networks and recurrent neural net-
works. In our model, we only take the accelerometer data and
design a convolutional neural network on one-dimension data
to accurately detect the transportation modes. The data are
processed by removing gravity and smoothing. To minimize
the influence from different axes and rotation, we also use the
magnitude instead of the value in every axis to develop the
model, such that the detection accuracy will not be affected

1524-9050 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on May 11,2020 at 21:01:13 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9313-0538

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

by the position of a smartphone relative to its user considering
a user may hold her phone in any orientation. The data are
divided into small windows. Data in every window are fed
into our proposed deep learning model to detect the window’s
corresponding transportation mode. Traditional classification
models in machine learning are trained with features from both
time and frequency domains as baselines. Simulation results
show that the proposed system can achieve a higher detection
accuracy than all peer methods.

To summarize, our work makes the following contributions.
(1) To the best of our knowledge, this is the first attempt
to adopt a deep convolutional neural network framework on
the accelerometer data only to detect transportation modes in
near realtime, with about 1 second delay. (2) Different from
many existing systems, our system can be widely applied since
we only use data read from accelerometer sensors which are
available in any smartphones. The system is energy efficient
by only using the accelerometers for they consume much
less energy than other motion sensors [11]. Comparing to
the works that only use accelerometers, our system is robust
to the position and orientation of smartphones which greatly
improves user experience, since in our work the magnitude
is used instead of the vectors in three axes. (3) It is shown
that the proposed model outperforms existing studies and can
accurately detect transportation modes via extensive experi-
ments in which the same window size is taken on the same
dataset. (4) The data are collected from the accelerometer in
smartphones under seven different transportation modes. An
anonymized dataset will be made public for peer researchers1.

The remainder of the paper is organized as follows.
Section II introduces our system architecture. Section III
details data collection and data preprocessing in our sys-
tem. Our deep learning model is introduced in Section IV.
Section V evaluates our system in terms of prediction accu-
racy and compares our model with its variations. Section VI
presents related work and compares our system with them.
The paper concludes in Section VII with discussion on future
research directions.

II. ARCHITECTURE

The objective of our paper is to design a system to efficiently
detect a user’s transportation mode in real time using only data
read from her smartphone’s accelerometer sensor. The archi-
tecture of our system is illustrated in Fig. 1. As shown in the
figure, our system has three components: data collection, data
preprocessing, and deep learning model development using
the processed data. (1) Data collection. We compare different
sensors of a smartphone and determine the accelerometer data
are to be collected. We develop an Android application to
collect the data. (2) Data preprocessing. The raw data are
cleaned and processed to remove the impact of the gravity,
to be smoothed, and to be transferred into one-dimension
segments, before being used to construct a detection model. (3)
Deep learning model development and training. We develop
a Convolutional Neural Network (CNN) on one-dimension

1The data used in this paper can be downloaded from
https://cs.njit.edu/∼gwang/TITS2019.html.

Fig. 1. System architecture.

data for transportation mode detection. After being trained
by the processed data, the model reports the corresponding
transportation mode in real time, given any new incoming
accelerometer data.

III. DATA COLLECTION AND PREPROCESSING

A. Data Collection

We choose to accelerometer as data source to detect trans-
portation modes for its energy-efficiency. The sensor con-
sumes 10 times less power than other motion sensors [11],
e.g., gyroscope. To collect accelerometer data, an Android
application is developed. A phone is carried under different
transportation modes and the collected data are manually
labeled with the corresponding transportation mode by the
corresponding travelers. When collecting the data, the phone
can be placed as usual and is not required to stay in a specific
position or orientation. Note that this is different from many
previous work, which requires that the phone must be placed
in the hip pocket [6], or it has to be kept in a bag [3].
Loosing the requirement improves user experience, but poses
new challenges in processing the data to remove noises.

In previous studies, the acceleration sampling frequency
ranges from 25Hz [6] to 100Hz [4], [12]. In this paper,
we choose a middle sampling frequency, 50Hz, which is the
same as the one adopted in the prior study [13]. The fre-
quency can balance the information precision and the energy
consumption.

The original data acquired from an accelerometer are
organized as three dimensional vectors, where each vector
component corresponds to the value in one axis in the mobile
phone’s coordinate system. The coordinate system is shown
in Fig. 2 [14]. One piece of sample data is a vector with one
value per axis in the coordinate system in the unit of m/s2.

B. Preprocessing

The collected acceleration data contain a gravity component,
which is generated by the earth and everyone on the earth is
influenced, so this component does not contribute to trans-
portation mode detection. Thus, the first step of preprocessing
is to remove the gravity component so that the remaining part
only carries characteristics of different transportation modes.
The data are then smoothed to remove large fluctuations,
which may be caused by sudden movements. For example,

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on May 11,2020 at 21:01:13 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIANG et al.: DEEP LEARNING MODEL FOR TRANSPORTATION MODE DETECTION BASED ON SMARTPHONE SENSING DATA 3

Fig. 2. The coordinate system of a smartphone. The x-axis is from left to
right, the y-axis is from down to up, and the z-axis is from back to front.

a walking person may suddenly stop to check his beeping
phone and then continue walking. Finally, the acceleration
magnitude is obtained to build the classification model.

1) Removing Gravity: Gravity is reflected in all three axes
in the smartphone?s coordinate system, which is not possible
to be removed by subtracting a constant value. When a phone
is put on a stationary desk with the screen up, the acceleration
value is expected to be (0, 0,−g), where g is the gravity
constant. However, a phone can be placed in any direction,
so even when the phone is stationary, the first two dimensions
of the data may not be zero and the last one may not be −g.
Generally, all the three axes contains a portion of the gravity.
Removing the gravity results in a new movement record,
which is used for actual transportation mode detection. The
acceleration data obtained after removing the gravity part are
called linear acceleration data.

As for how to remove the gravity component, a low-pass
filter is applied to remove gravity [15], since the gravity is
much more stable than the acceleration generated by move-
ment during a relative long period of time [11], [16]. Let
Ak denote the vector collected from the accelerometer and
Gk denote the gravity vector at the kth time point in the
mobile phone’s coordinate system. Let Lk denote the linear
acceleration data after removing the gravity component. The
gravity is estimated by the following equation [11], [16],

Gk = α · Gk−1 + (1 − α)Ak, (1)

where α is the exponential decay weight between old estimated
gravity and the new one. An empirical value, 0.8, is taken in
the system [14]. Lk is calculated as follows,

Lk = Ak − Gk . (2)

The linear acceleration data is the collected acceleration data
minus the estimated gravity in three axes. The value of Gk is
initialized to be the readings from the accelerometer.

