LITERATURE REVIEW OF COLLABORATIVE PROBLEM SOLVING AND GROUPWARE IN THE SOFTWARE DEVELOPMENT DOMAIN

State of the Art Review Paper

Joanna DeFranco-Tommarello

New Jersey Institute of Technology (NJIT)

University Heights

Newark, NJ 07102-1982

6INTRODUCTION

1. COLLABORATIVE PROBLEM SOLVING
9
1.1 Individual Problem Solving and Decision Making
9
1.2 Collaborative Problem Solving Models
13
1.2.1 Overview of Collaborative Problem-Solving Models
19
1.3 General Groupware Theory
21
1.4 Group Cognition
32
1.5
Group Sociology, Psychology and Dynamics
34
1.6
Group or Team Structure
37
2.
GROUPWARE SYSTEMS
40
2.1 Major Groupware Systems
40
2.1.1 Lotus Notes
40
2.1.2 Groove
52
2.1.3 Rational Rose
63
2.1.3.1 Rational Unified Process Case Study
70
2.1.3.2 Rational Requisite Pro Case Study
78
2.1.4 Group System
87
2.1.5 Together
97
2.1.6 Doors
98
2.1.7 WikiWeb
102
2.2. General Groupware Tools
103
2.3 Groupware Tools for Problem-Solving and Software Development
105
2.3.1 Collaborative Problem Solving Tools
106
2.3.2 Collaborative Software Development Environments
108
2.4. Summary
111
3. CRITIQUE OF EXISTING APPROACHES
114
3.1 Functional Weaknesses and Practical Deficiencies
114
3.1.1 Models
114
3.1.2 Tools
117
3.1.2.1 Collaborative Problem Solving Tools
117
3.1.2.2 Collaborative Software Development Tools
119
3.2 Absence of Psychological and Sociological Group Problem Solving Issues
123
4. SUMMARY
125
5. REFERENCES
129

 LIST OF FIGURES

22Figure 1: Workgroup Support Offered by Groupware

41Figure 2: Notes R5 Welcome Page

42Figure 3: Page Options Window

43Figure 4: Notes Browser Tool

44Figure 5: Data Base Panel

45Figure 6: A database content example

46Figure 7: To-Do Tool example

47Figure 8: To-Do item detail

48Figure 9: Mail Tool

49Figure 10: Calendar Tool

50Figure 11: Address book

54Figure 12: Groove's Start-up Window

55Figure 13: Initial project workspace window

58Figure 14: Example of discussion, conversation, and chat tools

59Figure 15: Documents Tool

60Figure 16: Brainstorming Session

61Figure 17: Schedule Tool

62Figure 18: Event details occurring on March 7th

65Figure 19: Rose GUI

66Figure 20: Use Case View example

67Figure 21: Logical View Example

68Figure 22: Component View Example

69Figure 23: Deployment View Example

71Figure 24: RUP architecture

72Figure 25: Main web page of example project

74Figure 26: Software Architecture Artifact Template

76Figure 27: Example Project Members link

78Figure 28: Tool Palette Window

79Figure 29: View Workplace Window

80Figure 30: Attribute Matrix Example

81Figure 31: Traceability Matrix Example

81Figure 32: Traceability Tree Example

82Figure 33: New Project Window

83Figure 34: Project Contents Window

84Figure 35: Requirement Selection Window

85Figure 36: Requirement Properties Window

86Figure 37: Discussion Window

88Figure 38: Main GroupSystems Screen

89Figure 39: Agenda Screen

90Figure 40: Brainstorming Tool

91Figure 41: Voting Example

92Figure 42: Whiteboard Tool

93Figure 43: Handouts Tool

94Figure 44: Opinion Tool

95Figure 45: Briefcase Tool

96Figure 46: Log Tool

99Figure 47: Main Screen

99Figure 48: Project Window

100Figure 49: Example Attribute View

101Figure 50: Example Hierarchies View

LIST OF TABLES

20Table 1: Summary of Collaborative Problem Solving (PS) and Decision Making (DM) Models

113Table 2: Summary of Collaborative Problem Solving Tools

114Table 3: Summary of Software Development Tools

LITERATURE REVIEW IN COLLABORATIVE PROBLEM SOLVING AND GROUPWARE IN THE SOFTWARE DEVELOPMENT DOMAIN

INTRODUCTION
Problem solving is essential to software development. Indeed many of the basic processes that are the backbone of software development can be viewed as standard problem solving processes, ranging from requirements analysis, specification, and design to testing or verification (Deek, 1999; Deek, 1997). As software development has increased in complexity, an additional factor has grown in importance: collaboration. In fact, the increasing complexity of applications has necessitated the use of teams or groups to develop software because it is infeasible for individuals to develop large software systems with appropriate expediency or levels of quality. This review will focus on research and development on collaborative or group problem solving in the area of software development with the objective of identifying important open issues and avenues for advancing both theory and practice.

The contemporary computing professional works in an environment where programs are thousands or millions of lines long, are often extensively modified and maintained rather than constructed, are manipulated in a tool-rich environment, and where work is usually a team effort (Mulder, Haines, Prey & Lidtke, 1995). Computer scientists are not well prepared for this contemporary environment according to Prey (1996) because their preparatory training usually focuses on the construction of small programs (programming-in-the-small) and provides little experience in complex software development. In contrast, the development of large systems in an efficient and timely manner requires a team effort, and the more complicated the problem, the larger the team needed to solve it. Another contributing factor to the need for team development is that domain-specific expertise tends to be localized and geographically distributed. Studies have shown that, particularly when such developers are dispersed, their success depends critically on their ability to use effective groupware (Nunamaker, 1999). Such factors have made collaboration in systems development a necessity, not merely a technically feasible option. The emergence of the World Wide Web has fortunately made geographically distributed collaborative systems technologically feasible in a way that was difficult or impossible until recently. We shall use the term groupware to refer to the kind of software environments needed to support such a team, whose members collaborate over a network (Zwass, 1998). Groupware systems are intended to provide a team a shared workspace, despite being separated spatially and temporarily. Groupware or collaborative systems can be instrumental in alleviating the logistical difficulties that are associated with the application of distributed expertise. Indeed, the next generation of development processes is expected to focus on the effective integration of distributed expertise.

Experimental studies of both experienced programmers and novices have established the positive impact of collaboration. Wilson, Hoskin, and Nosek (1993) conducted a study to determine if experience with collaboration could benefit beginning programmers performing problem-solving/programming tasks. The experimental results provided positive support for the hypothesis that collaborative efforts could improve the problem-solving required in programming tasks. The experiment compared a control group of novice programmers, solving a software problem individually, with another group that allowed partners to communicate freely. The results demonstrated that even such simple collaboration enhanced the problem-solving performance of the novice programmer. The study also found evidence that an individual’s ability had little overall effect on team performance, a phenomenon they claim occurred because the collaborative effort counterbalances individual deficiencies. The study also showed evidence that the collaboration provided the programmers confidence in the solution and enhanced their enjoyment of the problem solving process. Collaborative interactions appear to help beginning programmers analyze and model problems, and may also help them master the analytical skills required by such tasks (Wilson, Hoskin & Nosek, 1993). Other controlled experimental studies indicate it is worthwhile to integrate collaborative activities even at the early stages of problem solving and programming training (Sabin & Sabin, 1994). Experiments with experienced software engineers (Nosek, 1998) also demonstrate that collaboration improves the problem solving process. Indeed, all team projects evaluated in the study outperformed comparable individually implemented projects, while at the same time team members were more personally satisfied with their work and had greater confidence in their solutions.

The overall objective of this review is to identify ways in which collaboration can facilitate the software development process. The review will examine collaborative problem solving and groupware in the software development domain, focusing on four areas: group problem solving, individual problem solving, groupware, and group psychology/sociology, including: group and individual problem solving models and tools, groupware systems, group cognition, and team dynamics. We will highlight the contributions and outstanding issues in group problem solving and group software development, with the objective of identifying an area of research that will represent an advance in the state of the art.

1. COLLABORATIVE PROBLEM SOLVING

1.1 Individual Problem Solving and Decision Making

Problem solving is important in many fields and both domain-specific and generic problem solving methods have been developed over the years (Deek, 1997; Deek, Turoff, & McHugh, 1999). Most collaborative problem solving models are based on individual problem solving methods, so it is appropriate to begin our discussion with a consideration of individual problem solving.

Problem solving is central to software development, and a variety of domain-specific problem solving models for software development have been developed. The models are intended to support individuals in applying basic problem solving concepts in programming. They are intended to ameliorate recognized deficiencies in problem solving strategies and tactical knowledge, as well as more widely recognized difficulties with the syntax, semantics, and pragmatics of programming language constructs (Deek, 1997; Deek & McHugh, 1999). Generally speaking, the comprehension of a problem requires the identification of the problem goal, givens, unknowns, conditions, constraints, and their relationships, and problem solution invariably requires some form of problem partitioning. Deek (1997) extensively reviews existing problem solving methodologies and develops a comprehensive problem solving model which integrates general problem solving methodology with program development tasks, and with the cognitive knowledge and skills needed at each stage of the process. The integrated model, called the Dual Common Model (DCM), identifies for each problem solving/program development task, the specific cognitive techniques required to accomplish that task. A brief overview of the problem solving tasks is as follows:
1. Formulating the problem: This stage leads to an organized representation of all relevant problem information: the goal, givens, unknowns, conditions and problem constraints.

2. Planning the solution: During this stage, the user identifies and evaluates or assesses alternative possible solutions, and also partitions the problem by refining the overall problem goal into sub-goals.

3. Designing the solution: This involves sequencing sub-goals, determining whether the sub-goals require further decomposition, establishing relationships among the various solution components and the associations between data and sub-goals.

4. Translation: At this stage, program development skills are used to translate the solution design into a coded solution.

5. Testing: At this stage the program is tested to verify that it meets the solution specifications.

6. Delivery: At this stage the solution and results are documented, presented or disseminated.

The Dual Common Model is heavily dependent on the classic work by the problem-solving mathematician and theorist George Polya (1945). Another seminal treatment of problem-solving was given by the Nobel prize-winner Herb Simon (1960) who identified four components of a successful problem solving process:

1. Intelligence: The ability to recognize the existence of a problem, gather information pertinent to the problem, and produce an accurate definition of what the problem is.

2. Design: Generate possible alternative solutions, including preliminary solution plans for each.

3. Choice: Select and implement a suitable solution from the identified alternatives.

4. Implementation: Put choice into effect and produce the solution.

In later work, Simon explored a problem-space model of problem solving which viewed a solution as a sequence of transformations between partial problem solution states (Newell & Simon, 1972). Solving a problem consisted in identifying a set of operators that completed the transformation from an initial state (problem definition) to a final goal state (problem solution).

A domain-specific model of problem solving in the context of organizational operation is described in Barber (1984). This model, called office semantics, analyses organizational processes with the objective of understanding the problem solving processes underlying the physical and mental activities that occur in the execution of organizational tasks. The office semantics model distinguishes between organizational and application knowledge. Organizational knowledge refers to an organization’s social structure, while application knowledge refers to an organizations products and processes. An instructive epistemological emphasis of office semantics is that the way in which a problem is solved is highly dependent on how information/knowledge about the problem is presented to the problem solver. It follows that to present this knowledge effectively, one should understand how individuals think about problems, as well as what it means to solve a problem. A problem solving methodology known to be effective in the domain of medical applications is Problem-Based Learning (PBL). This approach was introduced in the context of software engineering by McCracken and Waters (1999). They emphasized self-directed instruction in problem solving skills using large, not well-defined problems, with the objective of promoting an understanding not only of product-related issues but more especially of process-related principles.

Each of these problem solving models requires a decision about which one of a set of alternative solutions should be implemented. Such decision processes were studied by Mintzberg (1979) who identified the following typical stages:

1. Recognition: Recognize the need to initiate a decision process.

2. Diagnosis: Assess the situation.

3. Search: Find ready-made solutions.

4. Design: Develop custom-made solutions.

5. Screen: Evaluate the ready-made solutions.

6. Evaluation-choice: Choose a solution.

7. Authorization: If the problem solving occurs in an organizational context, then obtain approval for the decision, which may be from individuals who not explicitly involved in the problem-solving process itself.

Though decision-making is closely related to problem solving, distinctions must be made. Problem solving is a process which advances analytically from a current problem state to a desired goal state, while decision-making tends to emphasize a more synthetic approach whereby a desired goal is reached by a selection process that chooses from one of a set of possible, and perhaps pre-existing, alternative solutions (Huitt, 1992). One should also observe that there is a difference between problem-solving-like decision-making steps, and the process whereby those steps are achieved (Finnegan & O’Mahony, 1996).

1.2 Collaborative Problem Solving Models

A group that develops a plan for designing a system that will solve an existing problem is by definition engaging in collaborative problem solving. Collaborative groups appear able to deal with complex tasks more effectively than individuals, partly because groups automatically have a broader range of skills and abilities than individuals (Finnegan & O’Mahony, 1996). Despite this, studies indicate that group problem solving is intrinsically more complex than individual problem solving (XXX Finnegan & O’Mahony, 1996). It can introduce difficulties that are specifically group-related, such as an interaction environment that inhibits the free expression of ideas (Hoffman, 1965), participation biases, conflicts caused by interpersonal difficulties, or complications arising from the structure of the group. Overall, however, the benefits of collaboration in problem solving far outweigh its disadvantages (Hohmann, 1997). For example, one notable benefit is the ancillary improvement of human capital effected by collaboration, because the individuals involved in a group learn from the skills and abilities of the other group members (Prey, 1996). The need to articulate designs, critiques, and arguments to other group members also hones an individual’s technical, critical, and interpersonal skills (Guzdial et.al, 1996).

A collaborative problem solving model is an explicit methodology used to facilitate collaborative problem solving. A comprehensive such model will include not only generic problem-solving steps, domain-specific tasks, and requisite cognitive skills, but also the communication and coordination activities required by a collaborative environment. The collaborative problem solving method may be similar to an individual problem solving method. Indeed, in his important work on group software development, Hohmann (1997) observes that collaborative problem solving can be done using the very same problem solving methods that are used by individuals. Hohmann claims that while it is important for a group to explicitly choose and follow a problem solving method, and while group members should be familiar with the selected method, nonetheless, the method itself does not need to be designed specifically for group problem solving. Despite this laissez-faire approach to the chosen problem-solving method, Hohmann observes that the way in which a team will appropriate such a method in a collaborative environment, will differ substantially different from the way in which an individual will apply the same method.

