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Chapter 30

The PING model of
gamma rhythms

When populations of excitatory and inhibitory neurons are synaptically connected,
oscillations often emerge. The reason is apparent: Activity of the excitatory neurons
(which we will call E-cells from here on, as we did in Chapter 22) generates activity
of the inhibitory neurons (I-cells). The activity of the I-cells causes the activity
of the E-cells to cease transiently, and when it resumes, the E-cell population is
closer to synchrony, as discussed in Chapter 29.24 The oscillations in Chapter 22
are of a similar nature, although there individual cells were not modeled. Figure
30.1 (nearly identical with Fig. 22.1) represents the interaction of E- and I-cells
symbolically.

E

I

Figure 30.1. Symbolic depiction of a network of E- and I-cells. The large
circles labeled “E” and “I” represent populations of cells. Lines ending in arrows
indicate excitation, and lines ending in solid circles indicate inhibition.

In particular, brain oscillations with frequencies of about 30–80Hz are thought

24This requires that input from the I-cells in fact delays and synchronizes E-cell firing. For
example, an h-current in the E-cells can undermine the mechanism, since hyperpolarization turns
on the h-current, which is depolarizing. However, in this chapter, we will take the E-cells to be
RTM neurons, for which no such complications arise.
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250 Chapter 30. The PING model of gamma rhythms

to arise in this way in many instances. Oscillations in the 30–80Hz frequency range
are called gamma oscillations or gamma rhythms. They are seen in EEG traces and
in local field potentials, and are correlated with perception, attention, and memory;
for a review, see for instance [18]. A connection between meditation and gamma
rhythms has been documented several times; see for instance [107]. Pathologies in
gamma rhythms are associated with schizophrenia [62, 127, 144]. Notwithstanding
these observed correlations, it is not universally agreed upon that gamma rhythms
(or rhythms in any frequency band) play an important role in coding or information
processing in the brain; see for instance [128]. Here we will focus on how gamma
rhythms may arise, and make no claims about their function. Results potentially
pertinent for their function will be presented in Chapters 35–38.

The E- and I-cells believed to generate gamma rhythms are pyramidal neurons
and fast-firing PV+ interneurons. Rhythms of this kind are therefore referred to
as pyramidal-interneuronal network gamma (PING) rhythms. The acronym PING
goes back at least to Traub et al. [161]; the observation that gamma rhythms can
be generated in this way goes back further; see for instance [43, 84, 93, 157].

A natural question arises here: What is special about the gamma frequency?
Why can’t the interaction of E- and I-cells generate oscillations at any frequency?
In fact it can. For instance, [173] describes oscillations in a model network at
frequencies around 10 Hz arising from the interaction of excitatory and inhibitory
cell populations. These oscillations model sleep spindles, oscillations that appear in
the EEG during stage 2 sleep. The frequency of an oscillation in an E-I-network (a
network of excitatory and inhibitory neurons) depends in general on the strength
and duration of the inhibitory synaptic currents that impose the breaks between
population spike volleys, as well as on the external drive. In the network of [173],
for instance, there are slow, GABAB-receptor-mediated inhibitory synapses. The
decay time constant of GABAA receptor-mediated inhibitory synapses has been
reported in some places to be on the order of 10ms [69, 136], and the gamma period
(approximately 12 to 33 ms) is a small multiple of this value; this may suggest that
GABAA receptor-mediate inhibition will tend to generate oscillations in the gamma
frequency range. However, the strength of the inhibitory synapses and especially
the external drive contribute significantly to setting the frequency; see Table 29.2,
and also Table 30.1.

Experimental evidence supports the idea that the PING mechanism often
underlies gamma rhythms. One of many examples is reproduced in Fig. 30.2, which
shows recordings from the CA1 area of rat hippocampus. (Areas CA1, CA2, and
CA3 are subdivisions of the hippocampus. “CA” stands for “cornu Ammonis”, the
horn of the ancient Egyptian god Amun. Cornu ammonis is an 18th-century term
for a part of the hippocampal formation.) The figure demonstrates that during
gamma rhythms triggered by tetanic stimulation (stimulation by a high-frequency
train of electrical pulses) in CA1, both pyramidal cells and inhibitory interneurons
fire at approximately gamma frequency.
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Figure 30.2. Figure 5 of [181]. These are recordings from the CA1 region
of rat hippocampus. Gamma oscillations are triggered by tetanic stimulation, i.e.,
by a high-frequency train of stimulating electrical pulses. Tetanic stimulation leads
to the depolarization of both pyramidal neurons and inhibitory interneurons, as a
result of metabotropic glutamate receptor activation [178]. The figure shows a
local field potential (top trace), and membrane potentials of a pyramidal cell and
an inhibitory interneuron (middle and bottom traces). The three traces were not
recorded concurrently. The horizontal scale bar indicates 100 ms. The vertical scale
bars indicate 1 mV (top trace), 4 mV (middle trace), and 20 mV (bottom trace).
Reproduced with publisher’s permission.