2) Data Smoothing: Data smoothing is necessary since a
phone’s movement is not always consistent with its user’s
movement and the inconsistent part needs to be removed as
much as possible. There are two causes of the inconsistency.
One is the sudden movement of a phone irrelevant to its
user’s movement. For example, a user may suddenly pick
up the phone while driving or in other transportation modes.

Fig. 3. The smoothed signals in the time domain.

In a sudden movement like this, the acceleration changes
abruptly. The data do not reflect its user’s movement, and
thus impair the accuracy of transportation mode detection.
Therefore, the data are smoothed to reduce the influence by
those sudden movements.

The data are smoothed by the central moving average
algorithm, which is a special Savitzky-Golay filter [17]. It is
calculated by averaging an odd number of nearest neighbors,
m, in the time series. m is a predefined constant value,
which is set to 5 in this paper. For the original acceleration
at the kth time point, Lk , let L̂k denote the corresponding
estimated linear acceleration value after smoothing. K is
the total number of vectors in the data. L̂k is estimated
as follows,

L̂k =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑2k−1
i=1 Li

2k − 1
k ∈ [1, �m

2
�],∑k+�m/2�

i=k−�m/2� Li

m
k ∈ (�m

2
�, K − �m

2
�),∑K

i=2k−K Li

2(K − k) + 1
k ∈ [K − �m

2
�, K].

(3)

If the number of neighbors in one side is less than K , then the
average algorithm takes the same maximum possible number
of neighbors from both sides.

Take Fig. 3 as an example to show the effect after smoothing
the data. The data is from a stable period of walking. In
the figure, the blue line shows the original data and the
red line shows the smoothed data after averaging the nearest
5 neighbors. The x-axis is the index of data and the y-axis is
the acceleration amplitude. From this figure, we can see that
the data becomes less fluctuating than the original one. It can
effectively reduce the large fluctuation and sudden movements.

3) Taking Magnitude and Data Slicing: Inconsistency afore-
mentioned also comes from the fact that a phone’s orientation
is likely to be different from that of its user. The phone may
be put in any position and orientation and they are subject
to changes at times. Thus, we take the magnitude of the
acceleration data. Even though there may be some information
loss, the magnitude is more robust to a phone’s changing and
unpredictable orientation according to prior studies [18]. For
L̂k = (L̂kx , L̂ky , L̂kz), we use |L̂k | to denote its magnitude,
which is calculated as,

|L̂k | =
√ ∑

i=x,y,z

L̂2
ki

. (4)

To conduct real-time detection, the time series data are
divided into small windows. The system detects every separate

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on May 11,2020 at 21:01:13 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 4. The acceleration magnitude of seven transportation modes.

window’s transportation mode. Specifically, the data are
grouped into a window of samples with a window size
of S seconds and a sliding size of s seconds. By default,
S is set to 10.24 seconds (512 samples) and s is set to
1.28 seconds (64 samples). We choose the two values because
the frequency transformation in traditional machine learning
methods requires the number of samples to be the expo-
nentiation of 2 [19]. With the selected values, the trans-
portation mode is detected almost every second based on
a 10-second historical information. We test different values
of S and s in the experiments to examine their impact on
performance.

C. Preliminary Data Analysis

We plot the acceleration magnitude of different transporta-
tion modes during a selected period in Fig. 4. The x-axis is
data index and the y-axis is the acceleration magnitude. From
the figure, we can see that the acceleration data in different
modes show different patterns. For example, the accelera-
tion data in bicycling shows an obvious periodicity and the
data in walk have the largest acceleration values compared
with others. The acceleration value in the stationary mode
is the smallest. The figure also shows that the data in the
bus and car modes are similar in the shape as both modes
keep low acceleration at most time and have a few rapid
changes.

We also plot the corresponding data in the frequency domain
as a time-frequency plot in Fig. 5. The data are sampled
every 128 values with 64 values overlapping with neighbors.
It means that the window is 2.56 seconds and the overlap is

1.28 seconds. In the figure, the x-axis is the frequency and
y-axis is the time. The color shows the magnitude, which is
the same as the log-scale power spectral density. From the
figure, we can see that most power is gathered in the frequency
domain less than 10Hz. It is reasonable for us to select the
power density from the frequency at 1Hz to 10Hz as features
for the traditional machine learning methods.

Note that we choose seven traditional machine learning
models as classification methods to determine transporta-
tion modes as a benchmark to our deep learning model.
The background of traditional machine learning methods
employed for transportation mode detection is presented
in Appendix B.

IV. DEEP LEARNING MODEL

The deep learning model adopted in our system is a deep
Convolutional Neural Network (CNN). CNNs, as one special
type of deep learning models, are commonly used to recog-
nize objects in image processing. In this paper, a CNN is
built on the one-dimension acceleration data to determine the
transportation mode in every time window. We present the
background of convolution, max-pooling and full-connection
of the CNN used in our approach in Appendix A. In this
section, we first present our deep learning model’s network
architecture. Then we introduce the elements of our model,
including the nonlinear function employed in every layer, the
loss function in evaluating the performance of a classifica-
tion model, the optimization method used to minimize the
loss function, and the normalization on the data to improve
performance.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on May 11,2020 at 21:01:13 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIANG et al.: DEEP LEARNING MODEL FOR TRANSPORTATION MODE DETECTION BASED ON SMARTPHONE SENSING DATA 5

Fig. 5. Time-frequency domain figures of different transportation modes. The x-axis is the frequency, the y-axis is the time and the color denotes the
magnitude.

Fig. 6. The CNN architecture in our system.

1) Network Architecture: Our CNN is designed for one-
dimensional data with the architecture shown in Fig. 6, which
is inspired by AlexNet [20]. The network takes the one-
dimensional acceleration data in a window as input and outputs
the probability of each transportation mode in the window.
The network consists of a succession of convolutional, max
pooling and fully-connected layers, whose specification is
as follows.