The main distinguishing characteristic that differentiates group from individual problem solving in Hohmann’s model is the decisive role of communications in group problem solving. His collaborative model identifies several group-oriented processes including, distributing or assigning of tasks to individuals, coordinating team outcomes, and integrating solution components by subgroups. Partitioning tasks and subsequently coordinating these subdivided activities determines the communication requirements of the group. Various kinds of required communication processes can be distinguished, such as, each individual’s self-understanding of the problem to be solved must be shared with other group members. Hohmann emphasizes that the collaborative model should account for the possibly dynamic nature of group membership and its impact on communications, because group communications are affected every time the group membership changes. There are standard mechanisms for coordination and control, defined by the Software Institute Systems Engineering Capability Maturity Model (Hohmann, 1997), that support software development teams including: configuration management, outcome reviews, status monitoring, and in the case of more extended models of collaboration: customer interaction, method management, cost management and release packaging The following activities required by these mechanisms are worth noting in some detail because their social aspects are relevant to collaborative development (Hohmann, 1997):

1. Configuration Management: The process whereby outcomes: data models, requirements documents, etc are identified and agreed upon by the group members.

2. Outcome Reviews: Controlled reviews of the outcomes identified in configuration management, by a subgroup of the collaborative group, possibly supplemented by extra-group members. This is a critical component of the development feedback loop, and typically entails additional outcomes such as documentation of any required changes.

3. Status Monitoring: An ongoing step involving both the collaborative group and external management to ensure the project is on schedule and to determine actions in case of schedule slippage.

4. Customer Interaction: Communication and feedback between customer and developer is initiated.

5. Management of the Use of the Method: Adapting a pre-defined, off-the-shelf methodology to the problem at hand.

6. Managing Development Costs: Cost management is not only a management function, but collaboratively involves all group members, each of whom can contribute their own individual expertise to cost management.

7. Release Packaging: This entails collaboration between multiple groups. It involves the activities required on system completion in order to bring a product to the customer, and is required to ensure customer satisfaction.

An important aspect of group communications is how individuals interact in a group. The properties of a group that affect such communications and the impact of such interactions on group effectiveness can be examined using a cognitively-based analysis. Zhang (1998) describes such a framework for group problem solving that emphasizes how tasks are distributed across the individual group members, and interprets or views the group’s understanding of a problem as a distributed cognitive representation system. The cognitive process of problem decomposition, for example, can be considered not only in terms of its relation to the problem itself, but also explicitly considered in relation to how a problem can best be partitioned with respect to the ultimate assignment of the partitioned tasks to individuals in the group. Further research that emphasizes the implications of coordination for group communication is (Kies, Williges, & Rosson, 1998). Similarly, (Ellis, Gibbs & Rein, 1991) underscore that the communication and collaboration of a group is enhanced if its activities are effectively coordinated.

Group problem solving can be interpreted in terms of cooperative decision making, a classic model of which was adumbrated by Simon (1997) requiring:

1. Plan Development: A plan of behavior for the group is developed for all the members of a group, not merely a set of individual plans for each member.

2. Plan Communication: This plan is effectively communicated to each group member.

3. Behavior Modification: Each individual group member must commit to the plan in the sense of agreeing to permit their behavior to be guided by the plan.

The objective of this kind of contractually agreed upon group plan is to relieve individual members of the group of the task from uncertainties in predicting the behavior of other members.

A logical/qualitative method for facilitating joint decision making and alleviating conflict resolution was developed in Wong (1994). The approach is applicable to the kind of cooperation required of software engineers on a development project. Wong’s model has three stages: identification, processing, and negotiation. The identification stage entails first identifying a decision agenda using priority-ordered criteria, then identifying the agents concerned with each criterion, where the term agent refers to the person or system responsible for a problem solving step. Competing alternatives are identified and the relationships among the alternatives are determined. The processing stage develops a set of so-called preference expressions for each criterion in the decision agenda. These preference expressions are merely ordering relations for pairs of alternatives. The alternatives are then rank ordered to determine a recommended solution. A final negotiation stage then follows where the agents negotiate conflicts.

A model of group problem solving formulated by empirically observing group decision making behavior in environments which lay outside scientific/engineering/software development contexts was developed by Finnegan and O’Mahony (1996). This behaviorally-based model empirically recognized the same kind of problem-solving processes that have been systematically and explicitly articulated for engineering contexts. Groups progressed from an initial problem realization to a solution choice by a process dominated by communication of information and group collaboration, and needed significant levels of coordination and control throughout the decision making process. The initial, problem realization stage was typically initiated by a specialized group or by organization management. The next stage, planning, required coordination of subgroups. A subsequent information search stage was followed by group discussion of the information discovered about the problem. Subsequently, alternatives were identified and evaluated, and a preferred alternative selected, followed by validating, marketing or selling of the alternative to other groups, and ultimately implementation of the selected solution. The process is iterative, adapting to new requirements as they arise, reminiscent of user-centered software design in which a design is tested and redesigned through multiple iterations (Kies, Williges & Rosson, 1998).

 1.2.1 Overview of Collaborative Problem-Solving Models

We have addressed collaborative problem solving because it is at the very foundation of collaborative software development: when developing software an individual is designing a solution to a problem. Collaborative problem solving models are at an initial stage of development. Researchers have developed various models but their testing and implementation has not been extensive. Their utilization at both the industrial and the education level has been limited.

Table 1 highlights the collaborative models considered, all of which had the same objective –solving a problem or making a decision collaboratively.

We will use the models of Simon (1997) and Hohmann (1997) as points of reference. Simon’s (1960) influence in the field of problem solving has been seminal (Deek, 1997; Hohmann, 1997). Though Simon considered only collaborative decision making, the similarities with collaborative problem solving (Huitt, 1992) makes his collaborative decision making model an important point of reference for the collaborative problem solving models we have described. Hohmann’s (1997) model, on the other hand, is a useful point of reference because it is relatively comprehensive and closely related to some of Simon’s most influential work. A composite list of attributes from Hohmann’s (1997) and Simon’s (1960) models follows.

(Identification of tasks: The objective of this task is to correctly identify the components of the problem, which can happen only if the problem solution strategy is fully understood. This step also helps confirm the group’s understanding of the problem. Hohmann (1997) indicates that the individuals who comprise the team are best prepared to accomplish this task, as opposed to an external agent.

(Distribution of tasks: The components of the problem solution should be distributed among the individual group members. This can be done by election, elimination or direct assignment (Hohmann, 1997). If group members are aware of each other’s skill, distribution by direct assignment may be straightforward. If election is used, it is important for each group member to be explicit about the component they would like to execute to ensure successful implementation. Assignment by elimination occurs when there is only a single component left and no one yet assigned to the component.

(Coordinating Outcomes: Coordination is an on going task in which each member of the group should participate. Groups have been found to need a great deal of control and coordination to enable members to collaborate effectively (Finnegan & O’Mahony, 1996). Such coordination optimizes the likelihood that the group will work harmoniously towards the goal. Many of the tasks of problem solving need to be coordinated: distributing tasks, integration of the sub problems, design discussions etc so coordination is essential for successful development (Hohmann, 1997).

(Integrating Solutions: Since the components identified in the solution planning stage need to be integrated, an integration plan needs to be developed, beginning with the order of the solution integration.

(Plan Development: The development plan of behavior is an integrated plan for all the members of the group, not just a set of individual plans for each member (Simon, 1997).

(Communication Plan: The development plan needs to be communicated to each member (Simon, 1997).

(Behavior Modification: Iindividual members must be willing to allow their behavior to be guided by the plan (Simon, 1997).

	Model Name or Author
	Id Tasks
	Distribution of Tasks
	Coordinating Outcomes
	Integrating Solutions
	Plan Development
	Communication

Plan
	Behavior Modification

	Hohmann (PS)
	All group members contribute.
	Election, elimination and direct assignment.
	Implements status ongoing monitoring and formal reviews.
	Develop integration plan
	Identify and distribute tasks.
	Make sure entire group understands problem.
	Group should develop and follow norms.

	Simon (DM)
	
	
	
	
	Develop plan for entire group.
	Make sure entire group understands problem.
	Group should develop and follow norms.

	Finnegan and O’Mahony (DM)
	
	
	Planning Stage. Coordination plan developed.
	
	Planning Stage. Process completed by a special group.
	Established in Planning stage.
	

	Wong (DM)
	Id important criteria.
	
	Conflict resolution (negotiation) scheme.
	
	Id competing alternatives
	Conflict resolution
	

	Zhang (PS)
	Explicit decomposition of tasks.
	Decomposition into individual representations.
	
	
	
	Emphasis on the interactions among individual representations.
	

	PBL (PS)
	
	
	Meet with group facilitator once a week.
	
	
	
	

Table 1: Summary of Collaborative Problem Solving (PS) and Decision Making (DM) Models

1.3 General Groupware Theory

Groupware refers to software systems intended to support group interaction and collaborative teamwork. These systems range from electronic meeting rooms to workflow systems, such as a strategic information system used in project planning and implementation. As previously indicated, the globalization of business implies that team members are often geographically dispersed, and a dramatic growth in telecommuting and off-site consulting has accelerated the need for dispersed meetings (Nunamaker, 1999). Groupware is an enabling technology for such environments and reflects a fundamental change in emphasis from using computers to solve problems to using computers to facilitate human interaction (Ellis, Gibbs & Rein, 1991). The principle functions of groupware are information sharing, document authoring, messaging, computer conferencing, group calendars, project management, and support for team building (Zwass, 1998). Team building and project management tools provide coordination support and facilitate collaboration and communication by information sharing/document authoring and messaging/conferencing tools. A simple diagrammatic view is shown in Figure 1.

Figure 1: Workgroup Support Offered by Groupware

[image: image50.png]
Groupware systems can be characterized as synchronous, asynchronous, or a combination of both. Synchronous groupware systems run in real time and support group communication and collaboration using such techniques as instant messaging. An example is an electronic meeting system used for brainstorming. In asynchronous systems, users access stored messages or send messages to be viewed at a later time, such as email. An example of a system with both asynchronous and synchronous features is a system with a message board and a chat feature. An analysis of how synchronous and asynchronous approaches effect communication behavior differently was done by Hiltz and Turoff (1985). For example, in asynchronous systems, communications tend to be lengthy with multiple, simultaneous discussion threads, in contrast to synchronous systems where participants tend to focus on a single topic at a time. A different kind of distinction between synchronous and asynchronous systems is given by Huang and Mak (2001) who differentiate between systems not just on the basis of the temporal characteristics of communications, but on how tasks and information are shared. They define asynchronous systems as groupware systems where individually allocated tasks and decisions are done separately and not shared until they are completed. In contrast, synchronous systems provide a completely shared workspace, continually accessible to all users, where work products are built and critiqued in a shared manner, with minimal work separation, and subsequently integrated via joint team decisions.

A model of groupware that has frequently been used to represent both synchronous and asynchronous systems is the Computer Supported Cooperative Work (CSCW) framework, developed by Dix and Beale (1996). The model distinguishes between participants in the collaborative process and the collaborative work artifacts, and explicitly emphasizes the need to develop a joint understanding of the problem by the participants. A well-known type of groupware is the Group Decision Support System (GDSS) which is used to facilitate such group processes as brainstorming, reaching consensus by voting, surveying experts, and negotiation: where parties resolve conflicting interests by communication (Zwass, 1998). For example, brainstorming in a GDSS entails a group of networked participants addressing a problem, with participants generating and posting their ideas synchronously, then voting on the ideas using the system in real-time. This not only saves time because of the parallel processing it allows, but also permits more ideas to be presented then in a traditional face-to-face meeting. Certain affective and behavioral side effects are also minimized. For example, individuals cannot talk over one another and since self-consciousness is less of an issue in such an environment, individuals are more inclined to present ideas. Thus, GDSS support organized human parallel processing, allow broader input, and promote more representative participation and discussion than in a typical face-to-face environment (Zwass, 1998).

An interesting general framework for collaborative systems was considered in Huang and Mak (2001) who distinguished between Computer Supported Collaborative Work (CSCW) as opposed to workflow management. In CSCW all interactions are between human members. In workflow management, on the other hand, the process agents are either human or software agents. Architecture for such a system of communicating agents in a cooperative planning environment is described in Fuliang and Wu (1999) and includes software agents dedicated to such tasks as addressing domain-level conflict recognition and resolution.

1.3.1 Organizational Factors in Collaborative Environments

The organizational, motivational, political and economic factors that are central to group activity are rarely explicitly addressed in the design of collaborative systems. Grudin (1994) identifies eight impediments to the development and use of groupware systems. These difficulties and possible resolutions follow:

1. Perceived disparity: The perceived disparity is between the effort required in collaborative environments versus the benefits that are perceived to accrue from their use.

2. Critical mass problem: A collaborative tool may not be used because it does not appear to be to the advantage of any single individual in the prospective collaborative group.

3. Disruption of social processes: Collaborative environments tend to level the playing field, violating in-place social hierarchies.

4. Exception handling: Groupware systems may not be flexible enough to accommodate the exception handling and improvisation required by most group activity.

5. Unobtrusive accessibility: The most frequently used features should be readily accessible, not hidden by being integrated with less frequently used features.

6. Difficulty of evaluation: Groupware is more difficult to evaluate then systems used by individuals because they are not affected by the backgrounds or personalities of other group members. Lab situations cannot reliably capture complex but important social, motivational, economic, and political dynamics of groups.

7. Failure of intuition: Systems are intuitively developed based on the needs of a subset of the users or based on experience from developing single user applications. Developers fail to recognize that groupware applications require participation from a range of users.

8. Adoption or organizational integration process: As with any system, organizational integration is critical, and careful efforts must be made to ensure groupware is accepted on an organizational wide basis.

All of these represent serious challenges to the successful design of groupware. The perceived disparity and critical mass problems can be addressed by educating potential users to the advantages of the systems. Equally critical is enhancing self-efficacy, defined in cognitive theory as the individuals’ belief that they are capable of effectively using such technologies (Compeau, Higgins, & Huff, 1999). Nidamarthi et al. (2001) make related observations by underscoring that the role of collaborative environments should be to supplement rather than replace existing methods for communication, which is related to the requirement that collaborative environments should not add an undo technological burden on team members. Nidamarthi et al. (2001) additionally emphasize that the media used for collaborative communication should not “destabilize” existing effective traditional means of communication, such as simple pencil and paper calculations, a criterion which has important implications for the specification of the technological implementation of collaborative systems. Regarding social process disruption, it is worth observing that computerized collaborative environments tend to reflect implicit, built-in design assumptions which may well conflict with existing roles or responsibilities defined by an organization (Siemieniuch, Sinclair, & Vaughan, 1999). Since groups dynamically adapt to collaborative environments, the collaborative framework and environment must also be flexible enough to allow groups to develop their own norms for interaction (Majchrzak, Rice, Malhotra, King, & Ba, 2000). Flexible exception handling is especially relevant to the present thesis because improvisation and group cognition go hand and hand. Cognition is the process behind knowledge creation. Since cognitive processes, problem-solving methodologies notwithstanding, are often unstructured and spontaneous, a group-cognitive-model/groupware environment must balance the need to structure group activities with the need to support improvisation.