30.1 Two-cell PING
To build intuition, we begin with a two-cell network, consisting of a single E- and
a single I-cell, with E-to-I and I-to-E (but not E-to-E or I-to-I) connectivity. The
E-cell is an RTM neuron, and the I-cell a WB neuron. Voltage traces resulting from
a simulation of such a two-cell network are shown in Fig. 30.3; the parameter values
are specified in the caption of the figure. (Note that we use the notation τd,E for the
decay time constant of the excitatory synapse, and τd,I for that of the inhibitory
synapse.) Each time the E-cell fires, the I-cell promptly responds.

We denote the period at which each of the two cells in Fig. 30.3 fires by P ,
and explore the parameter dependence of P . In analogy with Tables 29.1 and 29.2,
we compute the percentage change in P resulting from a 1% reduction in IE , a
1% increase in gIE , and a 1% increase in τd,I . By this measure, the period of the
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voltage traces of E-cell (red) and I-cell (blue)

Figure 30.3. Voltage traces of the two neurons of a network consisting of
one RTM and one WB neuron. The external drives are IE = 1.4 and II = 0. The
parameters characterizing the E-to-I and I-to-E synapses are gEI = gIE = 0.25,
τr = τpeak = 0.5 for both synapses, τd = τd,E = 3 for the E-to-I synapse, and
τd = taud,I = 9 for the I-to-E synapse. There are no E-to-E or I-to-I synapses.
[2_CELL_PING]

rhythm depends far more sensitively on external drive than on the strength or decay
time constant of inhibition.

IE → 0.99IE gIE → 1.01gIE τd,I → 1.01τd,I

increase in P : 0.66% 0.10% 0.14%

Table 30.1. Parameter dependence of the period P of the rhythm of Fig.
30.3. [2_CELL_PING_CONDITION_NUMBERS]

30.2 Basic network simulations
In this section, we study numerical results obtained with a network code similar
to the one that we used in [91], but using the synaptic model of Section 20.2. (In
[91], we used the model of Section 20.1.) The code simulates a network of NE
RTM neurons (E-cells), and NI WB neurons (I-cells). The numbers NE and NI are
parameters specified by the user of the code. We usually take NE to be four times
bigger than NI , since this is often said to be the approximate ratio of glutamatergic
to GABAergic neurons in the brain [135]. However, the ratio NE/NI is not of great
importance for the properties of PING rhythms if the synaptic strengths are scaled
as described below.

For each neuron in the network, we define a constant drive I. Different neurons
are allowed to have different drives. For any pair of neurons, A and B, in the
network, we define parameters associated with a synapse from A to B (compare
Section 20.2):

gsyn, vrev, τr, τpeak, τd.

The maximal conductance gsyn is allowed to be zero, so not all possible connections
are necessarily present. For simplicity, we do not allow the possibility of two different
synapses from A to B, for instance a faster and a slower one, here.
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In the examples of this section, the parameters are chosen as follows. The i-th
E-cell receives input drive

IE,i = IE(1 + σEXi), (30.1)

where IE and σE ≥ 0 are fixed numbers, and the Xi are independent standard
Gaussian random variables (see Appendix C). Similarly, the j-th I-cell receives
input drive

II,j = II (1 + σIYj) , (30.2)

where the Yj are independent standard Gaussians. To set the strengths (maxi-
mal conductances) of the synaptic connections from E-cells to I-cells, the E-to-I
connections, we choose two parameters, ĝEI ≥ 0 and pEI ∈ (0, 1]. The maximal
conductance associated with the i-th E-cell and the j-th I-cell is then

gEI,ij =
ĝEIZEI,ij
pEINE

, (30.3)

where the ZEI,ij are independent random numbers with

ZEI,ij =

{
1 with probability pEI ,
0 otherwise.