The input feature is a 512 × 1 vector of the magnitude
of the acceleration data. The first dimension is the temporal
space in the window and the second dimension is the size of

Fig. 7. The hidden N layers in Fig. 6.

values at every temporal point. The first convolutional layer
has 32 filter banks with the 15×1 shape and the filter bank
moves with a stride of 1 feature at a time. The following
max pooling layer is set to a 4-feature window and a stride
of 2 features. The convolutional layer and max pooling layer
are repeated N times. In the proposed network, N is set 6.
All the max pooling layers are configured using the same
parameters. The second and third convolutional layers have
64 filter banks on a 10-feature window with a stride size of 1
feature. The other four convolutional layers filter the data with
64 filter banks on a 5-feature window with a stride of 1 feature.
After the 6 times of convolution and max pooling processes,
the data become 8 × 64 dimension, as shown in Fig. 7. The
data are then fed into a fully-connected layer and become
200 × 1. A dropout layer is not employed in our system, but
it is added after the fully-connected layer only for comparison,
which is used to evaluate whether the dropout layer can help
improve the performance. Finally, the data are transferred into

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on May 11,2020 at 21:01:13 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

a 7 × 1 output vector with full connection. The value in the
output is the probability for every transportation mode.

2) Nonlinear Function: In a neural network, the common
ways to model a neuron’s output f as a function of its input
x are tanh, sigmoid or Rectified Linear Unit (ReLU). ReLU
outperforms the other two with its simple form (f (x) =
max(0, x)) in the fast convergence of stochastic gradient
descent [20], but it may generate ‘dead’ neurons, which are
never activated. In the proposed model, a leaky ReLU [21] is
employed, which is defined as follows:

f (x) =
{

x, if x > 0

βx, if x ≤ 0
. (5)

β is a small constant to avoid zero gradient in the negative
side. It should a very small value to make the negative values
propagate and the positive values dominate the propagation. In
the experiments, it is shown that the leaky ReLU can converge
faster than the traditional ReLU. The nonlinear activation
function is attached to every convolutional layer and the fully-
connected layer.

3) Loss Function: A loss function is used to evaluate how
labels derived by the current classification model deviate from
the corresponding true labels. The loss function is usually
composed of two parts, the variance between the estimated
labels and true labels, and the regularization. The loss L is
shown in the following equation,

L = V + λ · R, (6)

where V denotes the variance and R is the regularization value.
λ is the weight decay determining how much the regularization
affects the final loss.

The variance is expressed by the softmax cross entropy,
as follows:

V = −
∑
id

∑
c

tid,c · log(yid,c), (7)

where id denotes the index of a sample in the mini-batch
and yid,c is the value of sample id at class c in the output
layer. If the sample belongs to class c, the value of tid,c is 1;
otherwise, it is 0. If an estimated label is the same as the true
one, the contribution to the final V from the sample is 0; if the
estimated label and the true one are different, the contribution
becomes very large.

The regularization is to avoid overfitting during model
training [22]. The proposed neural network contains over
100,000 parameters. To reduce overfitting, there are two possi-
ble ways, regularization [22] and dropout [20]. Regularization
is to decrease the scale of a neural network by making weights
as close to zero as possible. Dropout is to randomly make
some weights as zero to increase the network’s robustness. In
this network, the L2 regularization is employed in the loss
function. In L2 regularization, the value of R is the squared
sum of all weights in the CNN.

4) Optimization: Gradient descent is one of the most popu-
lar algorithms to optimize the loss function in neural networks.
Among all variants of gradient descent algorithms, Adaptive
Moment Estimation (Adam) [23] is favorably reviewed due
to its capability for attaining satisfactory overall performance

with a fast convergence and adaptive learning rate [24]. The
Adam optimization method adaptively updates the learning
rate considering both first-order and second-order moments
using the stochastic gradient descent procedure. Specifically,
let θ denote the parameters in the CNN and L(θ) denote
the loss function. Adam first calculates the gradients of the
parameters,

g = ∇θ L(θ). (8)

It then respectively updates the first-order and second-order
biased moments, s and r, by the exponential moving average,

s = ρss + (1 − ρs)g,

r = ρr r + (1 − ρr)g, (9)

where ρs and ρr are the exponential decay rates for the first-
order and second-order moments, respectively. The first-order
and second-order biased moments are corrected using the time
step t through the following equations,

ŝ = s
1 − ρt

s
,

r̂ = r
1 − ρt

r
. (10)

Finally the parameters are updated as follows,

θ = θ + �θ

= θ + (−�
ŝ√

r̂ + δ
), (11)

where � is the initial learning rate and δ is a small positive
constant to attain numerical stability.

5) Normalization: The classification results can be
improved through normalization. Assume the dataset is not
too large to store in the memory. The whole training dataset is
used to normalize the whole dataset. The mean μ and variance
σ of the training dataset are derived first. The normalized
data x 	 from the original x is calculated through [25],

x 	 = x − μ

σ
. (12)

The normalization process is done before the data is used to
train the CNN.

V. SYSTEM IMPLEMENTATION AND

PERFORMANCE EVALUATION

Key experimental results are presented in this section with
performance attained by the method. The implementation
details are first presented, and then the data are analyzed.
Finally, the detection performance of the system and the
comparison with other methods are presented in detail.

A. System Implementation

We developed an Android application and installed it on a
Google Nexus 5X smartphone and a Google Nexus 6 smart-
phone, which are shared by four different users at different
time. This is due to the size limit of our research group. The
relative small number of participates helps in maintaining the
high quality of the collected data because some data need to
be manually input. Users can freely hold the phone in any

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on May 11,2020 at 21:01:13 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIANG et al.: DEEP LEARNING MODEL FOR TRANSPORTATION MODE DETECTION BASED ON SMARTPHONE SENSING DATA 7

TABLE I

PARAMETERS USED IN THE CONVOLUTIONAL
NEURAL NETWORK

orientation to their preference. The orientation and placement
of mobile phones are not restricted in the system. This scenario
can help keep our data in high quality and large variety. The
Android application records the accelerometer data at 50Hz
and the current transportation mode is manually labeled by
the users. The acceleration data are collected in the following
seven transportation modes: walking, bicycling, taking bus,
driving a car, taking subway, taking train and being stationary.
The data in every mode are collected for about 2 hours.
Specifically, users take train from New Jersey to Washington,
D.C. to collect the transportation mode of taking a train; they
take the subways in New York city; they drive cars in local
roads and on highways around NJIT campus; they take bus
between home and NJIT campus; they walk around campus
and in nearby parks; the stationary mode is sampled on NJIT
campus.