Cognitive effects of collaboration in asynchronous environments were examined by Dufner et. al. (1999) who observed positive effects on participants of having time to reflect on problems during asynchronous communication. Furthermore, more alternatives could be identified and explored because asynchronous meetings took place over extended periods of time. This research stressed the importance of coordination to keep group members focused on the task at hand. To facilitate such coordination, group process structures and methods should be included in groupware tools. Even simple voting or meeting agenda tools assist in facilitating coordination among group members during the decision making process (Dufner, 1994).

Distributed learning is another benefit observed for collaborative environments (Tinzmann, 1990), including knowledge sharing between experts and novices and peer-oriented knowledge sharing among novices. Collaboration also facilitates heterogeneous grouping, enabling weaker participants to learn from the more experienced. Nonetheless, it remains essential to have a mediating agent for intervention, such as when a group seemed blocked or misdirected.

Fundamental requirements for collaborative systems were identified by.Hahn, Jarke, and Rose (1990). In particular, it is important to recognize group development as an organized social process consisting of interactions between group members. The system support for group interactions must accommodate customary collaborative techniques such as negotiation, commitment, and responsibility contracts. The system must reflect the social protocols that underlie group communication in terms of strategies and policies for argument exchange, contract assignment, decision making, etc. The system should also provide tools that support the domain knowledge of the underlying project, such as, in the case of software engineering languages for specification, design, implementation, and date modeling. We have already observed that one of the benefits of collaboration is the learning that occurs during the process. Learning processes are typically socially distributed, extending beyond individual cognition to include features both of the social environment and the domain. (Jarvela, 1999).

1.3.2 Groupware Theory for Software Development

Groupware reflects a change in emphasis from using the computer to solve problems to using the computer to facilitate human interaction (Ellis, Gibbs & Rein, 1991). It is a relatively new technology that is steadily earning a prominent place in today’s workforce. Seminal early work by Turoff (1984) documented that groupware systems such as the pioneering EIES system were very useful in enabling software developers to manage development in environments characterized by frequently changing design features. Turoff observed that such systems allowed developers to keep one another informed about what did or did not work, and were particularly beneficial at the problem solving stage of software development. Software development groupware refers to any system that allows a group of software developers to design software, collaboratively, in the same workspace. The increasing complexity of software applications makes such systems a practical necessity.

A key application of groupware technology is supporting the decentralization of software development tools (Hahn, Jarke, & Rose, 1990), though available software development groupware often pays rather more much attention to syntactical than to critical semantic issues, such as documenting a change in a specification or software but not documenting the reason for the change. In order to make groupware effective, issues of both collaboration and software development should be addressed. For example, software development groupware should integrate the submodels of software development (requirement analysis, work package planning, programming, etc.) under a composite formal model of software project management to ensure that transitions between submodels are under formal control. Of course, groupware is not only beneficial to geographically distributed workers, but also to local developers engaged in team problem solving, because groupware can assist decision making, such as through voting, keep track of software requirements, and provide supplemental means for effective communication.

The information needs of developers can be analyzed in an a priori manner, or by empirically observing the actual observed information requirements of practicing development teams. Herbsleb and Kuwana (1998) performed just such an empirical study to determine the kind of information software development teams required by videotaping development team meetings and analyzing the resulting meeting minutes. The types of questions the developers asked were used by the experimenters to identify and categorize the team’s information needs. Five specific areas where developers needed assistance emerged (Herbsleb & Kuwana, 1998):

1. Understanding the problem domain: General methods for understanding problem domains ranged from domain analysis and modeling, to mutual or self-guided instruction on the domain, to observing how other more experienced developers viewed the domain. This kind of domain understanding is a persistent issue at every development stage from requirements analysis to design.

2. Exploring detailed design: Computer-Supported Meeting Environments (CSME) are needed to effectively support collaborative detailed design, and CASE tools are required to support representation of the design.

3. Tracking: Systems should support design traceability, which refers to the ability to conveniently answer questions about specific functionalities.

4. Providing user scenarios: Typical user case scenarios are beneficial both at requirements definition and detailed design, and synchronous or asynchronous collaborative methods can be used to share such user case knowledge.

5. Functional definitions and interfaces: Systems should provide assistance in tracking and sharing functional definitions of modules and interfaces.

Though developers may perceive these as obvious requirements, it is nonetheless important to highlight their significance. For example, while (4) may seem trivial, it is germaine to a leading cause of runaway projects: misunderstanding changing software requirements. Runaway projects are defined by (Mahaney & Lederer, 1999) as ones that significantly exceed the original budget estimate while at the same time possibly providing significantly less than the originally intended functionality. They identify the leading cause of such projects as ineffective handling of dynamically changing requirements. Each of these five areas where support is needed can be aided by groupware systems that facilitate effective communications and information sharing.

Collaboration and management address common issues such as scheduling meetings, task allocation, and negotiation, and also share common difficulties such as interpersonal conflict management. Brereton et. al. (2000) used the similarity between collaborative and management activities in to analyze collaboration in distributed groups in university environments, where they focused on the effectiveness of different kinds of computer-mediated technologies in facilitating collaboration. The collaborative technologies they examined included audio, whiteboard, chat, and video. Whiteboard was used for synchronous annotation of shared documents. Audio, video and associated chat capabilities were used for general communication. Their evaluation found all these modalities to be useful.

1.4 Group Cognition

Fundamental to understanding software development is a consideration of the kind of thought processes developers use (Stacy & Macmillan, 1995). The cognitive processes required in individual problem solving and program development were extensively examined in (Deek, 1997) where they were formalized in the Dual Common Model presented there. Since the cognitive activities that occur in a group are even more varied and complex than those in individuals (Hohmann, 1997), it is still more essential to understand the role of such processes in group problem solving. Their complexity is compounded because one is faced not merely with individual cognitive activities, but with the interplay of cognitive activities among individuals.

In the context of software development, one particularly interesting cognitive effect is cognitive bias. Cognitive bias refers to the propensity of individuals to be consistent and predictable in their behavior with respect to the kind of errors they make. Such biases operate at both the individual and the group level. Various techniques have been proposed to reduce cognitive biases (Stacy and Macmillian, 1995) including obvious improvements such as using empirical as opposed to intuitive analysis, as well as less obvious strategies such as systematically seeking what is called dis-confirmatory information, or systematically recasting guidelines as trade-offs. For example, intuitive approaches, which refer to immediate cognition not reinforced by an explicit process, leave greater room for error than method-based or empirical approaches. Seeking dis-confirmatory information refers to the practice of asking negatively phrased empirical questions such as “How will I know if the feature does not work?” or “How will I know if this is not the cause of the problem? Finally, recasting one-sided guidelines as two-sided trade-offs refers to the practice, in the context of software engineering, of interpreting or applying guidelines by always applying and evaluating tradeoffs. These techniques reduce cognitive bias by moderating the cognitive impact of previous experiences, which cognition tends to bring to mind first, even though the previous experience may be irrelevant or invalid in the current situation.

A theory of group cognition developed by Nosek (1998) views group cognition as a coordinated, distributed cognitive process, the objective of which is to create a shared, distributed understanding of a problem at a team level. Though the importance of this area of research is increasing, information technologies are frequently not designed with the requirements of such teams in mind and suffer accordingly. Nosek calls the cognitive actions and interchanges that occur during collaborative problem solving group sensemaking. Nosek’s model identifies three conditions required to create this kind of knowledge in a problem solving group: distributed knowledge, distributed cognition, and coordinated cognitive processing among group members. Proper coordination of cognitive processing allows the members of a group to have comparable knowledge of a problem area. This research represents an attempt to determine the role of these effects in group collaboration..

1.5 Group Sociology, Psychology and Dynamics

Social science models have emerged as an important tool in understanding the impact of computers in the work environment. Sociological and psychological factors are especially significant in collaborative software development because of the intense interactions among software development group members. Since computer systems affect the social conditions of work groups, it is appropriate to incorporate social science models and methods into the development practices of software developers (Anderson, 1991). Anderson’s work is based on Bion’s model for human behavior in groups (Grinberg, Sor, & de Bianchedi, 1977) and indicates that understanding the behavior and actions of groups requires an awareness of the relevant psychological models because of the insights that can derive from a psychodynamic perspective. Anderson emphasizes several implications of Bion’s model related to social group issues that developers of groupware should pay attention to in order to produce effective groupware. These include: viewing groups as an interdependent collection of individuals and viewing the behavior of individual group members as manifestations of the group culture. He characterizes groups as operating in either work-group mode or basic-assumption mode. The basic-assumption mode undermines effective problem solving, while the work-group mode is cooperative and uses rational methods to approach its task.

An important but underutilized tool of social science that is useful when designing Group Support Systems (GSS) for meetings is socio-emotional theory. Socio-emotional theory examines the impact of factors like group conflict, or group/individual satisfaction on the outcome of meetings or processes. GSS research has generally focused on task outcomes, leaving socio-emotional outcomes largely unexplored (Kelly & Bostrom, 1995). Thus, the success or failure of groups has been analyzed based on the objective contents of their outcomes with little reference to the underlying emotions that constitute the driving force of individuals and groups. Socio-emotional theories emphasize that if a poor decision may be due to socio-emotional issues, such as a lack of motivation or commitment by the group.

The research areas just mentioned are significant because the type of work that systems and software engineers do is almost by definition dependent on the expertise of a large number of individuals. Quintas (1993) lists several reasons why the social aspects of systems engineering and software development must be addressed. First of all, software engineering is a labor-intensive activity, so communication processes and social interactions within the developer community are of critical importance. Understanding why social activity is so prevalent in software development will be useful in developing models that will help us better understand the intricate interactions between developers during collaboration efforts. Secondly, software development is a bridging process that links areas of specialized and diverse expertise from the domain of the IT professional to the domain of the customer or user. Finally, the development of IT systems is itself a social and historical phenomenon, so it is appropriate to understand the social processes involved in the development, application and diffusion of IT.

Adaptive Structuration Theory (AST) indicates that the outcomes of meetings is a reflection of the way in which groups appropriate and modify structures implicitly or explicitly present in the meeting process, and that this in turn is significantly affected by a meeting facilitator. Group problem solving has many features in common with meetings, whence the relevance of such research. An analysis of the impact of a meeting facilitator in terms of socio-emotional factors in a GSS environment was done by (Kelly and Bostrom, 1999). The factors considered were: fidelity to procedures, group attitude, and group level of either conflict or consensus. The presence of a meeting facilitator tends to assist in the success resolution of these processes. The role of a facilitator is to foster a positive environment by appropriately selecting and facilitating the use of a structure that matches the group’s task. A related area of research is human factors, defined as the study of the relation between the work environment of individuals and human behavior, with the objective of designing tools and systems that enhance the productivity of individuals and increase their job satisfaction (Thomas, 1984). Classic human factors like ease of use should be incorporated in a group problem solving model. For example, enhancing satisfaction increases motivation and thence indirectly product quality.

Though group interaction during collaboration has a critical impact on the problem solving process, the initial composition of the research group is at least as important. On the one hand, research in social psychology suggests that the presence of incompatible personality types tends to complicate collaboration in a general managerial environment (Polack-Wahl, 1999), thus suggesting that collaboration can be inhibited in the presence of cultural and gender diversity during collaborative software design. The historical prevalence of males in engineering fields accentuates gender-specific issues, but cultural, national, and racial diversity may also be factors. The same authors underscore that early exposure to diversity in collaborative projects prepares software professionals for the work environment and ameliorates complications rising from the diversity of group composition. Of course, the underlying assumption is that a group is constructed of technically competent and complementary individuals who jointly have enough knowledge to accomplish the job. Groups should also be given the opportunity to provide feedback about the collaboration. The authors also underscore the psychological, not merely the operational benefits, of assigning each member of a group specific tasks. The point is that even though there is a global group responsibility for a project, nonetheless such individual assignments psychologically tend to minimize displays of ego, aside from there advantages in terms of individual specialization or the ability to partition the work-load.

1.6 Group or Team Structure

The formation of a software development team is as important as the problem solving methodology and collaborative technologies a team uses. A team lacking a proper profile of members is unlikely to be successful even using the best collaborative problem solving model. Shneiderman (1980) presented a well-known taxonomy of software development teams into conventional, ego-less, and chief programmer teams, defined as follows: a conventional team has a senior member who directs the remaining junior team members, the ego-less team emphasizes cooperation versus competition, and any work developed is considered as the property of the group rather than merely that of the individual developer, so that the success or failure of a project is viewed as a collaborative effort, and a chief programmer team is built around well-defined roles - like a surgical team where specific roles and responsibilities are defined from the outset: surgeon, nurse, anesthesiologist, etc.

Each type of team has its advantages and disadvantages, so choosing the type appropriate for a given project and the available pool of team members can have a decisive impact on the outcome. Factors like the skill and work ethic of members have to be weighed prior to team formation, with a proper balance important. For example, members may be self-motivated, task motivated, or interaction motivated. Having too many task-oriented individuals on a team may inhibit effective group communications (Sommerville, 1996), while having the right composition of personality types increases group cohesiveness. Sommerville identifies a variety of advantages of group cohesiveness. First, a group quality standard can be developed, and quality standards determined by the group are more likely to be followed then standards imposed upon the group. Secondly, cohesion allows team members to work closely together, thereby learning from one other. Thirdly, members of a cohesive team become more familiar with one another’s work, promoting continuity and consistency when a member leaves the group. There are also some disadvantages associated with cohesive groups, such as resistance to changes in leadership and groupthink (Sommerville, 1996). Thus, it is generally better to select a new leader from within the group because introducing an outside leader as a replacement for a current leader commonly decreases productivity. Groupthink (Janis, 1982) occurs when the desire by group members for unanimity overrides their need to evaluate alternatives objectively. Particularly under the pressure of deadlines, cohesive groups can exhibit cognitive biases that preclude selecting the most effective solution. The risk of groupthink can be minimized by creating meeting environments where members feel free to criticize decisions or by introducing a third party to evaluate group decisions.

Conclusion

This chapter has examined a variety of areas that are important in collaborative software development: problem solving and decision making, both individual and collaborative, general groupware systems theory - and for software development, group cognition, group sociology, group psychology and group dynamics. The issue is critical because professional software developers are expected to be able to engage in software projects as member of groups, hence groupware should be available to facilitate this effort. A variety of groupware systems for brainstorming, decision making, as well as general communication have been successful, but systems that assist group software development are at an preliminary stage of development. The next chapter reviews some of these systems.