The total number of excitatory synaptic inputs to the j-th I-cell is

NE∑
i=1

ZEI,ij . (30.4)

The expected value of this number is pEINE (exercise 2), the denominator in (30.3).
Consequently ĝEI is the expected value of the sum of all maximal conductances
associated with excitatory synaptic inputs into a given I-cell (exercise 3). Similarly,
the strength of the synaptic connection from the j-th I-cell to the i-th E-cell is

gsyn,IE,ji =
ĝIEZIE,ji
pIENI

, (30.5)

with

ZIE,ji =

{
1 with probability pIE ,
0 otherwise.

The strengths of the E-to-E and I-to-I synapses are set similarly.
We use the same values of τr, τpeak, τd, and vrev for all excitatory synapses.

We denote these values by τr,E , τpeak,E , τd,E , and vrev,E . Similarly, all inhibitory
synapses are characterized by parameters τr,I , τpeak,I , τd,I , and vrev,I .

Figure 30.4 shows the result of a typical network simulation. Starting with
E-cell initialized asynchronously, as described in Section 24.1, oscillations at ap-
proximately 45 Hz develop rapidly, within about 50 ms. Human reaction times are
about 200 to 250 ms, so if gamma rhythms are important for stimulus processing
[18], then it must be possible to generate these oscillations in a time much shorter
than 200 ms, as indeed seen in Fig. 30.4. In fact, we gave an argument in [16]



i
i

“neuroscience” — 2016/10/7 — 15:08 — page 254 — #264 i
i

i
i

i
i

254 Chapter 30. The PING model of gamma rhythms

0 50 100 150 200

50

250

0 50 100 150 200

t [ms]

-100

-50

0

50
m
ea
n
(v
),

E
-c
el
ls

Figure 30.4. Spike rastergram of a PING network (top), and mean mem-
brane potential of the E-cells (bottom). Spike times of E-cells are indicated in red,
and spike times of I-cells in blue. The parameters are NE = 200, NI = 50, IE =
1.4, σE = 0.05, II = 0, ĝEE = 0, ĝEI = 0.25, ĝIE = 0.25, ĝII = 0.25, pEI =
0.5, pIE = 0.5, pII = 0.5, τr,E = 0.5, τpeak,E = 0.5, τd,E = 3, vrev,E = 0, τr,I =
0.5, τpeak,I = 0.5, τd,I = 9, vrev,I = −75. [PING_1]

suggesting that in networks with drive heterogeneity (different neurons receive dif-
ferent drives), PING oscillations must be created rapidly, within a small number of
gamma cycles, if they are to be created at all.

Properties of activity in E-I-networks have been studied extensively; for ex-
ample, see [11, 12, 60, 153, 154, 166, 181]. In the following sections, we will consider
only a few of many interesting aspects of PING rhythms.

30.3 Sparse and random connectivity
Neither of the two cell populations (E and I) synchronizes tightly in Fig. 30.4; this is
an effect of heterogeneity in the external drives, and of randomness in the synaptic
connectivity. To illustrate this point, Fig. 30.5 shows the same simulation as that
of Fig. 30.4, but with all heterogeneity removed. Synchronization now becomes
perfect in the limit as t→∞. This is, of course, not a biologically realistic picture.

Let us ask just how small pEI , pIE , and pII can be before the oscillation is
lost. (Note that pEE plays no role yet because we are setting ĝEE = 0 for now.) For
instance, if we set pEI = pIE = pII = 0.05 in the simulation of Fig. 30.4, we obtain
Fig. 30.6 — there is only a very faint indication of an oscillation left. However, if
we keep the values of pEI , pIE , and pII as in Fig. 30.6, but multiply NE and NI
by 4 (recall that the strengths of individual synapses are then reduced by 4, see eq.
(30.3)), rhythmicity returns; see Fig. 30.7.