Matlab is used to preprocess the data and the CNN is built
using Tensorflow [26] on one NVIDIA GTX 1050 Ti 4GB
GPU. The traditional models are built and tested in Weka [27].

In terms of the setting of hyperparameters, by default,
a 512-sample window moves 64 samples every time to gen-
erate a new window data (512 and 64 are chosen for generat-
ing frequency values in traditional machine learning models,
which are not required in the CNN). It means one output
is generated every 1.28 seconds based on about 10-second
historical values. Other parameters used in our CNN are
shown in Table I. The minibatch size is chosen to balance the
computation cost and convergence speed. A larger minibatch
can quicken the convergence, but involves more computation
especially for GPUs. Due to the limit of computation resource,
we set a relative small number, 100, to balance the two parts.
The value of β is set 0.01, which is a suggested value in
the paper that proposed it [21]. The value of λ is chosen from
{10−2, 10−3, 10−4} and 10−3 is chosen because it can achieve
the best performance. The other parameters, 1st-order moment
weight ρs , 2nd-order moment weight ρr , learning rate �, and
constant δ, are chosen based on the suggested values from the
paper that proposed the Adam optimization algorithm [23].
In the experiments, the data are primarily split into 80% as
training and 20% as testing sets.

B. Evaluating Our CNN

In our test set, every transportation mode has 600 samples.
We compare the classification results from our CNN with
the ground truth and show the result matrix in Table II.

Fig. 8. The testing accuracy changes during training period. The x-axis is
the training iteration index and the y-axis is the accuracy.

The rows represent the ground truth transportation modes and
the columns are the transportation modes predicted by our
CNN. We can see from the table that our CNN can achieve
the accuracy of 94.48% on average. The result also shows that
it is hard to classify the motorised transportation modes, like
car, bus and subway. In those related works, if they do not try
to detect bus or cars, the accuracy can be higher.

We also evaluate different CNN setups and illustrate the
resulted in Table III. The first row shows the results from
the employed architecture of CNN in our system, which uses
Leaky ReLU as the activation function, uses L2 regularization,
and does not employ dropout. The other rows are the variations
of our CNN. In the compared CNNs, one part of the proposed
CNN is modified to get a new CNN model. All CNNs are
trained 1.5 million batch iterations with 100 windows in one
batch. The results show that the proposed CNN outperforms
all the other three. Specifically, our CNN achieves an accuracy
of 94.48%.

The accuracy changes in the four CNNs during the training
are shown in Fig. 8. In the figure, the x-axis shows the iteration
index and the y-axis indicates the testing accuracy. The data
in the figure are smoothed with a parameter 0.5. Shown in
the figure, the proposed CNN outperforms the others and
converges faster than the others.

C. Comparison With Traditional Machine
Learning Methods

We compare the performance of our proposed CNN model
and other traditional machine learning methods under different
window sizes in this section. (The background of traditional
methods is presented in Appendix B.) One special method is a
Recurrent Neural Network (RNN), a Long-Short Term Mem-
ory (LSTM) [28]. We use two LSTM layers with 32 units in
each layer and the other hyper-parameters follow the standard
way. A dense layer with softmax activation function is stacked
on the top. The optimization algorithm and batch size are the
same as those in our CNN model. The window size changes
from 128 to 512 with 64 distinguishing values between two
adjacent windows. It means the time length in a window is
from 2.56 to 10.24 seconds. The classification results under
different classification models with different window sizes are
shown in Table IV. The table shows that our CNN outperforms
all the other methods under all window sizes. Among all

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on May 11,2020 at 21:01:13 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

TABLE II

CLASSIFICATION MATRIX

TABLE III

CNNS’ CLASSIFICATION RESULTS

TABLE IV

CLASSIFICATION RESULTS COMPARING WITH TRADITIONAL MODELS

UNDER DIFFERENT WINDOW SIZES

traditional methods, random forest performs best in accuracy
by assembling multiple decision trees and different features.
The proposed CNN outperforms random forest by 94.48% to
90.11% when the window size is 512. In addition, for any
particular classification algorithm, the larger the window size
is, the higher the accuracy can be reached. It means when the
window size is too small, much information cannot be covered
in the window. For example, a sudden stop while driving may
be classified as stationary when the window size just catches
the stop period. The reason why a LSTM does not work well
in this scenario is that the number of time steps is too large
(if the window size is 512, the number of time steps is 512)
and there is only one value at every time step. Thus, it is hard
to learn a converged model by directly applying a LSTM.

VI. COMPARING WITH RELATED WORK

In this section, we present related work and compare the
performance of some of them with our model. There are

several studies using accelerometers only to detect transporta-
tion modes [3], [6], [13], [29]. Hemminki et al. [3] collect
accelerometer data at the frequency from 60 to 100Hz and
divide the data into 1.2-second windows with 50% overlap.
They extract 27 features in every window and train an adaptive
boosting to classify the data into six modes, stationary, walk,
bus, train, metro and tram. They achieve an accuracy of 80.1%.
Manzoni et al. [6] collect accelerometer data at the frequency
of 25Hz and divide it into windows of 10.24 seconds length
with 50% time overlap. They also extract features from
the FFT coefficients in every window and train a decision
tree to classify the data into eight modes: walk, bicycle,
bus, car, metro, train, still, and motorcycle. They achieve an
accuracy of 82.14%. Yang [29] collects accelerometer data
at the frequency of 36Hz and divide the data into 10-second
windows with 50% overlap. Features are extracted from time
and frequency domains and a decision tree is used to classify
six transportation modes, sitting, standing, walk, run, bicycle,
and car. The accuracy is 90.6%. Table V shows a summary of
the three studies using only the acceleration data. Compared
with the existing studies using acceleration data, the proposed
system can provide higher accuracy. Existing studies usually
use the traditional machine learning methods to detect trans-
portation methods. In our work, we have shown that CNNs
outperform traditional machine learning methods in detecting
transportation modes. In addition, among the traditional meth-
ods, random forest performs best in the accuracy metric instead
of other ones used in the existing works.