2. GROUPWARE SYSTEMS

A number of environments have been developed that provide some of the basic elements of groupware functionality. This section will review some of these tools, systems, and environments for collaboration, collaborative problem solving, and collaborative software development. The review will be selective rather than exhaustive, since it is intended primarily to representatively illustrate the kind of systems available. We will begin with overviews of some typical groupware systems, then proceed to a review of systems specifically designed for collaborative problem solving and/or software development. Finally, we shall focus in greater depth on the features of several important collaborative systems including Lotus Notes, Groove, and Rational Rose.

2.1 Major Groupware Systems

2.1.1 Lotus Notes

Lotus Notes is a customizable client for e-mail, calendaring, group scheduling, Web access and information management. The latest revision of Lotus Notes, called Notes R5, is an integrated, Web-like environment that provides significant enhancements to users over the original version, including quicker access to and better management of many types of information ranging from e-mail and calendar of appointments to personal contacts and Web pages.

An Illustrative Example

The initial Notes R5 screen is shown in Figure 2. It provides convenient access to all Notes features: e-mail, calendar, address book, and to-do list.

Figure 2: Notes R5 Welcome Page

[image: image1.png]
The Notes interface is partially modifiable, allowing the user, for example, to begin with different start up screens with different selections of links and a different look-and-feel. This modification functionality is accessed through the drop-down menu. One selects create new page style from the Welcome page drop down box in the upper right-hand corner of the screen in Figure 2. A Page Options window then appears as shown in Figure 3. The Basics tab in the Options window allows the user to choose the frame layout of the screen. The Content tab lets the user choose which items appear in the layout.

Figure 3: Page Options Window

[image: image2.png]
On the far left of the main Lotus Notes screen is a bookmark bar that contains Note’s key features in addition to providing access to the user's browser bookmarks, a replica tool, and database access. The browser bookmarks are synchronized with the user’s Netscape and Explorer browsers. Individual Notes users can access any website that is book marked in either of these browsers or a specific Web address can be typed in the address field shown in Figure 4 in the upper right hand corner of the screen.

Figure 4: Notes Browser Tool

[image: image3.png]
The Notes replica tool allows a user to work with Notes off-line. For example a user can replicate their mail database so they have a current copy of their complete mail file with them when disconnected from the network. When a user eventually does connect to the mail server, Notes sends any pending outgoing mail to the server, gets new mail, and pushes any recent changes to their mail, made on the local replica, to the server

Most of the databases accessed from Notes are shared databases, stored on servers accessible to multiple Notes users. A user can view a list of accessible databases by merely depressing a database icon on the bookmark bar. The list of databases then appears in a panel as shown in Figure 5. Whatever Notes tool was previously being used continues to appear on the right side of the screen, in this case the mail In-box of the user.

Figure 5: Data Base Panel

[image: image4.png]
When the user selects a specific database, the contents of the database then appear in the window located to the right of the databases listing. Figure 6 illustrates this with an example database called UCCI UW Manual Discussions.

Figure 6: A database content example

[image: image5.png]
The to-do tool, shown in Figure 7, is accessed by depressing its icon on the bookmark bar. The list of actions that a user can select from are located above the to-do list, i.e. New To-do Item, Mark Completed, etc. The to-do list contains of agenda items for the group project.

Figure 7: To-Do Tool example

[image: image6.png]
The details of a To Do item can be read by double clicking on the item so a window appears as shown in Figure 8.

Figure 8: To-Do item detail

[image: image7.png]
The Mail tool shown in Figure 9 is like other electronic mail tools, providing the ability to create, reply to, or forward messages, attach files, etc. The user effects these actions by clicking on an icon in an action bar above the mail inbox.

Figure 9: Mail Tool

[image: image8.png]
The Notes calendar shown in Figure 10 allows users to organize their activities such as meetings. Figure 10 shows a 7-day view of the calendar, and 1, 2, 7, 14, or 31-day views of their schedule are accessed by clicking the number in the upper right of the screen. The calendar is scrollable. Invitations to meeting to other users are created by clicking on the schedule a meeting action item above the calendar. If a group is working jointly on a project, a user can view the calendars of other group members, a facility which is intended to simplify scheduling meetings by allowing users to determine open times of group members. The calendaring is relatively automatic. If an individual schedules a group or subgroup for an activity at a particular time, the system automatically verifies that the schedule is compatible the calendars of all the designated members, and updates each participant's individual calendars accordingly.

Figure 10: Calendar Tool

[image: image9.png]
The address book shown in Figure 11 is used to manage and track contacts. The Action bar above the contact window allows users to add/delete contacts, send email, schedule meetings, etc.

Figure 11: Address book

[image: image10.png]
Lotus Notes Analysis

Lotus Notes provides general-purpose assistance for coordinating a group’s efforts, but it does not provide specific tools for real time or asynchronous collaboration activities. Certainly, additional collaboration tools are necessary for collaborating in the context of software development. Collaborative software development requires specific problem solving support including features or guidelines that enhance group cognitive activities for collaboratively solving problems. In addition, explicit guidance and tools are needed for the group problem solving and program development process, which Lotus Notes R5 was not intended to explicitly support.

Lotus also has two other more extensive colaborative tools for group collaboration,: Sametime and QuickPlace. Sametime is a client-server environment. A Sametime server downloaded by the user group manages the environment; a separate client provides the local functionality for each user. Sametime provides a forum in which group can communicate in real time via instant messaging. Sametime lets each user know who is currently available for instant messaging. It allows team members to collaborate with other members on the same local network with a variety of tools including instant audio messaging and video, shared whiteboard, shared documents/drawings/presentations, text-based chat or instant messaging. These features are similar to those provided by the Groove application to be discussed subsequently.

QuickPlace is web-oriented environment, unlike the private network, client-server environment provided by Sametime. Quickplace provides a text-based chatroom environment which is enhanced to facilitate sharing and organizing of ideas, content, and tasks for a project. Quickplace also provides the ability to create rich text documents directly from a Web browser, file sharing, and email. A shared file can only be modified by one user at a time. The software also provides a document revision history and facilitiesies checking documents in or out. There is also off-line access that will synchronize any modified data when you reconnect.

2.1.2 Groove

Groove (Udell, Asthagiri, & Tuvell, 2001) is a peer-to-peer groupware system that provides small groups of collaborators (2-25) the ability to share documents, messages, applications, and application-specific data related to group projects in a secure way. This system provides security via a virtual private network (VPN) and synchronization where offline changes are synchronized when users reconnect.

Groove provides strong tools for collaboration. The Groove application resides on each client’s machine and the network is used as a pipe between the clients. It encompasses many activities such as live voice over the Internet, instant messaging, text based chat, file sharing (text, pictures, presentations), web browsing, drawing, brainstorming, games, and threaded discussions. It also has coordination tools that keep track of meeting action items, agenda, and schedules. Each member can be in different tools at the same time or the users can choose to navigate together to work in the same tool at the same time.

This case study will provide an example of the Groove application as well as providing an analysis of the system as a model.

The Challenge of Groove

In this brief example Groove will be used in the context of developing software. The basis of the analysis will be how well the system assists the attributes of Hohmann’s (1997) and Simon’s (1960) collaborative problem solving and decision making models. The analysis criteria are identification of tasks, distribution of tasks, coordinating outcomes, integrating solutions, plan development, communication plan, and behavior modification.

An Example Solution

Login enables Groove members to contact and collaborate with each other. Once a user is logged into Groove’s start up window, shown in Figure 12, they can choose between five different types of workspaces to create or they can choose to return to an already created space from a previous work session. For example, when choosing to create a conversation space, the initial default tools include a note pad, a Web browser, a file manager, and a drawing pad. The user can also choose to return to one of their previous sessions. Figure 12 shows four sessions that were created previously to choose from.

Figure 12: Groove's Start-up Window

[image: image11.png]
This example uses Groove to assist the software development process. Therefore, a project workspace is created as shown in Figure 13. The following default tools are included in the initial space: a discussion board, brainstorming tool, document list, task list, schedule tool, Web browser, and contact list.

Figure 13: Initial project workspace window

[image: image12.png]
The discussion tool enables users to exchange detailed ideas with the other project members. The brainstorming tool allows the team to outline ideas in a hierarchical structure. The document tool allows users to share files. Any type of file can be transferred right form Windows Explorer into the document tool. The Task tool is a more organized version of the brainstorming tool. Ideas from the brainstorming tool can be organized with a framework created by using the task tool. The Schedule tool is where the group can store the goals and deadlines of the group. The Links tool allows the group to browse the web together. The last default tool in the project work space is the Contacts tool that enables the group to store the identity and characteristics of each member on the team for easy messaging access. Each of the tools described can be utilized by switching between various tabs. Also, additional tools can be added to the shared space buy choosing the add tool tab. For example, other tools that may be necessary when developing software are possibly the sketchpad tool or the pictures tool. After the project workspace is created, invitations are sent out to others to join the workspace either by instant messaging or email by clicking on the red invite button also shown in Figure 13.

The shared link that connects to the workspace is actually sent and the user connects to it to accept an invitation. This is implemented by a combination of XML metadata describing what tools are in the space and the actual data that would be in the shared space at that point in time. Each workspace is stored locally. If a user is connected to the Internet, each of the shared space members sees each other's edits as they are made. If the user is not connected, they can still write or edit in any tool in the same shared space. When the user connects later, their edits get relayed and synchronized in the shared space so other members can see them; at the same time, the document they see gets updated with edits other members have made while they were working unconnected. The same synchronization occurs with the workspace tools. If one user changes the environment by adding a tool or a file the change is reflected in everyone’s workspace. This will be either an instant change or a synchronized change when an off-line user reconnects with the group.
In this case study the Groove is used to demonstrate the problem solving steps related to the software development process. To begin the project the person who in leading the collaboration could use the conversation tool in the lower left hand corner of the screen, shown in Figure 14, to communicate which tool the group is using to collaborate in the beginning of the project. The conversation tool is similar to a walky-talky device. The person talking keeps the icon pressed until they are finished talking. Another option for synchronous communication is utilizing the chat feature. Figure 14 illustrates this in the bottom window to the right of the conversation tool. The chat message indicates that the group should be participating in the discussion tool where the group leader has posted a message to start the discussion.

Figure 14: Example of discussion, conversation, and chat tools

[image: image13.png]
Figure 15 shows the documents tool. In this example there is a single document called requirements.doc that can be accessed and modified by any member. Members should use this tool for sharing any kind of requirements or user documents developed during the course of development. Documents can be dragged right from Windows Explorer.

Figure 15: Documents Tool

[image: image14.png]
Once the discussion session is over and the group has read and understood the requirements document, the group needs to brainstorm for possible solutions to the problem using the brainstorming tool. By switching tabs to the brainstorming tool, shown in Figure 16, the group brainstorms some solution ideas.

Figure 16: Brainstorming Session

[image: image15.png]
For example, if the group needed information on Java to see if that is the language that would be the most effective and efficient for their development purposes, they could surf the Web using the Links tool.

Once the problem has been discussed and solutions have been brainstormed, the group needs to distribute the tasks to each of the members. The group members could either post their own task assignment or the group leader could post the assignments and have group members post a message indicating if they are not satisfied with their assignment.

To keep the group on track in meeting the goals of the project, a schedule is kept in the schedule tool shown in Figure 17. A monthly schedule is shown. There are options to view the schedule as either weekly, daily or as a work month.

Figure 17: Schedule Tool

[image: image16.png]
Figure 18 shows the details when a user clicked on March 7th. Any team member can add to the schedule or to the details of particular days events.

Figure 18: Event details occurring on March 7th
[image: image17.png]
Groove Technology Analysis

Groove’s features have the ability to assist in the coordination and problem solving effort of software development. However, software development needs more then synchronization, security features, file sharing, and asynchronous/synchronous messaging. Collaborative software development requires specific problem solving direction that includes efforts to enhance group cognitive activities while collaboratively solving problems, which this system does not incorporate.

For example, the brainstorming tool does allow the users to move around the different ideas for ranking purposes but there is no way to vote on items without everyone physically typing in their choice and them someone else tallying the votes to come up with the solution.

The Groove system does facilitate a group’s performance of the major aspects of the group problem solving process. For example, there is a way to identify the tasks of the proposed solution, the tasks can easily be distributed, and the solution can easily be coordinated, communicated and modified. However, the entire problem solving and software development process using this system needs to be heavily guided through its various stages. An inexperienced software developer may skip important stages of the collaborative process.

2.1.3 Rational Rose

Rose is an individually oriented up-to-date, object-oriented software development application that assists in visually modeling software, but is not intended as a collaborative tool. The models produced from using the Rose application can identify requirements and communicate information, identify component interactions and relationships.

Rose is compatible with most available version control applications. This enables each team member to operate in a private workspace that contains an individual view of the project. Changes made by team members are made available to other team members by using a version-control system. Rational claims that visual modeling improves communication across the team through the use of a common graphical language.

A Detailed Review

Figure 19 shows the Rose graphical user interface. The main features are the standard toolbar, diagram toolbox, diagram window, browser, documentation window, and specifications. The standard toolbar located at the top of the GUI is always visible. The diagram toolbox, shown vertically in Figure 19, changes based on the active diagram displayed. The diagram window enables the user to display, create, and modify project related diagrams. Multiple diagrams can be open at one time. The browser allows the user to view the names and icons representing diagrams and model elements. Selecting ‘documentation’ from the view menu opens the documentation window. It allows the user to create a self-documenting model, which in turn generates self-documenting code. Specifications are dialog boxes that allow you to set or change model element properties. Changes made to a model element either through the specification or directly on the icon are automatically updated throughout the model.
Figure 19: Rose GUI

[image: image18.png]
There are four different views to show the different aspects of the working model: use case, logical, component, and deployment. The use case view, shown in Figure 20, helps the user to understand and use the system. Essentially this view gives a graphical representation of the completed system.

Figure 20: Use Case View example

[image: image19.png]
The logical view addresses the functional requirements of the system. For example, the class diagram shown in Figure 21 depicts the project classes for a university. The diagram also shows the logical relationships between classes, methods inside classes, and class variables.

Figure 21: Logical View Example

[image: image20.png]
The component view addresses the software organization of the system with component diagrams. As shown in Figure 22 below, the component view displays information regarding the software, executable, and library components of the system.

Figure 22: Component View Example

[image: image21.png]
 The deployment view, shown in Figure 23, depicts the mapping of processes to hardware. This is useful when there is a distributed architecture involved in the system design, i.e. applications and servers in different physical locations.

Figure 23: Deployment View Example

[image: image22.png]
All of the views presented are graphical representations of the elements in the developing system. These representations give multiple perspectives useful during the development stages of the system.