For the ability of the network to synchronize and form a rhythm, pEE , pEI ,
pIE , and pII are not as important as pEENE , pEINE , pIENI , and pIINI , the
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Figure 30.5. As Fig. 30.4, but with all network heterogeneity removed:
σE = 0, pEI = pIE = pII = 1. [PING_2]
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Figure 30.6. As Fig. 30.4, but with much greater sparseness of the con-
nectivity: pEI = pIE = pII = 0.05. [PING_3]

expected numbers of (excitatory or inhibitory) inputs per cell. In fact, pEENE ,
pEINE , pIENI , and pIINI largely determine the size of random fluctuations in the
input strengths per cell. To show this, consider for instance the sum of all maximal
conductances of inhibitory synapses into the i-th E-cell. We denote this sum by gIi:

gIi = gIE

NI∑
j=1

ZIE,ji. (30.6)
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Figure 30.7. As Fig. 30.6, but for a four times larger network. [PING_4]

Taking expectations on both sides, we obtain

E (gIi) = gIE

NI∑
j=1

E (ZIE,ji) = gIEpIENI . (30.7)

Since the ZIE,ji are independent of each other, their variances sum (see Appendix
C):

var (gIi) = (gIE)
2
Ni∑
j=1

var(ZIE,ji) = (gIE)
2
NI∑
j=1

(
E
(
Z2
IE,ji

)
− (E(ZIE,ji))

2
)
.

Since the only possible values of ZIE,ji are 0 and 1, Z2
IE,ji = ZIE,ji, and therefore

(gIE)
2
NI∑
j=1

(
E
(
Z2
IE,ji

)
− (E(ZIE,ji))

2
)

=

(gIE)
2
NI∑
j=1

(
E (ZIE,ji)− (E(ZIE,ji))

2
)

= (gIE)
2
NI
(
pIE − p2

IE

)
.

Taking square roots, we obtain the standard deviation:

std (gIi) = gIE
√
NIpIE (1− pIE). (30.8)

From (30.7) and (30.8), we obtain the coefficient of variation of gIi:

cv (gIi) =
std (gIi)

E(gIi)
=

√
1− pIE
pIENI

.
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For pIE � 1, therefore,

cv (gIi) ≈
√

1

pIENI
.

Analogous calculations are possible, of course, for the E-to-I, E-to-E, and I-to-I
synaptic connections. This completes our argument showing that pEENE , pEINE ,
pIENI , and pIINI determine, in a sparse network, the size of variations in synaptic
input strengths per cell.

One might summarize the conclusion by saying that it is not the sparseness of
connectivity that hinders synchronization, but its randomness. In fact, what really
matters is one particular aspect of that randomness, namely the variability in the
numbers of excitatory and inhibitory inputs per cell. This point is illustrated by
Fig. 30.8. The middle panel of the figure shows results of a simulation in which
connectivity is so sparse that the mean number of excitatory and inhibitory inputs
per cell is 1. Not surprisingly, synchronization is lost. The bottom panel of the
figure shows results of a simulation of a very similar network, in which however the
exact number of excitatory and inhibitory inputs per cell equals 1. The E- and I-cells
from which these inputs originate are still chosen at random, but the fluctuations
in the numbers of inputs per cell have been eliminated. Pronounced rhythmicity
is recovered. The point is made again, more strikingly, by Fig. 30.9, which shows
results of the same simulations, but continued over a long time interval. (Only
the last 200 ms of simulated time are shown.) Synchronization eventually becomes
perfect with just one single excitatory and inhibitory input per cell!