In order to make these methods [3], [29] comparable
with our model, we reproduce these studies by extracting
the same features and applying the same machine learning
methods shown in the original papers. The parameters are
chosen via cross validation and grid search is used to finalize
the best parameters. We can see that our method can still
achieve the best performance with the help of the designed
CNN model. We can see the work from Manzoni et al. [6]
shows much lower performance than that reported in their
paper. This is because their data collection method is not
specified in the paper and their method only uses the fre-
quency features rather than combining time and frequency
features in other works, which definitely has worse perfor-
mance than the works combining time and frequency fea-
tures shown in Table IV. Thus it performs worst among
all methods.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on May 11,2020 at 21:01:13 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIANG et al.: DEEP LEARNING MODEL FOR TRANSPORTATION MODE DETECTION BASED ON SMARTPHONE SENSING DATA 9

TABLE V

SUMMARY OF PAST WORKS USING ACCELERATION TO DETECT TRANSPORTATION MODES

TABLE VI

CLASSIFICATION RESULTS COMPARING WITH RELATED

WORKS ON OUR DATASET

Recently deep learning is employed in the transportation
field [30]. Specifically, some studies employ deep learning
to detect transportation modes [8]–[10], [31]. All of these
studies use the data from GPS or other sensors, which are
not comparable to our study in terms of energy consumption.
In addition, Wang et al. [31] (74.1% in unknown number of
transportation modes) and Fang et al. [8] (95.43% in five
modes) use the deep neural network with fully-connected
layers to perform the detection while Vu et al. [9] (93.1%
in five modes) and Song et al. [10] (83.26% in five modes)
employ recurrent neural networks to discover the relation
among close samples. These works use the information from
other sensors, such as GPS and Gyro, which is different
from our work only using the accelerometer. None of them

considers to apply CNNs in detecting transportation modes.
In these works, all merge the motorised transportation modes
into one cluster. If we also conduct the merge, the accuracy
of our system can achieve 98%. In this paper, we show the
CNNs can be successfully applied in transportation mode
detection to achieve a high detection accuracy in detecting
seven transportation modes.

Some other related work may use other sensors and extra
information to detect transportation modes. A model based
on sensor data from accelerometer, gyroscope, magnetic field,
rotation vector, geomagnetic rotation vector, linear accelera-
tion, and uncalibrated versions where applicable, is proposed
in [32] to detect six transportation modes, including walk,
bike, MRT, bus, car and stationary. The model employs four
separate machine learning methods, gaussian naive bayes,
discriminant analysis, SVM and k-NN. It can achieve 96%
accuracy on average. Su et al. [33] propose an online SVM
model to detect six transportation modes on the data from
all motion sensors, including accelerometer, gravity sensor,
gyroscope, magnetometer, and barometer. They can achieve
an accuracy of 97.1%. Reddy et al. [18] propose a fusion
model with decision trees and Hidden Markov Model (HMM)
using GPS and accelerometer data to classify stationary, walk,
run, bicycle and motorized transportation. They achieve an
accuracy of 93.6%. Feng et al. [34] discover that combining

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on May 11,2020 at 21:01:13 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

GPS and accelerometer can achieve higher accuracy than using
GPS or accelerometer data only, and using accelerometer only
has a higher accuracy than using GPS only in their model.
Stenneth et al. [5] build a random forest model combining
GPS and Geographical Information System (GIS) to classify
stationary, walk, bicycle, car, bus, and train. They achieve
an accuracy of 93.5%. Note that our system can achieve an
accuracy of 94.48% using only accelerometer data.

Some other works detect users’ activities using extra
accelerometers or mobile devices. The work in [12] fuses the
data from 5 biaxial accelerometers fixed at 5 body parts to
recognize users’ activities, such as walking, sitting, standing
and running. A similar work [35] compares the performance of
the acceleration data from 6 body parts in recognizing stand-
ing, sitting, walking and so on. Another work [36] presents
a system to recognize the sitting, standing, lying and walking
by requiring a device fixed at users’ waists. But the above
works require extra accelerometers. Kwapisz et al. propose a
system in Android phones put in the front pants leg pocket
to recognize users’ 6 activities, such as sitting and walking
[1]. Lee et al. use an HMM model to classify the activities
[37] while Anguita et al. use a multiclass hardware-friendly
SVM [2]. A fusion system of motion sensors is proposed to
recognize physical activities in [38]. However, none of the
above work focuses on detecting users’ transportation modes
using deep learning models.

VII. CONCLUSION

In this paper, we propose a robust system on Android
smartphones to accurately detect users’ transportation modes
by employing the smartphone’s accelerometer. To the best
of our knowledge, this is the first system that utilizes con-
volutional neural networks to detect transportation modes
with the accelerometer only. In this system, the collected
data are processed by removing gravity and smoothing. The
acceleration magnitude is used to build a convolutional neural
network to recognize the corresponding transportation mode.
Extensive experiments verify that the proposed system outper-
forms the CNNs of other architectures and traditional machine
learning models. Our system can achieve an accuracy as
high as 94.48%, which also outperforms the existing studies.
Followup research aims to recognize more activities and build
a more robust architecture by considering the context-aware
information.

APPENDIX A
BACKGROUND ON CONVOLUTION, MAX-POOLING, AND

FULL-CONNECTION IN DEEP LEARNING

The convolutional operation makes the presence of a pattern
more important than the pattern’s position. It is a basic module
between two neural layers in a CNN. Units in a convolutional
layer are organized by feature maps, which aggregates local
patches in the feature map of the previous layer through a
set of weights. The set of weights is called a filter bank. All
units in a feature map share the same weights in a filter bank.
In a feature map, the filter bank shifts a fixed length of step
defined by the stride, to generate one unit. Different feature
maps have different filter banks. Fig. 9 shows an example on

Fig. 9. The visualization of the calculation in a convolutional layer. The
solid lines show how to generate the first feature map by the first filter
bank W1 and the lines of different colors correspond to different segments
from the previous layer. The dotted lines show the generation of the second
feature map.

how the calculation takes place in a convolutional layer. In
the figure, the feature map from the previous layer is denoted
by X , which is assumed to be a one-dimensional vector. The
collection of filter banks is denoted by W , where the index
j indicates the j th filter bank. Every filter bank generates
one feature map of the next layer by shifting a window on
the previous layer’s feature map. The shifting stride is pre-
defined, which splits X into multiple segments, X1, X2,...,
Xi , with the same size as the filter bank. The feature map
of the next layer from the j th filter bank is denoted by O j ,
which contains the sum of multiplication between all segments
in X and the filter bank. The value oi of the i th unit in the
feature map is the sum of values multiplied by the weights in
the filter,

o j,i =
∑

k

w j,k xi,k + b j . (13)

In the equation, xi,k and w j,k are elements in Xi and W j ,
respectively. b j is the bias for the unit. The value in a
unit is the sum of all weighted values in a corresponding
segment. The generated feature maps are used to gener-
ate the next layer’s feature map. Thus, in a convolutional
layer, three parameters need to be defined: the number of
filter banks, the shape of a filter bank, and the shape of
the stride.