Rational Rose Technology Analysis

Rose is a good development tool with an emphasis on visual modeling. Rational claims that such visual modeling shortens the development life cycle, increases productivity, and improves software quality and team communication. Rose is not a specifically collaborative tool, but team members sharing various documents developed with the tool could very well increase team communication. In other words, team communication could be increased because of using a common modeling language. However, there are no build in provisions to communicate via the tool. There is no messaging, brainstorming or voting tools integrated into Rose. Rose is primarily a design tool. It is assumed that the initial problem solving stage is complete when Rose is used. Rose helps model solutions prior to the implementation stage of development.
2.1.3.1 Rational Unified Process Case Study

The Rational Software Company offers a multitude of software development lifecycle products. There are also products that assist in the development, testing and documentation of software applications. The next example will illustrate of the Rational Unified Process (RUP) application. In contrast to Rose, The RUP is a groupware product.

RUP is a generic web-based software engineering process that provides a framework to assign and manage tasks and responsibilities within a development organization. RUP attempts to enhance team productivity by delivering what Rational calls “software best practices” to all team members.

Figure 24 shows the dimensions of the Rational Unified Process: a horizontal axis represents the lifecycle of the process; a vertical axis represents the core process workflow. The graph shows how the emphasis of the workflows varies over time. In the early stages most of the time is spent on requirements, and in later stages more time is spent on configuration and change management.

Figure 24: RUP architecture

[image: image23.png]
An Example Solution

A template web site is the starting point for any project and shown in Figure 25. The template helps a team maintain project information, facilitates project team communication, and initiates a web-enabled central project "knowledge" repository.

Figure 25: Main web page of example project

[image: image24.png]
The tree structure, shown in the far left of Figure 25, can be modified to meet the needs of the project. It defaults to the following items: development case, phases, artifacts, artifact template, project library, tools, directory of project members, discussion forum and an over view of RUP.

The development case link provides a template to briefly describe descriptions of the project milestones and their purpose. All projects should start by defining a "development case", which is viewed as a high-level project plan that describes the artifacts that will be produced in this project and the level of formality.

A Phases link can be modified to describe what will occur during the various RUP phases, i.e. inception, elaboration, construction, and translation, as depicted in Figure 24 above. The inception phase’s main goal is to ensure the project is worth doing and feasible. This phase consists of the following activities: formulating the scope of the project, planning and preparing a business case, feasibility analysis, preparing the environment for the project. The goal of the elaboration phase is to develop a solid base for the design and implementation effort in the construction phase. Elaboration activities include: defining, validating and baselining the software architecture, refining the vision, creating and baselining detailed iteration plans for the construction phase, refining the development case and putting in place the development environment, and refining the architecture and selecting components. The construction phase’s main goal is to clarify the remaining requirements and complete the development of the system based upon the baselined architecture. Activities for this phase include: resource management, control and process optimization, complete component development and testing against the defined evaluation criteria, and assessment of product releases against acceptance criteria for the vision. The translation consists of several iterations to make sure it is what the end users requested. This is accomplished by executing deployment plans, finalizing end-user support material, testing the deliverable product at the development site, creating a product release, getting user feedback, fine-tuning the product based on feedback, making the product available to end users.

The artifacts link is where all of the documents related to the project can be stored. Templates are provided for all types of project related documents. For example Figure 26 shows the table of contents of the software architecture artifact. Each item in the table of contents is a link to that section in the document. Each section has explicit information regarding what information should be contained in that section.

Figure 26: Software Architecture Artifact Template

[image: image25.png]
The project library link is a place to store any project related papers or articles that would be useful to the team members such as white papers, experience reports on tools or techniques, market surveys, and interview material from requirements capturing. The tools link is a placeholder for collecting information on any tools you are using in your project. The information could include links to online manuals or tutorials.

The project member’s link is where the team members are listed along with their role and responsibilities. A major factor in the successful software development is the model or process followed during development. An efficient process can save development and debugging time. One key aspect of the Rational Unified Process is that it maps the people on a development team to specific roles. One physical person can have the responsibility of many roles. Figure 27 shows is an example of a project member’s link when using the RUP web model.

Figure 27: Example Project Members link

[image: image26.png]
The Roles include analysts, developers, testers, and managers. The example project shown in figure 4 utilizes the project manager, architect, and test designer. The project manager role allocates resources, shapes priorities, coordinates interactions with customers and users, and generally keeps the project team focused on the right goal. The project manager also establishes a set of practices that ensure the integrity and quality of project artifacts. The software architect role leads and coordinates technical activities and artifacts throughout the project. The software architect also establishes the overall structure for each architectural view: the decomposition of the view, the grouping of elements, and the interfaces between these major groupings. Therefore, in contrast to the other roles, the software architect's view is one of breadth as opposed to one of depth. The test designer is the principal role in testing and is responsible for planning, designing, implementing, and evaluating the test, including: generating the test plan and test model, implementing the test procedures, evaluating test coverage, results, and effectiveness, and generating the test evaluation summary

The last two items in the RUP project web site are the discussion forum, which is where links to sub forums can be found, and the overview of the RUP link. The overview brings up a separate window with links to useful information regarding the RUP.

RUP Technology Analysis

The RUP attempts to unify the entire software development team by providing each team member with one knowledge base, modeling language and view of how to develop software.

The RUP does coordinate many activities of the software development process. However, the process does miss some key factors when collaborating during software development. For example, the web site is a good forum for coordination of project documents but there are no facilities for brainstorming, voting, negotiation, conflict resolution etc. RUP does have a discussion forum placeholder in the website but it is up to the team to develop or integrate a message board or chat room.

2.1.3.2 Rational Requisite Pro Case Study

 Requisite Pro is a requirements management tool which assists in the integration of user requirements into the development process. The Requisite Pro environment has two main elements: Tool Palette, and View Workplace. The Tool Palette can be used to access the requirements database and the View Workplace in addition to creating requirements, updating their attributes and producing high-level reports. The View Workplace is used to view the database of requirements.

A Detailed Discussion of Requisite Pro

Requisite Pro initializes with two windows: the tool palette and the view workplace. Figure 28 shows the tool palette, which is the main interface for accessing and working with Requisite Pro projects. The buttons on the tool palette window provide quick access to project information, requirements information, and views. The Tool Palette menu commands are also used to perform requirements management operations in a Requisite Pro project.

Figure 28: Tool Palette Window
[image: image27.png]
The main function of the View Workplace, shown in Figure 29, is to analyze and print requirements. It is also used to view the database of requirements created in different formats.

Figure 29: View Workplace Window
[image: image28.png]
The three formats, attribute matrix, traceability matrix, and traceability tree are used to display requirement attributes and relationships. The attribute matrix, displays all requirements and their attributes for a specified requirement type. The spreadsheet-like view, shown in Figure 30, displays requirements in rows and the attributes that describe the requirements in columns. You can add or change values in the attribute fields.

Figure 30: Attribute Matrix Example

[image: image29.png]
The traceability matrix, shown in Figure 31, illustrates the relationships between requirements of the same or different types. The Traceability Matrix displays the requirements of one requirement type as its rows, and the requirements of another (or the same) requirement type as its columns. This matrix is used to create, modify, and delete traceability relationships and view indirect relationships.

Figure 31: Traceability Matrix Example

[image: image30.png]
The traceability tree, shown in Figure 32, displays all requirements of one type and all requirements related to/from requirements of the root type. It provides a graphical view of relationships to or from root requirements of a specific requirement type. The tag, name, and attributes of the selected requirement are displayed in the attribute pane.

Figure 32: Traceability Tree Example

[image: image31.png]
The first task a user needs to do is create a new project. Figure 33 shows the New Project window that appears following the selection of New under the Project drop down menu. The user can choose from a blank project or one of templates provided. The templates differ from traditional declarative requirements approach and follow a use case approach. Use cases are methodologies used in system analysis to identify, clarify and organize system requirements. A use case can be thought of as a collection of possible scenarios related to a particular goal. Each template choice creates a directory for the project with the necessary requirement files.

Figure 33: New Project Window

[image: image32.png]
Before any of the developers modify the project created, the project options must be viewed because only one person at a time can modify the requirement documents of a project. To be able to modify any of the project documents, the user must open the project file from the tool palette, shown in Figure 34, and check the Exclusive box. The window can also be used for opening requirement files.

Figure 34: Project Contents Window

[image: image33.png]
Specific project requirements can be found by clicking on the goto requirement button on the tool palette. A requirements selection window will appear, as shown in Figure 35, where any of the projects requirements can be selected. Choosing a requirement will automatically open up the file which contains that requirements information.

Figure 35: Requirement Selection Window

[image: image34.png]
Once a specific requirement is chosen, its properties, shown in Figure 36, can be viewed by clicking on the properties icon on the tool palette. Requirement properties include: revision dates, attributes (priority, status, etc.), traceability (list of actions performed on the requirement), hierarchy (shows any dependent requirements) and related discussions.

Figure 36: Requirement Properties Window

[image: image35.png]
Requisite Pro also contains an asynchronous discussion tool shown in Figure 37. This tool is activated from the Tool Palette. Users can also view the properties of the messages posted by clicking on the properties button. Properties include: message attributes (time, date, priority), discussion participants, and requirements under discussion.

Figure 37: Discussion Window

[image: image36.png]
Requisite Pro Technology Analysis

Requirement management is an important task when developing software. Requisite Pro essentially provides an asynchronous groupware application for requirement management with the exception that only one person at a time can modify the requirement documents. In other words, the user is forced to either have exclusive rights to modify entire project or just read only access. The feature that positively balances the exclusive rights problem is the discussion tool. All users can post messages at any time.

Requisite pro represents an extensive application to manage project requirements and as such is a key component of a collaborative software development model.

2.1.4 Group System

GroupSystems is a groupware application with many useful collaborative tools. GroupSystems, must be installed on a shared server which is then used by team members on connected workstations. The GroupSystems tools support many aspects of collaboration including brainstorming, list building, information gathering, voting, organizing, prioritizing, and consensus building. The system can be used both synchronously and asynchronously.

An Overview of the GroupSystems Tools

This section presents a brief discussion of the main tools available in GroupSystems. A discussion and analysis of how these tools facilitate the collaborative problem solving and software development process will be given following the tool presentation.

Following a successful login, the main GroupSystems screen, shown in Figure 38, appears. The main screen defaults to the people tool. The GroupSystems tools are shown in the large lower right window of the main screen. The people tool displays which users have access to the active project folder. It also has a sign in feature where team members can record their names and other information about themselves.

All of the main tools available in the GroupSystems application are listed in the icons shown across the top of the main window, i.e. agenda, people, whiteboard, handouts, opinion, reports, briefcase, log, find, and folder list. The tool icons show no matter which tool is active.

Figure 38: Main GroupSystems Screen

[image: image37.png]
Clicking on the agenda icon activates the Agenda tool (Figure 39). Activities in the agenda tool can be added, deleted, or opened; opening an activity changes the tool window to the selected activity. Figure 40 shows the brainstorming tool activated by clicking the solution discussion activity in the agenda window.

Figure 39: Agenda Screen

[image: image38.png]
The initiator of the brainstorming session inserts a topic to initiate the discussion. In this case the topic is “Everyone submit their understanding of the problem”. A discussion sheet, also shown in Figure 40, was added. Team members can double click on the discussion sheet to add their ideas.

Figure 40: Brainstorming Tool

[image: image39.png]
Figure 41 shows an example voting activity, which can be useful to organize ideas, developed in a brainstorming activity or simply to provide a basis for a group decision. Under the vote menu item, that will appear once a vote is in session, the leader of the voting activity can add voting items by choosing the List-Buliding menu item and entering a statement for the group to vote on. By clicking on the second icon in the voting activity box the leader can choose the voting method for the ballot. Voting methods include: rank order, 10-point scale, multiple selection, yes/no, true/false, agree/disagree (5-point), agree disagree (4-point) or a custom method. Once all the voting is complete, the results can be viewed by clicking on the results icons.

Figure 41: Voting Example

[image: image40.png]
Figure 42 shows the Whiteboard tool that emulates a traditional physical whiteboard. Team members can draw and edit images on the whiteboard with the various tool icons located on the left of the tool. There are 10 available pages for drawing. The users can print or save them to a file upon completion.

Figure 42: Whiteboard Tool

[image: image41.png]
The Handout tool, shown in Figure 43, is essentially a document storage area for the team to view up to 100 reference files. This tool gives access to reports, multimedia files, mission statements, spreadsheet projections, or visual materials such as graphs, charts, and diagrams. All files are read only. When a team member double clicks a document, the application associated with the document is automatically opened.

Figure 43: Handouts Tool

[image: image42.png]
The Opinion tool is essentially a faster, simpler voting tool. This tool provides a flexible and informal means of gauging the opinions of the team. For example, Figure 44 shows how a team member initiates/proposes a vote on breaking a problem solution by breaking it into 4 sub problems instead of the planned 2 sub problems. The team member who submitted the opinion can choose from three different voting schemes: yes/no, agree/disagree, and a 10-point scale.

Figure 44: Opinion Tool

[image: image43.png]
The Report tool is similar to the handouts tool in that the team can store project related reports in this tool. The difference between the report tool and the handout tool is that it enables the creation of aggregate report files containing data from several activities and resources in the folder. The Briefcase tool, shown in Figure 45, allows easy access to commonly used utilities such as: calculator, clipboard and notepad etc. This tool can be personalized by added other commonly used applications such as email or a word processor.

Figure 45: Briefcase Tool

[image: image44.png]
The Personal Log tool, shown in Figure 46, is where team members can keep track of anything. For example, if workstations are shared, each user can keep track of what they modified in the project. In addition to manual logging, automatic logging can be enabled. If automatic logging is enabled each comment made in the brainstorming tool will be stored.

Figure 46: Log Tool

[image: image45.png]
The last tool is Find. The Find tool can help search through many folders to find a particular activity. This can be useful if a team member is invited to join a project when collaboration is already in progress.

GroupSystems Technology Analysis

GroupSystems, (GroupSystems.com, 2001), is an excellent collaborative tool. Its main goal is to support collaborative knowledge activities like strategic planning and risk assessment. Although this tool was not directly intended for software development it has most of the features required to collaboratively solve a software problem. For example, it has a brainstorming tool designed to keep the team focused on the brainstorming topic. There are also ample voting tools to make the many group decisions required when solving a problem.

Obviously there is no step-by-step process to guide the team through the problem solving and software development process, but all of the tools needed to facilitate each aspect of collaborative problem solving and software development process is available in the GroupSystems tool. The only groupware features GroupSystems doesn’t have are the chat feature, calendar, web browsing, and a task list. However, the features contained in GroupSystems have much more of an impact on the collaborative problem solving and software development process then the features missing.

2.1.5 Together

Together, (TogetherSoft Corporation, 2000), is a team software development platform for building software solutions. It focuses on synchronizing models, code and documents created while developing software. It is possible to integrate Together with most leading version control applications. Together can run on a server where all users access the server installation's global configuration settings that merge with individual settings at runtime, or it can run on individual workstations where users share a centralized set of global configuration properties that merge with individual settings at runtime:

Together has several features that enable teams to use it not only for modeling and documentation, but for actual implementation coding as well. Features include: an editor for multiple languages, a debugger and compiler for Java, code generation, syntax highlighting, auto-indent etc. Together's integrated debugger enables you do work in conjunction with the Editor. The debugger also features multi-threads, watches, and breakpoints.