30.4 Strengths of external drives and the suppression
boundary

For the PING mechanism to work, the I-cells should not fire without being prompted
by an E-cell spike volley. In the notation used earlier, this roughly means that IE
must be large enough, or II small enough. If IE is fixed, rhythmicity is lost as II
rises. Similarly, if II is fixed, rhythmicity is lost as IE falls. In idealized circum-
stances, there is a sharply defined boundary in parameter space, with the property
that PING is possible on one side of the boundary, but not on the other [12]. We
called this the suppression boundary in [12], and hypothesized in [10] that it might
play a role in brain function because it allows toggling between non-rhythmic and
rhythmic states with only small changes in parameters. In less idealized circum-
stances, with heterogeneity in external drives and randomness in synaptic connec-
tivity, the “suppression boundary” is not sharply defined. There is a more gradual,
but often still fairly abrupt transition from rhythmic to non-rhythmic states as the
I-cells become more excited, or as the E-cells become less excited. Figures 30.10
and 30.11 illustrate the fairly abrupt loss of rhythmicity as II is raised. Note that
Fig. 30.10 looks quite similar to Fig. 30.4 — the fact that the I-cells have more drive
than in Fig. 30.4 is of little consequence. However, as II rises from 0.7 (Fig. 30.10)
to 0.9 (Fig. 30.11), rhythmicity is largely lost.
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Figure 30.8. Top panel: As in Fig. 30.4 (a longer time interval is
simulated here), but with heterogeneity in the drive to the E-cells removed, i.e.,
σE = 0. The failure to reach perfect synchrony is now exclusively due to the ran-
domness of the synaptic connections. Middle panel: A similar simulation, but with
pEI = 1/200, pIE = 1/50, and pII = 1/50, so the expected numbers of excitatory
and inhibitory inputs per cell are 1. Bottom panel: Same as middle panel, but now
the actual numbers of excitatory and inhibitory inputs per cell are 1. Note that there
is very little, if any, rhythmicity in the middle panel, while pronounced rhythmicity
emerges in the bottom panel. [PING_5]
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Figure 30.9. Same as Fig. 30.8, but with simulations continued up to time
2000. Only the last 200 ms of simulated time are shown. [PING_6]
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Figure 30.10. Same as Fig. 30.4, but with II = 0.7, σI = 0.05. [PING_7]
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Figure 30.11. Same as Fig. 30.4, but with II = 0.9, σI = 0.05. [PING_8]

30.5 Recurrent inhibition
By recurrent inhibition, we mean I-to-I synapses here. When ĝII is set to zero in
the simulation of Fig. 30.4, i.e., when recurrent inhibition is eliminated, the result
is largely unchanged; the frequency rises slightly (exercise 4). On the other hand,
by tripling ĝII one can restore rhythmicity in Fig. 30.11 (exercise 5). Thus I-to-I
connectivity can play the role of “calming” the I-cells and thereby allowing the
PING mechanism to work when the external drive to the I-cells would otherwise
be too strong, but it is not needed for the emergence of a PING rhythm when the
drive to the I-cells is weak enough.
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Figure 30.12. Same as Fig. 30.4, but with ĝEE = 0.25, pEE = 0.5. [PING_9]

30.6 Recurrent excitation
Up to this point, we have set ĝEE = 0 in this chapter, so there have not been
any E-to-E synaptic connections. When we add weak E-to-E connections, with
the same time constants as for the E-to-I connections (τr,E = τpeak,E = 0.5 ms,
τd,E = 3 ms), the PING rhythm is barely affected. Stronger E-to-E connections
destroy the rhythm; see Fig. 30.12. This is in contrast with the Wilson-Cowan
model of Chapter 22, which requires recurrent excitation for oscillations.

Exercises
30.1. Vary the baseline parameters perturbed in Table 30.1, and see how the results

change.

30.2. Explain why the expectation of (30.4) is pEINE .

30.3. Explain why ĝEI is the expected value of the sum of all maximal conductances
associated with excitatory synaptic inputs into a given I-cell.

30.4. (∗) Verify that the rhythm in Fig. 30.4 is largely unchanged when ĝII is set
to zero.

30.5. (∗) Verify that the rhythm in Fig. 30.11 is restored when ĝII is tripled.

30.6. Explain why one would expect that short recurrent excitatory synapses would
not affect PING rhythms much.

30.7. (∗) (†) PING rhythms in our model networks have very regular population
frequencies; that is, the times between population spike volleys are nearly
constant. Experimentally recorded gamma rhythms are much less regular;
see for instance the top trace of Fig. 30.2.

One can try to introduce more variability by adding to the drives IE,i a sin-
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gle discrete Ornstein-Uhlenbeck process S(t) (independent of i), as defined
by eqs. (C.20)–(C.22) in Appendix C.6. This would model global fluctuations
in the excitability of E-cells. In a living brain, such fluctuations could result
from neuromodulation. (In general, the word neuromodulation denotes the
regulation of a whole population of neurons by a diffusely released neuro-
transmitter.)

Explore computationally whether you can set the parameters of the discrete
Ornstein-Uhlenbeck process so that the PING rhythm is not destroyed, but
its frequency becomes significantly more variable.

30.8. (∗) What happens if you make the inhibitory synapses in the simulation of
Fig. 30.4 much stronger, but also much faster, say τr,I = τpeak,I = 0.5 ms,
τd,I = 3 ms? Can you still get a gamma rhythm?