The max pooling layer is used to pick out the salient values
from a local patch of units. It can reduce the dimensionality
by removing less important information in the feature map.
Specifically, the max pooling operation selects the max value
in a local patch of units and then the local patch shifts a
step with the stride size. Thus, it is required to define the
size of local patches and the stride’s size in a max pooling
layer.

The fully-connected layer is to connect all units in the
previous layer to all units in the next layer. In a fully-connected
layer, the number of units in the next layer is required to be
set as a hyperparameter.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on May 11,2020 at 21:01:13 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIANG et al.: DEEP LEARNING MODEL FOR TRANSPORTATION MODE DETECTION BASED ON SMARTPHONE SENSING DATA 11

TABLE VII

FEATURES IN TRADITIONAL METHODS

APPENDIX B
TRADITIONAL MACHINE LEARNING METHODS

We take the traditional machine learning methods, including
Bayes Classifiers, C4.5 Decision Tree, K-Nearest Neighbors,
Random Forest, Adaptive Boosting, Neural Network and Sup-
port Vector Machine, as the benchmarks for comparison [39].
In traditional machine learning methods, common features
adopted in previous works [3], [4], [39] are selected from
the training data to develop the models. The trained models
are subsequently used to classify new data. In the following,
the features and models in the traditional machine learning
methods are explained briefly.

A. Features

In every window, the features are selected in both time and
frequency domains, which are listed in Table VII, which are
usually widely employed as features in peer works. When
obtaining the features in the frequency domain, a window
function is applied to the data.

The data in a window are scaled by a window function
before they are transferred into the frequency domain. Win-
dow functions are shown effective in reducing the lobeside
effect [40]. A commonly-used window function, Hamming,
is employed in the system with the following formula,

wn = β − γ cos(
2πn

N
), (14)

where wn is the weight value in the window, β and γ are two
constants and n is an integer from 1 to N . N is the number
of samples in a window. By default, β is set to 0.54 and γ
is set to 0.46, which are used to balance the information loss
and reduce lobeside effect.

Till now, features in the traditional methods are obtained, but
different features have different scales [25]. The normalization
is applied on every feature in the data, which is the same
process as shown in Section IV-.5.

B. Traditional Classification Models

Several common traditional machine learning models are
adopted to classify the data. Brief introduction to every model
is given in the following paragraphs. Every model’s parameters
are finely tuned by 10-folder cross validation via grid search.
The parameters that perform best on the validation dataset are
chosen to evaluate on the test dataset.

1) Bayes Classifiers: Bayes classifiers are statistical classi-
fiers [41]. They predict an instance’s class by calculating the
probability that the instance belongs to each particular class
via the similarity of feature values. The simplest one in Bayes
classifiers is the Naive Bayes (NB), which assumes that all
features are uncorrelated [41]. It calculates the probability of
one instance X in one specific class C based on the Bayes’
Theorem,

P(C|X) = P(X |C)P(C)

P(X)
. (15)

In the equation, P(X) and P(C) are known priors. In the
assumption, the features are mutually independent, so P(X |C)
is the product of the probability of all features in one spe-
cific class. The instance is classified into the class with the
maximum probability. A more complicated Bayesian classifier
is Bayesian Networks (BNs) [42]. A Bayesian Network is
a directed acyclic graph, which is to build a graph by the
estimated correlation between features.

2) Decision Tree: The Decision Tree (DT) is to build a
classification tree. The tree structure is presented as a leaf
indicating a class and each node specifying some test on
a single feature value with the branch and subtree for the
possible outcome. To classify a case, it starts at the root and
moves through the tree until a leaf is encountered [41]. The
tree is split by information gain [43] and Gini index [44]. Only
one feature is used to split the tree at every node. One of the
most popular decision trees is C4.5 [41], which is used in this
paper for comparison.

3) K-Nearest Neighbors: The K-Nearest Neighbors (K-NN)
classifier is to classify an instance based on the closest
k nearest neighbors in the training data [45]. It is called
the lazy-learning algorithm, since its computation/overhead is
much lighter during learning than testing time. The closeness
between instances is defined as the distance, which is usually
Euclidean or Manhattan distance. Among the k nearest neigh-
bors, the instance is classified into the most common class,
which class that the most neighbors belong to [41], [42]. The
performance of K-NN may be affected by the choice of k.

4) Random Forest: The Random Forest (RF) method uses
ensembles of unpruned decision trees [46], [47]. A common
decision tree is usually pruned to avoid overfitting, but in
random forest, the decision trees are unpruned. It draws
bootstrap samples from the training data. It randomly chooses
a subset of features in the samples to build a complete decision
tree according to the samples. Multiple decision trees are built
with different samples in the same way. The classification
result is predicted by aggregating the classification results from
all trees.

5) Adaptive Boosting: The Adaptive Boosting (AB) is to
train multiple weak classifiers from subsets with the same
size. The final classification result is obtained by aggregating
the classifiers with weights. The weights are adaptive. If one
instance outside the subset in the training data is classified cor-
rectly, then the weight is reduced; otherwise it increases [48].

6) Neural Network: The Neural Network (NN) is a set of
connected input/output units in which a weight is associated
with each connection. A Neural network is usually composed

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on May 11,2020 at 21:01:13 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

of an input layer, one or more hidden layers and an output
layer. The data is received in the input layer and processed in
the hidden layers. The output layer produces the classification
results [41]. The network is built by updating weights via
backpropagation.

7) Support Vector Machine: The Support Vector
Machine (SVM) builds a hyperplane to separate two
data classes by maximizing the margin between two classes
and the hyperplane based on a cost function. The SVM is at
first outlined for linearly separable cases. A kernel function
is defined to transfer nonlinear features into linear ones with
high dimensions [41], [49]. The SVM classifies multiple
classes via training several SVMs on every two classes, or
every one class and another class including all the data in
the other classes. In this experiment, we use the “radial
basis function” as the kernel function. Gamma is 10 over the
number of features, and the decision function is “one-vs-one”.

REFERENCES

[1] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Activity recognition
using cell phone accelerometers,” ACM SIGKDD Explor. Newslett.,
vol. 12, no. 2, pp. 74–82, May 2011.