Together Technology Analysis

Together provides support for multi-user implementation, but it does not provide tools for collaboration during the design stages of development such as problem formulation. The support for multi-user development is a result of the team using the same language, diagrams and “building block” components. Essentially the team members share a development space, which requires a group to integrate a version control application with the Together application. Individual team members can “check out” files from version control to see what other team members have worked on. There is no brainstorming or synchronous exchange of ideas or any organized task tracking tool.
2.1.6 Doors

Telelogic’s Doors product is a requirements management system. Doors is able to capture, link, trace, analyze, and manage information to keep a project compliant with its specific requirements during its lifecycle. Doors has multiple tools that give the user multiples ways to access information. This feature benefits the needs of the different roles involved in developing software such as managers, developers, and end-users.

An Example Solution

Doors is a client/server application. Each user or client needs to log into the system located on a local server. Once the user has successfully logged in the main screen, shown in Figure 47, they have access to all of the projects.

Figure 47: Main Screen

[image: image46.png]
By opening up a project folder and clicking on one of the formal modules a new window like the one shown in Figure 48 will open containing access to the selected project files.
Figure 48: Project Window
[image: image47.png]
In the formal module window the user can create different views. A view is the way the information is displayed on the screen. Depending on the users needs, different views are more appropriate. Each project initially starts out with only the standard view, which only contains one column for identification of each object. After different views are created and saved to the project, they can be applied by choosing them from the views selector located on the far left of the second line of the toolbar also shown in Figure 48 above. The following discusses a few possible views.

In an attribute view, shown in Figure 49, three different attributes are displayed: release, requirements, and assigned to. The data of each attribute can be modified, and new attributes can be added to the view using the attribute choice under the edit menu. Once a new attribute is created, the user can create another view to display the new attribute.

Figure 49: Example Attribute View

[image: image48.png]
Another example view is a hierarchies view. The objects can be sorted and be viewed graphically by switching to graphics mode; each object is displayed as a box that contains one attribute, as shown in Figure 50.

Figure 50: Example Hierarchies View

[image: image49.png]
The Doors product has three different edit modes for collaboration: read-only, exclusive, and shareable. In read-only the user can only look at the module, but not edit it. In exclusive mode one user can edit the module but all other users can only read it. In shareable mode while one user is editing one section of the module, another user can edit another section. In addition, the first user would have to lock the section of the module they want to edit to stop another user from editing it. The other users will still be able to read the data just not modify it.

Doors Technology Analysis

Doors is an asynchronous requirement management groupware product. Its main goal is to organize and communicate project information during and following a project’s lifecycle. The collaborative feature is similar to other requirement management tools where only one user at a time can modify a project file.

A feature that stands out in Doors is that the data can be organized depending on the needs of the user. For example, the sales person doesn’t need to see the same level of detail as a software engineer so a hierarchical view of the project can be displayed.
2.1.7 WikiWeb

WikiWeb is a collaboration tool that operates through a web browser. The tool is essentially a server that hosts a website which can be modified and instantly published. In other words, web pages are automatically created and linked to one another. The main features, in addition to instant web publishing, are file sharing, page change notifications via email, controlled user access and privileges, page indexing, and full text search.

WikiWeb Details

WikiWeb reads and navigates like a standard web page. WikiWeb pages each have an edit link. Users can save changes, which are then instantly published, and easily create links to new pages including pictures, files, and email addresses. This tool can be useful in brainstorming.

WikiWeb Technology Analysis

WikiWeb is ideal for a collaborative project that is does not need to follow a stringent framework. It could be adapted to include a framework. It is an interesting collaboration tool, but the group leader needs to set up the website to coordinate the collaborative efforts.
2.2. General Groupware Tools

Representative general groupware systems not specifically designed for problem-solving or collaborative software development include: EIES, Virtual-U, Learning Space, WebCT, Co-Mentor, Colloquia, and TopClass. A synopsis of each of these systems follows.

The Electronic Information Exchange System (EIES) developed at NJIT is a groupware system originally intended for computerized conferencing, but later enhanced to support distance learning. EIES provides a number of interesting features, including hierarchically organized discussion threads. One objective of later versions of EIES was to improve, rather than merely attempt to emulate, the activities of a face-to-face classroom (Turoff, 1995). For example, EIES provided sophisticated question and response capabilities, as well as a variety of group learning tools including mechanisms to track student participation in group activities.

Virtual-U provides a framework for designing, delivering and managing courseware (Harasim, 1999) and integrates conferencing, chat, and performance evaluation tools using an underlying web environment. The system features email, file exchange, multimedia applications, an announcements area, asynchronous discussion groups, as well as a detailed help system that supports course design.
An asynchronous, distributed learning environment, based on Lotus Notes, is provided by Learning Space. The system supports scheduling, provides a course material database, threaded discussions, user profiles, and a mechanism for user feedback, as well as standard features such as e-mail, announcements, file exchange, chat, whiteboard, and video conferencing.

WebCT (World Wide Web Course Tool) is a system that facilitates developing web-based courses (Goldberg, 1997). It provides a conferencing system, chat, progress tracking, an announcements area, file exchange, e-mail, timed quizzes, asynchronous discussions, whiteboard, and search capabilities. The system provides course designers with the ability to modify the look and feel of courses they implement on the system.

An on-line course environment that allows participants to collaborate by providing synchronous and asynchronous discussion capabilities, email, file exchange, databases of previous work, and an announcements board is provided by CoMentor (Hepplestone, 2000). The objective of the system is to supplement existing off-line courses rather than provide self-contained on-line courses.

Colloquia (or Learning Landscapes) is a software system that supports group work. Colloquia is distributed, that is each individual receives a private copy, unlike most client server collaborative systems, allowing users to work independently off-line. Colloquia provides both asynchronous group communication as well as person-to-person conversation facilities and file exchange.

2.3 Groupware Tools for Problem-Solving and Software Development

We next focus on tools or systems that support problem solving or software development tasks, and specifically groupware tools that facilitate the kind of communication and coordination needed when a group collaborates on problem solving or software development. Such environments differ from environments that support individually-based problem solving/software development activities. We will identify for each tool the collaborative characteristics of the tool. The number of tools available is as yet small since the technology needed to appropriately implement computer-aided collaborative environments is relatively new. A selective illustrative review follows.

2.3.1 Collaborative Problem Solving Tools

Group problem solving occurs in many formats, a particularly useful one being the face-to-face group meeting. On-line versions of meetings are usually called conferences. Thus we will consider tools for collaboration in meetings and groupware that assists problem solving in a group setting. One interesting fundamental presentation requirement of such meeting tools is that they provide a coordinated interface for all participants (Stefik et. al., 1987), an abstraction frequently to by the acronym WYSIWIS: "What You See Is What I See." The same researchers also claim that for a meeting tool to be effective, every member of the group must be able to view the work of the other group members. In addition to providing such coordinated interfaces or views, meeting tools can also provide capabilities for brainstorming, organizing, and meeting evaluation. Descriptions of various such meeting or conference tools follows.

A simple example of an early conferencing tool that allows both asynchronous and synchronous modes of user interaction is We-Met, a basic collaborative graphical editor (Rhyne, 1992). The conference participants work independently and asynchronously, then synchronously broadcast their work to the group. One elementary advantage of having both synchronous and asynchronous capabilities is that participants can enter a group after work has begun and catch up by reviewing messages that occurred before they joined. The We-Met system is non-anonymous: users are explicitly associated with their work. Furthermore, a history of all individual work actions is maintained.

An example of a cooperative design environment that focuses on detection and resolution of design conflicts, a critical issue in any cooperative design process, is the Design Collaboration Support System DCSS (Klein, 1994). DCSS’s major features are: it facilitates design agents in expressing their design actions; it assists in detecting design conflicts; and it suggests potential resolution to design conflicts detected. This kind of conflict resolution is called domain level conflict and refers to inconsistencies in design criteria. It of course differs from the phenomenon of collaborative conflict, which refers to interpersonal conflict between members of a collaborative group.
An example of an asynchronous instructional conferencing system designed to assist for engineering students is CaMILE (Collaborative and Multimedia Interactive Learning Environments) (Guzdial et.al, 1996). Typical problems addressed by Camille are small-scale engineering design problems such as might occur in a college-level structural design course. The system prompts users to discuss alternative approaches to designs already suggested by other group members. The system also links to related multi-media documents, allowing users to share access to a design database and resources. Projects developed under the system are archived in a database and accessible to subsequent groups. Another rudimentary domain-specific system designed to enhance problem-solving and diagnostic reasoning skills in elementary biology is Biology Sleuth, developed by Denning and Smith (1995). The system comprises a database of domain-specific facts and a graduated instructional environment, but uses little computer-mediated collaboration.

A web-based system that supports collaborative information sharing for document development and cooperative work is the Basic Support for Cooperative Work project (BSCW) (Bentley et. al., 1995). The system is asynchronous and supplies an application infrastructure that runs on a basic web server.

2.3.2 Collaborative Software Development Environments

A preliminary point of reference is SOLVEIT (Deek, 1997), an individually-oriented environment designed to develop problem solving skills in the domain of elementary software development. SOLVEIT has a strong methodological foundation, being systematically based on an underlying cognitive model for both problem-solving and program development, the Dual Common Model (refer to section 1.1). An individual using SOLVEIT begins with a preliminary verbal problem description and is then interactively guided through a sequence of problem-solving stages, ranging from preliminary problem clarification and modeling to final testing of a software implementation.

A synchronous collaborative system intended to allow geographically dispersed participants to work jointly on a large programming project is provided by Computer-Supported Cooperative Training (CSCT) (Swigger, Brazile & Shin, 1995). The primary objective of the system is to train novices how to collaborate when designing software. The context used to develop collaborative skills is requirement elicitation, the outcome being a requirements document for a software problem. There are four shared tools: a Procedural Activity which is used to establish operating procedures via a voting system; a Problem Definition Activity which is used to specify an agreed-on problem statement; a Criteria Establishment Activity which is used to develop criteria for requirements; and a Solution Activity which is used to prioritize requirements via the voting tool. Each of these tools can be used at any point during the collaboration to identify the software requirements of the problem.

A web-based collaborative, software development system is provided by the Karell++ Collaborative Laboratory. This system has both synchronous and asynchronous collaboration capabilities, and enables participants to collaborate in real time. The specific purpose of the system is to develop the participants’ skills in object-oriented programming techniques. The system provides a shared development environment for programs development, written in a domain-specific language Karell++ designed for rudimentary robotic applications (Rossi, 1999). Participants design programs that simulate robots using component-based program elements, and do program verification on a graphical simulator.

Another collaborative tool designed to support software development is EVA, an acronym for “Evolving Artifact”. This system allows developers and end-users to iteratively understand design problems and to develop solutions. The system is based on the construction and refinement of so called design representations (Ostwald, 1995). EVA utilizes a hypertext environment that lets end users view and interact with design prototypes that they can annotate with comments, the underlying expectation being that access to a rich set of prototypes and documents deepens problem understanding.

A more sophisticated environment for collaborative work, flexible enough to adapt to both different software development processes as well as to very different collaborative domains is provided by Conversation Builder (Kaplan et. al., 1992). The Conversation Builder environment emphasizes the collaborative character of work activities, allows individual tasks to be multitasked, recognizes that simultaneous activities are typically dependent on each other, and that tasks usually have associated actions to perform. In addition to providing an architecture that supports these characteristics, the system also provides messaging capabilities, version management, negotiation activities, shared data modules, and the ability to dynamically interconnect activities.

A collaborative environment for software development that emphasizes integrating the semantics of the software development domain with the characteristics of group work, supporting strategies for negotiating problems via social-based argumentation, and using contracts as a way to ensure responsibility for task fulfillment called CoNeX was developed by Hahn, Jarke, and Rose (1990). CoNeX includes an argument editor for negotiation, a contract manager for document dialog, and a conferencing system for informal messaging. Users can also browse a knowledge base to trace the project history. The tool is reminiscent of Wong’s (1994) model (section 1.2) for joint decision making and conflict resolution.

An asynchronous groupware tool for problem solving that assists in collaborative work among geographically distributed participants called Web-CCAT was developed and tested at the University of Illinois (Dufner, Kwon, & Hadidi, 1999). The tool consists of project management software, GDSS tools, and computer-aided software engineering CASE tools, CASE being the generic term for tools that aid software engineers develop and maintain software. The goal of the tool is to provide a more enriched environment than face-to-face meetings.

2.4. Summary

Some characteristics of the collaborative problem solving and software development tools reviewed are summarized below in Table 2 using the Simon (1997) and Hohmann (1997) models utilized in Table 1. The Table identifies whether a tool facilitates any of the activities identified in the models reviewed in Table 1. The headings for Table 2 are discussed in section 1.2, though the behavior modification column has been deleted.

	Tool Name
	Id Tasks
	Distribution of Tasks
	Coordinating Outcomes
	Integrating Solutions
	Plan Development
	Communication

Plan

	WeMet
	
	
	
	
	
	Asynchronous and Synchronous messaging capabilities.

	DCSS
	
	
	Conflict resolution feature.
	
	
	Asynchronous messaging capabilities.

	CaMILE
	
	
	
	
	Contains a database of designs to assist in developing a solution plan.
	Asynchronous messaging capabilities.

	Biology Sleuth
	
	
	
	
	
	Asynchronous messaging capabilities.

	BSCW
	
	
	
	
	Contains a database of designs to assist in developing a solution plan.
	Asynchronous messaging capabilities.

 Table 2: Summary of Collaborative Problem Solving Tools

Table 3 summarizes the software development tools, again in terms of the Simon (1997) and Hohmann (1997) models. An additional “Tool Type” heading has been added to indicate whether the tool is intended for individual or for collaborative development.

	Tool Name
	Tool Type
	Id Tasks
	Distribute Tasks
	Coordinating Outcomes
	Integrating Solutions
	Plan Development
	Communication

Plan

	SOLVEIT
	Individual
	Assists user in breaking problem into sub-problems and tasks.
	N/A
	N/A
	N/A
	N/A
	Asynchronous messaging capabilities.

	CSCT
	Group
	
	
	Negotiation Voting Capabilities
	
	
	Synchronous messaging capabilities.

	Karell++
	Group
	
	
	
	
	
	Asynchronous and synchronous messaging capabilities.

	EVA
	Group
	
	
	
	
	Contains a database of designs to assist in developing a solution plan.
	Asynchronous messaging capabilities.

	CB
	Group
	
	
	
	
	
	Synchronous messaging capabilities.

	CoNeX
	Group
	
	
	Negotiation Voting Capabilities
	
	Contains a database of designs to assist in developing a solution plan.
	Asynchronous and synchronous messaging capabilities.

	Web-CCAT
	Group
	
	
	
	
	
	Asynchronous messaging capabilities.

 Table 3: Summary of Software Development Tools

Chapter 3 will analyze and critique existing tools and methodologies to help identify open areas for future research in the software engineering related collaborative problem solving and software development.

3. CRITIQUE OF EXISTING APPROACHES

The purpose of this section is to identify deficiencies and/or open areas of current theory and tools in collaborative problem solving and software development. The results of this evaluation will be to help delineate an appropriate direction for advancing the state of the art.

3.1 Functional Weaknesses and Practical Deficiencies

This section will highlight the functional weaknesses and practical deficiencies of the models and tools presented in the previous chapter. The models will be evaluated to determine if they take into consideration the skills needed to solve problems collaboratively. The tools will be evaluated to determine if they address the needs of collaborative software development and collaborative problem solving.

3.1.1 Models

Table 1 summarized collaborative problem solving and decision making models, categorizing the qualities a successful model should possess. The first model summarized is Hohmann’s (1997) that focused on the communication and collaborative aspects of the problem solving process. The model recognizes the dynamic character of group communications and that it must account for the fact that group communication changes whenever its membership changes. It does not focus on the group character of the problem solving process, assuming instead that individual problem solving models suffice. The model also appears to not address conflict resolution.

Simon (1997) presents a collaborative decision making model. The model stresses the need for group-level understanding of the problem and for the development of a group plan. Each of these objectives facilitates [and requires] coordination. The model does not address the distribution of tasks to individual team members, a requirement which is critical in complex problems.

The model of Finnegan and O’Mahony (1996) has a number of features that support group activities, but it does not appear to adequately address coordination activity. For example, it lacks activities that partition a problem and determine the assignment of team members to work on particular parts of the partitioned problem, such as provision of a group leader for coordination. The model also does not address conflict resolution, which would be particularly relevant in the context of this model, which does address the negotiation required when determining alternative solutions. Guidelines for team interaction should also be included in such a collaborative problem solving model. Their omission is significant because if group activities and cognition are not properly channeled, inappropriate interaction among members can undermine the steps involved in the iterative process proposed in the model.

Wong’s (1994) group problem solving model focuses on conflict resolution, and includes explicit negotiation attributes as part of the methodology. However, the method does not include a framework for coordination of activities between group members, or stress the iterative character of problem solving. The model also does not address issues of team interaction.

The model of Zhang (1998) reflects his supposition that collaborative problem solving should not entail an explicit sequence of steps. Zhang’s methodology identifies four elements that should be included when collaboratively solving a problem:

1. Consider the individual group members as a distributed representation system.

2. Explicitly, decompose the problem into individual tasks for each group member.

3. Identify the individual task interactions.

4. Emphasis on interactions among individual group members and their tasks.

 The elements, like some of the previously described models, include partitioning the problem into individual representations. The model does not address coordination among group members.

The PBL method does explicitly emphasize the need for a communication and coordination framework, but doe not address detailed guidance or direction of the participants. It would be advantageous to include a more explicit step-by-step process. The method has had some success in software engineering instruction (McCracken and Waters, 1999), though the experiment did identify a lack of focus on tasks by participants. The proposed remedy was to provide monitoring of group discussions with the objective of explicitly increasing coordination.
Despite their limitations, these methodologies do highlight both the usefulness of group problem solving, as well as the need for participants to invest time to understand group dynamics. Merely grouping participants and expecting them to develop an application collaboratively does not imply they will effectively solve problems as a group, nor that the group will appropriately address either conflict resolution or consensus building.

3.1.2 Tools

We considered two types of tools: for collaborative problem solving and for collaborative software development. Since problem solving is at the heart of software development, any collaborative tool for software development should incorporate problem solving methods.

3.1.2.1 Collaborative Problem Solving Tools

We refer to Table 2 in Section 2.3 for differences among the collaborative problem solving tools.

We-Met supports only a limited range of collaborative features: meeting discussions, brainstorming, and a history of the collaboration. Though it can be used for problem solving, it does not provide an explicit problem solving framework. All the collaborative tools depicted have asynchronous communication capabilities; some like We-Met have synchronous capabilities as well. Each mode has its advantages. The asynchronous mode allows group members to enter the problem solving session at their convenience by supplying all members a conference history. The synchronous communication allows real time discussion which expedites the problem solving process.

DCSS has a particularly interesting problem solving feature: namely, it can assist in detecting design conflicts. If a group is collaborating on a design and chooses an alternative design, the system helps detect problem with the alternative design. However, while supporting recognizing internal conflicts in a proposed design, the tool does not support interpersonal conflict resolution among group members as might occur during collaborative consideration of design alternatives. Like We-Met, DCSS provides no overall problem solving framework.
The CaMILE system provides an asynchronous problem solving tool that allows a user access to a database of resources, such as examples of designs provided by other users. The objective is to provide participants with previous cases to promote an understanding of decisions made by others in similar situations. The system lacks an overall problem solving framework. Biology Sleuth is not groupware in the true sense, but its methodology does require each member of a team to perform problem solving steps and to discuss their hypotheses with a group. Thus the tool uses a problem solving framework, but lacks true computer-mediated collaborative functionality.

The main purpose of BSCW is document storage and sharing. The system runs on a Web Server and so is available the internet with consequent advantages (Bentley et. al., 1995) such as platform, network and operating system transparency; integration with end-user environments and application programs, a consistent user interface across platforms; an application programmer interface to incorporate additional functionality; and ease of deployment facilitating rapid system prototyping. However, the system only provides asynchronous communication and does not include a specific problem solving methodology.
3.1.2.2 Collaborative Software Development Tools

Table 3 summarized the software development tools presented in this paper. This section considers the functional and practical deficiencies associated with these tools.

The first tool we considered was SOLVEIT which was only to facilitate individual software development based on a cognitively-explicit, problem solving methodology, unlike other tools in Table 3. Some software development groupware also addresses problem solving, but none seems to explicitly address the very complex process by which groups solve problems.

CSCT is a collaborative tool that supports synchronous communication. The system is primarily designed to facilitate software requirements elicitation. This tool does not address the rest of the problem solving process. Its omission of an asynchronous communication capability is an obvious drawback.

The Karell++ groupware tool enables both synchronous and asynchronous communication, but does not address problem solving. EVA also does not assist in problem solving or software development but provides a repository of design ideas that could assist during the design process. In other words EVA is an asynchronous group tool that has its only focus on sharing prototypes and developer documentation and comments.
CB is a system that has many features to allow collaboration and any other observed activities of group software development. However, there is no particular problem solving model associated with the application. The system boasts its “flexibility”, but the collaborative process needs much more to produce an effective and efficient result.

CoNeX has many collaborative features a software development tool should encompass. It is however missing an important feature of a specific problem solving methodology to assist in the software development process. Therefore, the many facets of group cognition are not taken into consideration.

Web-CCAT is a tool that aids in developing software by providing CASE tools but is another example of an application not focusing on the problem solving portion of software development. Today’s CASE tools minimize their support of the soft aspects of software development (Jarzabek and Huang, 1998). Soft aspects are defined as creativity understanding, idea generation, analogy, goals, emotions etc. Therefore, these tools do not assist in the problem solving effort. There are no means in the CASE tools available today for any freedom to express ideas or stimulate intuition.

The EVA system and the CSCT system are very useful in developing initial software requirements collaboratively. Using EVA most likely limits the possibility for “run away” projects by eliminating the change of user requirements early on in project development. This system seems to be beneficial for the initial development stages of a project. The iterative development process seems to be necessary for collaborative development. It emphasized the discovery of new goals, the role of prototyping and evaluation, and the importance of involving diverse stakeholders – including users (Carroll, 1997). The functional weakness is that there is no problem solving support in any of these collaborative software development tools. The implementation of the early problem solving steps should happen well before the elicitation of software requirements.

Out of the groupware tools presented in this paper CoNeX, does address the social needs of software development, but does not incorporate group cognition and psychology into its methodology. Group cognition should not be minimized in the problem solving process. Brereton (2000) found that during group projects it seemed that their problems were group cohesion, an aspect of group cognition, which to those writers was minor, but in a larger more realistic project lack of group cohesion for one reason or another could mean a very unsuccessful project. Group cognition will be discussed in further detail later in this paper.

3.2 Absence of Psychological and Sociological Group Problem Solving Issues

We have noted previously that current groupware tools are primarily technically oriented and do not explicitly address or provide mechanisms to address the social interaction issues that arise in group contexts. For example, none of the software development groupware tools considered in our review takes the psychological and sociological issues of collaborative problem solving into consideration. This phenomenon may be a side-effect of the personal characteristics of the software developers. Indeed, Jones and Marsh (1997) suggest the absence of attention to the social phenomena in collaboration occurs because most groupware designers are technologists whose basic experience lies in developing technologies. The designers lack expertise in the social protocols that play such a pervasive role in groupware systems.

A recent collaborative software engineering case study [in the 13th Conference on Software Education and Training] illustrates the kind of problems that can occur. In this instance, the case study exhibited difficulties with group cohesion, an important phenomenon of group psychology and sociology that must be considered in collaboration, as well as with individual commitment. The technology used in the study provided a diverse collection of media to for communication and collaboration including video, audio, and chat, but there were still collaboration problems. Communication difficulties involved in problem solving groups make the group process much more difficult than the individual process. However, effective communication mechanisms are only necessary but not sufficient to successfully address successful group problem solving. In the case study, the collaborative framework lacked a formal group problem solving methodology that could have possibly eliminated cohesion issues. An explicit problem solving methodology combined with appropriate communication tools would have enhanced group cohesion. The authors of the case study attributed the collaborative difficulties to an absence of group commitment together with a too steep learning curve required to use the system's technologies. Commitment was apparently a problem because group members were inadequately associated with or focused on their particular role in the project: they did not have a sense of ownership. With respect to group cohesion, it is possible that requiring each member to contribute comments to each problem solving stage of the process could enhance the group cohesion.

With the cultural ubiquity of computers, individuals both technical and non-technical now interact with computers. Studies in Human Computer Interaction (HCI), a combination of psychology, social sciences, computer science and technology, have led to some elegant successes that enhance the utilization of computers: direct manipulation interfaces, user-interface management systems, and task-oriented help and instruction. Key issues that have been identified include: how can iterative development be supported and improved; how resources for iterative development can be managed to optimize cost-benefit; and how the scope and richness of user cognitive models can be extended? The research (Carroll, 1997) considers how the technical lessons learned in an iterative development process can be accumulated and exploited

The goal of software psychology is to improve the human use of computers by making computers easier to use. A premier researcher in the area of software psychology is Shneiderman (1980) who emphasizes that the techniques of experimental psychology and an understanding of human skills can be used to improve the design and thereby the impact of computer systems. Some of the relevant techniques in experimental psychology include: the analysis of cognitive and perceptual processes, methods of social, personnel and industrial psychology; and psycholinguistics. Shneiderman contends that though attending to psychological issues may increase the design time and cost, overall design quality will be significantly improved. The tools and concepts of experimental psychology can also be imported and applied to understanding how groups collaborate to develop software. One application of software psychology to collaborative software development is in terms of group communication. Many factors effect such communication: the size of the group, its structure, and the status and personalities of group members (Sommerville, 1996).

4. SUMMARY

The ultimate objective of software development groupware is to improve the software development process. To date, such applications have emphasized process and technologies, rather than people (McGuire & Randall, 1998). There are corresponding limitations in current systems, and so corresponding opportunities for improvement. As a prominent researcher in this area has observed: these limitations result from "not understanding the unique demands this class of software imposes on developers and users” (Grudin, 1994). The objective is to turn these defects into research areas.

One significant limitation of current research on collaborative problem solving is that current collaborative problem solving models do not adequately or explicitly address the characteristics and requirements of group cognition. Another serious limitation is the limited application of psychology and sociology in collaborative problem solving models. Significantly, the tools available for collaborative software development do not explicitly incorporate a problem solving methodology. Current collaborative software development tools also reflect a highly centralized view of project planning and fail to adequately incorporate domain-specific knowledge of the software domain (Hahn, Jarke & Rose, 1990). The challenge for groupware systems is to design a system that equals or exceeds the effectiveness of face-to-face interactions. Hence, groupware systems should focus on facilitating group interaction, with an emphasis on the core areas of communication, collaboration, and coordination. Group software development should be tightly coupled with group problem solving, and the group problem solving model should be coupled with a group cognition model which will both facilitate cooperation and foster mutual dependence among group members, enhancing cohesion. These models will also provide a conceptual architecture for facilitating communication and coordination among group members.

It is clear that collaborative software development/problem solving will expedite the software development process, enabling faster more cost-effective delivery of product, and more reliable development of complex systems. Suitable collaborative environments can also enhance academic preparation in problem solving and software development. Collaboration with co-workers, or group problem solving, is an expected competency for contemporary software developers because of the complexity and rapidity of application development, as surveys of IT professionals confirm (McGuire & Randall, 1998). Thus, individuals should be exposed to group problem solving models and methodologies at an early stage in their career to prepare them for successful participation in the workforce. Suitable groupware is an effective way to accomplish this, and will prepare individuals for the team-oriented technology-based contemporary workforce. This will train individuals in group dynamics and process related issues, rather than the current product-
related focus (McCracken & Waters, 1999).

The overall conclusion of our review of the literature presented is that there are significant opportunities to advance the state of the art by combining views and issues from collaborative problem solving, psychology, sociology and collaborative software development. Our general objective will be to create a collaborative problem solving model that takes into consideration the problem-solving cognitive processes of a collaborative software development group and that addresses the psychological and sociological factors in teamwork. The model will explicitly address the communication, collaboration and coordination requirements of a group.

Indeed cooperative learning based on interaction and communication will strengthen academic inquiry (Rossetti & Nembhard, 1998). Rossetti and Nembhard found by implementing five basic elements of cooperative learning students actually improved their thinking and problem-solving skills in engineering classes. These elements include: positive interdependence (success of a group depends upon the success of every individual in the group), face-to-face promotive interaction (explaining to each other findings), collaborative skills (group members should understand active listening methods and conflict management), group processing (self-evaluate group success).

Another aspect of the model could be assistance in object oriented software development while problem solving. Problem solving and software development are processes where user requirements are found and transformed into a software application. Traditionally software is developed using structured methodology witch is a top down or bottom up design. When hardware costs rapidly decreased while increasing in functionality, software applications became large and increased in complexity. These sparked the development of object-oriented methodology. Some benefits of using object-oriented methodology versus a structured methodology include the following: code reuse, data abstraction, information hiding, and no adequate means of dealing with concurrency.

The most challenging component of this research will involve tying together theories involving group problem solving and software development while keeping in mind cognition, psychology and sociology of collaboration.