[2] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “Human
activity recognition on smartphones using a multiclass hardware-friendly
support vector machine,” in Ambient Assisted Living and Home Care.
Vitoria-Gasteiz, Spain: Springer, Dec. 2012, pp. 216–223.

[3] S. Hemminki, P. Nurmi, and S. Tarkoma, “Accelerometer-based trans-
portation mode detection on smartphones,” in Proc. 11th ACM Int. Conf.
Embedded Netw. Sensor Syst., Roma, Italy, Nov. 2013, pp. 13:1–13:14.

[4] A. Jahangiri and H. A. Rakha, “Applying machine learning techniques to
transportation mode recognition using mobile phone sensor data,” IEEE
Trans. Intell. Transp. Syst., vol. 16, no. 5, pp. 2406–2417, Oct. 2015.

[5] L. Stenneth, O. Wolfson, P. S. Yu, and B. Xu, “Transportation mode
detection using mobile phones and GIS information,” in Proc. 19th ACM
SIGSPATIAL Int. Conf. Adv. Geograph. Inf. Syst., Chicago, IL, USA,
Nov. 2011, pp. 54–63.

[6] V. Manzoni, D. Maniloff, K. Kloeckl, and C. Ratti, “Transportation mode
identification and real-time Co2 emission estimation using smartphones,”
SENSEable City Lab, Massachusetts Inst. Technol., Cambridge, MA,
USA, Tech. Rep., 2010.

[7] P. Widhalm, P. Nitsche, and N. Brändie, “Transport mode detection
with realistic smartphone sensor data,” in Proc. 21st Int. Conf. Pattern
Recognit. (ICPR), Istanbul, Turkey, Nov. 2012, pp. 573–576.

[8] S.-H. Fang, Y.-X. Fei, Z. Xu, and Y. Tsao, “Learning transportation
modes from smartphone sensors based on deep neural network,” IEEE
Sensors J., vol. 17, no. 18, pp. 6111–6118, Sep. 2017.

[9] T. H. Vu, D. Le, and J. C. Wang, “Transportation mode detection on
mobile devices using recurrent nets,” in Proc. 24th ACM Int. Conf.
Multimedia, Amsterdam, The Netherlands, Oct. 2016, pp. 392–396.

[10] X. Song, H. Kanasugi, and R. Shibasaki, “Deeptransport: Prediction and
simulation of human mobility and transportation mode at a citywide
level,” in Proc. 25th Int. Joint Conf. Artif. Intell., New York, NY, USA,
Jul. 2016, pp. 2618–2624.

[11] Google-Android. (2017). Motion Sensors. Accessed: Aug. 2017.
[Online]. Available: https://developer.android.com/guide/topics/sensors/
sensors_motion.html

[12] L. Bao and S. S. Intille, “Activity recognition from user-annotated
acceleration data,” in Pervasive Computing. Tokyo, Japan: Springer,
Sep. 2004, pp. 1–17.

[13] B. Nham, K. Siangliulue, and S. Yeung, “Predicting mode of transport
from iPhone accelerometer data,” Mach. Learn. Final Projects, Stanford
Univ., Stanford, CA, USA, Tech. Rep., Dec. 2008.

[14] Google-Android. (2017). Sensor Event. Accessed: Aug. 2017. [Online].
Available: https://developer.android.com/reference/android/hardware/
SensorEvent.html

[15] J. Karki, “Active low-pass filter design,” Texas Instrum., Dallas, TX,
USA, Appl. Rep. SLOA049B, Sep. 2000.

[16] Google-Android. (2017). Android Accelerometer. Accessed: Aug. 2017.
[Online]. Available: http://www.kircherelectronics.com/blog/index.php/
11-android/sensors/10-low-pass-filter-linear-acceleration

[17] A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data
by simplified least squares procedures,” Anal. Chem., vol. 36, no. 8,
pp. 1627–1639, Jul. 1964.

[18] S. Reddym, M. Mun, J. Burke, D. Estrin, M. Hansen, and Srivastava,
“Using mobile phones to determine transportation modes,” ACM Trans.
Sensor Netw., vol. 6, no. 2, pp. 13-1–13-27, Feb. 2010.

[19] I. J. Good, “The interaction algorithm and practical Fourier analysis,”
J. Roy. Stat. Soc., B (Methodol.), vol. 20, no. 2, pp. 361–372, Jan. 1958.

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., Stateline, NV, USA, Dec. 2012, pp. 1097–1105.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rec-
tifiers: Surpassing human-level performance on ImageNet classifica-
tion,” in Proc. Int. Conf. Comput. Vis., Santiago, Chile, Dec. 2015,
pp. 1026–1034.

[22] S. Wager, S. Wang, and P. S. Liang, “Dropout training as adaptive
regularization,” in Proc. Adv. Neural Inf. Process. Syst., Stateline, NV,
USA, Dec. 2013, pp. 351–359.

[23] D. P. Kingma and J. Ba, “Adam: A method for stochas-
tic optimization,” Dec. 2014, arXiv:1412.6980. [Online]. Available:
https://arxiv.org/abs/1412.6980

[24] S. Ruder, “An overview of gradient descent optimization
algorithms,” Sep. 2016, arXiv:1609.04747. [Online]. Available:
https://arxiv.org/abs/1609.04747

[25] X. Liang, J. Tian, X. Ding, and G. Wang, “A risk and similarity aware
application recommender system,” J. Comput. Inf. Technol., vol. 23,
no. 4, pp. 303–315, 2015.

[26] M. Abadi et al., “TensorFlow: Large-scale machine learning on hetero-
geneous distributed systems,” Mar. 2016, arXiv:1603.04467. [Online].
Available: https://arxiv.org/abs/1603.04467

[27] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining:
Practical Machine Learning Tools and Techniques. San Mateo, CA,
USA: Morgan Kaufmann, 2016.

[28] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[29] J. Yang, “Toward physical activity diary: Motion recognition using
simple acceleration features with mobile phones,” in Proc. 1st ACM
Int. Workshop Interact. Multimedia Consum. Electron., Beijing, China,
Oct. 2009, pp. 1–10.

[30] X. Liang, X. Du, G. Wang, and Z. Han, “A deep reinforcement learning
network for traffic light cycle control,” IEEE Trans. Veh. Technol.,
vol. 68, no. 2, pp. 1243–1253, Feb. 2019.