5. REFERENCES

Aannestad, B., Hooper, J., “The Future of Groupware in the Interactive Workplace”, HRMagazine, Vol. 12, Issue 11, November 1997, pp. 37-41.

Anderson, W., L., ”Group Relations Psychology and Computer Supported Work Some New Directions for Research and Development”, ACM, 1991.

Barber, G., Chapter 9 of Human Factors and Interactive Computer Systems, Edited by Yannis Vassiliou, Ablex Publishing Corporation, Norwood, NJ, 1984.

Bentley, R., Horstmann, T., Sikkel, K., Trevor, J., “Supporting Collaborative Information Sharing with the World Wide Web: The BSCW Shared Workspace System”, The World Wide Web Journal: Proceedings of the 4th International WWW Conference, Issue 1, December 1995, pp. 63-74.

Booch, G., Object Oriented Design with Applications, Redwood City, California: Benjamin/Cummings, 1991.

Brereton, O., Lees, S., Bedson, R., Boldyreff, C., Drummond, S., Layzell, P., Macaulay, L., Young, R., “Student Collaboration across Universities: A Case Study in Software Engineering”, Thirteenth Conference on Software Education and Training, pp. 76-86, March, 2000.

Carroll, J., “Human-computer interaction: psychology as a science of design”, International Journal of Human Computer Studies, Volume 46, pp. 501-522, April 1997.

Deek, F.P., An Integrated Environment For Problem Solving and Program Development, Unpublished Ph.D. Dissertation, New Jersey Institute of Technology, 1997.

Deek, F. P., “The Software Process: A Parallel Approach through Problem Solving and Program Development”, Journal of Computer Science Education, Volume 9, Number 1, pp. 43-70, April 1999.

Deek, F.P., Hiltz, S.R., Kimmel, H., Rotter, N., “Cognitive Assessment of Students’ Problem Solving and Program Development Skills”, Journal of Engineering Education, Volume 88, Number 3, pp. 317-326, July 1999.

Deek, F.P., McHugh, J., “ SOLVEIT: An Environment for Problem Solving and Program Development”, to appear in Journal of Applied Systems Studies, Special Issue on Distributed Multimedia Systems with Applications, 2000.

Deek, F.P., McHugh, J., Hiltz, S.R., “Methodology and Technology for Learning Programming”, to appear in Journal of Systems and Information Technology, 2000.

Deek, F., McHugh, J., Turoff, M., “Problem Solving and Cognitive Foundations for Program Development: An Integrated Model”, submitted for review to the Journal of Cognitive Science, 2000.

Deek, F.P., Turoff, M., McHugh, J., “A Common Model for Problem Solving and Program Development”, Journal of the IEEE Transactions on Education, Volume 42, Number 4., pp. 331-336, November 1999.

Denning, R., Smith, P., “Teaching Problem-Solving Through a Cooperative Learning Environment”, CHI ’95 Mosaic of Creativity, May 1995, 9-10.

Dix, A., Beale, R., Remote Cooperation: CSCW Issues for Mobile and Teleworkers, Springer-Verlag London Limited, Great Britain, 1996.
Dufner, D., Kwon, O., Hadidi, R., “WEB-CCAT: A Collaborative Learning Environment For Geographically Distributed Information Technology Students and Working Professionals”, Communications of the Association for Information Systems, Vol. 1, Article 12, March 1999, Available [Online]: http://cais.isworld.org/articles/1-12/article.htm [26 November 2000].
Ellis, C., Gibbs, S., Rein, G., “Groupware Some Issues and Experiences”, Communications of the ACM, Volume 34, No. 3, pp. 39-58, January 1991.

Finnegan, P., O’Mahony, L., “Group Problem Solving and Decision Making: an Investigation of the Process and the Supporting Technology”, Journal of Information Technology, Vol. 11, Num. 3, September 1996, 211-221.

Fischer, G., Lindstaedt, S., Ostwald, J., Stolze, M., Sumner, T., Zimmermann, B., “From Domain Modeling to Collaborative Domain Construction”, DIS ‘95, pp. 75-85.

Fraser, S., Marshall, L., Bailetti, T., “Team Approaches to OO Design”, OOPSLA, Vancouver, British Columbia, Canada, October 1992, pp. 85-92.

Gillmor, S., “A New Groove” Winter 2001 XML Magazine, Available [Online]:

http://www.xmlmag.com/upload/free/features/xml/2000/05win00/ro0005/ro0005.asp, [31 March 2001].

Goldberg, M., “WebCT and first year: student reaction to and use of a web-based resource in first year Computer Science”, ITiCSE ’97, pp. 127-129.

Grinberg, L., Sor, D., de Bianchedi, E. T., Introduction to the Work of Bion, Jason Aronson, New York, 1977.

GroupSystems.com, Available [Online]: http://www.groupsystems.com [22 May 2001].

Grudin, J.,” Eight Challenges for Developers”, Communications of the ACM, Volume 37, No. 1, pp. 93-105, January, 1994.

Guzdial, M., Kolodner, J., Hmelo, C., Narayanan, H., Carlson, D., Rappin, N., Hubscher, R., Turns, J., Newstetter, W., “Computer Support for the Learning through Complex Problem Solving”, Communications of the ACM, Vol. 39, No. 4, 1996, 43-45.

Harasim, L., “A Framework for Online Learning: The Virtual-U”, IEEE, September 1999, pp. 44-49.

Hare, A. P., Handbook of Small Group Research, Second Edition, The Free Press, New York, 1976.

Hahn, U., Jarke, M., Rose, T., “Group Work In Software Projects: Integrated Conceptual Models and Collaboration Tools”, Proceedings of the IFIP WG8.4 Conference on Multi-user Interfaces and Applications. Heraklion, Greece, September 1990, Amsterdam: North-Holland, 83-101.

Hepplestone, S., “coMentor News”, December 2000, Available [Online]: http://comentor.hud.ac.uk, [09 December 2000].
Herbsleb, J., Kuwana, E., “An Empirical Study of Information Needs in Collaborative Software Design”, Transactions of Information Processing Society of Japan, Volume 39, No. 10, October 1998.

Hiltz, S.R., Turoff, M., “Structuring Computer-Mediated Communication Systems to avoid Information Overload”, CACM, Vol. 28, Number 7, July 1985, pp. 682-689.

Hoffman, L. R., “Group Problem Solving” Chapter of Advances in Experimental Social Psychology, Edited by Leonard Berkowitz, Academic Press, New York, 1965.

Hohmann, L., Journey of the Software Professional, Prentice Hall PTR, New Jersey, 1997.

Huitt, W., “Problem solving and decision making: Consideration of individual differences using the Myers-Briggs Type Indicator”, Journal of Psychological Type, Volume 24, pp. 33-44, 1992.

Hussain, D., Hussain, K. M., Information Resource Management, Irwin Inc., Homewood, Illinois, 1984.
Jacobson, I., Booch, G., Rumbaugh J., The Unified Software Development Process, Reading, Massachusetts: Addison-Wesley, 1999.

Janis, I., Groupthink: Psychological Studies of Policy Decision, 1982.

Jarvela, S., Bonk, C.J., Lehtinen, E., Lehti, S., “A Theoretical Analysis of Social Interactions in Computer-Based Learning Environments: Evidence for Reciprocal Understandings”, Journal of Educational Computing Research, Volume 21, Number 3, pp. 363-388, 1999.

Jarzabek, S., Huang, R., “The Case For User-Centered CASE Tools”, Communications of the ACM, Vol. 41, Number 8, August 1998, 93-99.

Jones, S., Marsh, S., “Human-Computer-Human Interaction: Trust in CSCW”, SIGCHI Bulletin, Volume 29, Number 3, July 1997.

Kaplan, S., Tolone, W., Carroll, A., Bogia, D., Bignoli, C., “Supporting Collaborative Software Development with ConversationBuilder”, ACM-SDE, Virginia, pp. 11-20, December 1992.

Kelly, G., Bostrom, R., “Facilitating the Socio-Emotional Dimension in Group Support Support Systems Environment”, SIGCPR ’95, Nashville, TN.

Kies, J., Williges, R., Rosson, M., “Coordinating Computer-Supported Cooperative Work: A Review of the Research Issues and Strategies”, Journal of the American Society for Information Science, Volume 49, Number 9, 1998, 776-791.

Kirkpatrick, D., “Here Comes the Payoff from PCs”, Fortune Magazine, March 1992.
Klein, M., Chapter 11 of Design Issues in CSCW – Edited by Dan Diaper And Colston Sanger, Springer-Verlag London Limited, Great Britain, 1994.
MacGregor, S.K., “Collaborative Learning: Reframing the Classroom”, Collaborative Learning: A Sourcebook for Higher Education, University Park, PA, National Center on Post-secondary Teaching and Learning Assessment, 1992.
Mahaney, R., Lederer, A., "Runaway Information Systems Projects and Escalating Commitment", Proceedings of the 1999 ACM SIGCPR conference on Computer personnel research, pp. 291-296, 1999.
McCracken, M., Waters, R., “WHY? When an Otherwise Successful Intervention Fails”, ITiCSE, June 1999.

McGuire, E., Randall, K., “Process Improvement Competencies for IS Professionals: A Survey of Perceived Needs”, CPR 98, Boston, MA, 1-8.

Mintzberg, H., The Structuring of Organizations, Prentice-Hall Inc., Englewood Cliffs, N.J., 1979.

Mulder, M., Haines, J.E., Prey, J.C., Lidtke, D.K., “Collaborative Learning in Undergraduate Information Science Education”, Papers of the 26th SISCSE technical symposium on Computer Science Education, 1995, 400-401.
Newell, A., and Simon, H.A., Human Problem Solving, Prentice-Hall, Englewood Cliffs, NJ, 1972.

Nosek, J., T., “Augmenting the Social Construction of Knowledge and Artifacts”, Air Force Research Laboratory, Report Number AFRL-HE-WP-TR-1998-0082, February 1998.

Nosek, J. “The Case for Collaborative Programming”, Communications of the ACM, Vol. 41, No. 3, 1998, pp. 105-108.

Nunamaker, J., “Collaborative Computing: The Next Millennium”, Computer, Volume 32, Number 9, September 1999, 66-71.

Ostwald, J., “Supporting Collaborative Design with Representations for Mutual Understanding”, CHI’ Companion, 1995, 69-70.

Polack-Wahl, J., “Group Projects: Woman and Men Can Work Together in the Computer Science Realm”, International Symposium on Technology and Society-Woman and Technology, pp., 245-248, July 1999.

Polya, G., How to Solve It, Princeton, New Jersey: Princeton University Press, 1945.

Prey, J.C., “Cooperative learning and closed laboratories in an undergraduate Computer Science curriculum”, Proceeding of Integrating Technology into Computer Science education, June 1996, Spain, 23-24.

Quintas, P., Chapter 1 of Social Dimensions of Systems Engineering, Edited by Paul Quintas, Redwood Books, Trowbridge, Wiltshire, Great Britain, 1993.
Rhyne, J., Wolf, C., “Tools for Supporting the Collaborative Process”, Proceedings of the fifth annual ACM symposium on User interface software and technology, 1992, 161-171.

Rossetti, M., Nembhard, H., “Using Cooperative Learning to Activate Your Simulation Classroom”, Proceedings of the 1998 Winter Simulation Conference, 67-74.

Rossi, A., “KPPCDL: An Internet Based Shared Environment for Introductory Programming Education”, Proceedings of the 4th annual SIGCSE/SIGCUE on Innovation and technology in computer science education, 1999, Page 196.

Sabin, R. E., Sabin, E., “Collaborative Learning in an Introductory Computer Science Course”, SIGCSE symposium on Computer science education, 1994, pp. 304 – 308.

Shneiderman, B., Software Psychology: Human Factors in Computer and Information Systems, Winthrop Publishers, Inc., Cambridge, Massachusetts, 1980.

Simon, H. A., The New Science of Management, Harper and Row, New York, 1960.
Simon, H. A., Administrative Behavior, Fourth Edition, The Free Press, New York, 1997.

Sommerville, I., Software Engineering, Fifth Edition, Addison-Wesley Publishers, 1996.
Sonnentag, S., Brodbeck, F., Heinbokel, T., Stolte, W., “Stressor-burnout relationship in software development teams”, Journal of Occupational and Organizational Psychology, Volume 67, Pg. 327-344, December 1994.

Stacy, W., Macmillian, J., “Cognitive Bias in Software Engineering”, Communications of the ACM, Volume 39, Number 6, pp. 57-63, June 1995.

Stefik, M., Foster, G., Bobrow, D., Kahn, K., Lanning, S., Suchman, L., “Beyond the Chalkboard: Computer Support for Collaboration and Problem Solving in Meetings”, Communications of the ACM, Volume 30, Number 1, pp. 32 –47, January 1987.

Swigger, K., Brazile, R., Shin, D., “Teaching Computer Science Students How to Work Together”, CSCL Conference Proceedings, October 1995, Available [Online]: http://www-cscl95.indiana.edu/cscl95/swigger.html [26 November 2000].

Thomas, J., Chapter 2 of Human Factors and Interactive Computer Systems, Edited by Yannis Vassiliou, Ablex Publishing Corporation, Norwood, NJ, 1984.
Tinzmann, M. B., Jones, B. F., Fennimore, T. F., Bakker, J., Fine, C., Pierce, J., “What is the Collaborative Classroom?”, NCREL, Oak Brook, 1990, Available [Online]: http://trackstar.hprtec.org/main/display.php3?option=frames&track_id=2897 [26 November 2000].

TogetherSoft Corporation,Available [Online]: http://www.togethersoft.com [20 April 2001].

Turoff, M., Chapter 12 of Human Factors and Interactive Computer Systems, Edited by Yannis Vassiliou, Ablex Publishing Corporation, Norwood, NJ, 1984.

Turoff, M., “Designing a Virtual Classroom”, 1995 International Conference on Computer Assisted Instruction, ICCAI ’95.

Udell, J., Asthagiri, N., Tuvell, W., Peer-To-Peer: Harnessing the Power of Disruptive Technologies, O’Reilly & Associates, 2001.

Wilson, J., Hoskin, N., Nosek, J., “The Benefits of Collaboration for Student Programmers”, 24th SIGCSE technical symposium on Computer Science Education, February 1993, pp. 160-164.

Wong, Stephen, T.C., “Preference-Based Decision Making for Cooperative Knowledge-Based Systems”, ACM Transactions on Information Systems, Volume 12, Number 4, October 1994, 407-435.

Zhang, J. “A Distributed Representation Approach to Group Problem Solving”, Journal of the American Society for Information Science, Volume 49, Number 9, 1998, pp. 801-809.

Zwass, V., Foundations of Information Systems, Irwin McGraw-Hill, Boston, Massachusetts, 1998.

6
2