[31] H. Wang, G. Liu, J. Duan, and L. Zhang, “Detecting transportation
modes using deep neural network,” IEICE Trans. Inf. Syst., vol. 100,
no. 5, pp. 1132–1135, May 2017.

[32] M. Kodyš, P. Oliver, J. Bellmunt, and M. Mokhtari, “Human urban
mobility classification in AAL deployments using mobile devices,” in
Proc. 19th Int. Conf. Inf. Integr. Web-Based Appl. Services, Salzburg,
Austria, Nov. 2017, pp. 311–319.

[33] X. Su, H. Caceres, H. Tong, and Q. He, “Online travel mode identifica-
tion using smartphones with battery saving considerations,” IEEE Trans.
Intell. Transp. Syst., vol. 17, no. 10, pp. 2921–2934, Oct. 2016.

[34] T. Feng and H. J. P. Timmermans, “Transportation mode recognition
using GPS and accelerometer data,” Transp. Res. C, Emerg. Technol.,
vol. 37, pp. 118–130, Dec. 2013.

[35] U. Maurer, A. Smailagic, D. P. Siewiorek, and M. Deisher, “Activity
recognition and monitoring using multiple sensors on different body
positions,” in Proc. Int. Workshop Wearable Implantable Body Sensor
Netw. (BSN), Cambridge, MA, USA, Apr. 2006, p. 4 and 116.

[36] F. R. Allen, E. Ambikairajah, N. H. Lovell, and B. G. Celler, “An adapted
Gaussian mixture model approach to accelerometry-based movement
classification using time-domain features,” in Proc. Int. Conf. IEEE Eng.
Med. Biol. Soc., New York, NY, USA, Aug./Sep. 2006, pp. 3600–3603.

[37] Y.-S. Lee and S.-B. Cho, “Activity recognition using hierarchical hidden
Markov models on a smartphone with 3d accelerometer,” in Hybrid
Artificial Intelligent Systems. Wrocław, Poland: Springer, May 2011,
pp. 460–467.

[38] M. Shoaib, S. Bosch, O. D. Incel, H. Scholten, and P. J. M. Havinga,
“Fusion of smartphone motion sensors for physical activity recognition,”
Sensors, vol. 14, no. 6, pp. 10146–10176, Jun. 2014.

[39] X. Liang and G. Wang, “A convolutional neural network for transporta-
tion mode detection based on smartphone platform,” in Proc. IEEE Int.
Conf. Mobile Ad Hoc Sensor Syst., Oct. 2017, pp. 338–342.

[40] A. H. Nuttall, “Some windows with very good sidelobe behavior,” IEEE
Trans. Acoust., Speech, Signal Process., vol. ASSP-29, no. 1, pp. 84–91,
Feb. 1981.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on May 11,2020 at 21:01:13 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIANG et al.: DEEP LEARNING MODEL FOR TRANSPORTATION MODE DETECTION BASED ON SMARTPHONE SENSING DATA 13

[41] H. Bhavsar and A. Ganatra, “A comparative study of training algorithms
for supervised machine learning,” Int. J. Soft Comput. Eng., vol. 2, no. 4,
pp. 74–81, Sep. 2012.

[42] T. N. Phyu, “Survey of classification techniques in data mining,” in
Proc. Int. MultiConf. Eng. Comput. Sci., Hong Kong, vol. 1, Mar. 2009,
pp. 1–5.

[43] R. A. Hunt, “On L(p, q) spaces,” Enseign. Math, vol. 12, no. 2,
pp. 249–276, 1966.

[44] R. I. Lerman and S. Yitzhaki, “A note on the calculation and interpre-
tation of the Gini index,” Econ. Lett., vol. 15, nos. 3–4, pp. 363–368,
1984.

[45] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE
Trans. Inf. Theory, vol. IT-13, no. 1, pp. 21–27, Jan. 1967.

[46] T. K. Ho, “Random decision forests,” in Proc. 3rd Int. Conf. Document
Anal. Recognit., vol. 1, Aug. 1995, pp. 278–282.

[47] V. Svetnik, A. Liaw, C. Tong, J. C. Culberson, R. P. Sheridan, and
B. P. Feuston, “Random forest: A classification and regression tool for
compound classification and QSAR modeling,” J. Chem. Inf. Comput.
Sci., vol. 43, no. 6, pp. 1947–1958, Nov. 2003.

[48] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” J. Comput. Syst. Sci.,
vol. 55, no. 1, pp. 119–139, Aug. 1997.

[49] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.,
vol. 20, no. 3, pp. 273–297, 1995.

Xiaoyuan Liang received the B.S. degree in com-
puter science and technology from the Harbin
Institute of Technology, China, in June 2013,
and the Ph.D. degree from the Computer Science
Department, New Jersey Institute of Technology,
in August 2019. He is currently a Research Scientist
at Facebook. His research interests include deep
learning, data mining, and vehicular networks.

Yuchuan Zhang is currently pursuing the master’s
degree from NJIT. He currently works on Micros-
trategy as a Software Engineer Big Data Engine
Team. He works on data preparation recommenda-
tion and data analysis recommendation. Previously,
he researched on mobile computing, smart trans-
portation, and data mining at internet laboratory of
NJIT.

Guiling (Grace) Wang received the B.S. degree in
software from Nankai University, Tianjin, China, and
the Ph.D. degree in computer science and engineer-
ing and a minor in statistics from The Pennsylvania
State University in May 2006. She is currently a
Professor with the Yingwu College of Computing
Sciences. She also holds a joint appointment at the
MT School of Management. In July 2006, she joined
NJIT as an Assistant Professor and was promoted to
an Associate Professor with tenure in June 2011. She
was promoted to a Full Professor in June 2016 in

her 30s. Her research interests include deep learning applications, blockchain
technologies, intelligent transportation, and mobile computing.

Songhua Xu received the M.S., M.Phil., and
Ph.D. degrees in computer science from Yale
University. He is currently an Assistant Professor
with the Information Systems Department, New
Jersey Institute of Technology. His primary
research interests include information retrieval
and management, web search and data mining,
innovative applications of AI, and intelligent
systems for biomedical applications. He also
has secondary research interests spanning across
visual computing, multimedia, human–computer

interaction, computer graphics, visualization, as well as digital arts and design.
He is particularly passionate about building human-centered applications that
benefit people and society through advanced computing techniques.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on May 11,2020 at 21:01:13 UTC from IEEE Xplore. Restrictions apply.

