*
*

This website is password protected.

*
A. Amendolara, H. G. Rotstein, E. Fortune
LSTM-Based Recurrent Neural Network Provides Effective Short Term Flu Forecasting
(2023)
BMC Publich Health, 23:1788
*

*
E. Lowett, R. A. Mount, U. Chialva, R. F. O. Pena, S. Xiao, S. L. Zhou, D. J. Sheehan, H.-A. Tseng, H. Gritton, S. Shroff, K. Kondabolu, C. Cheung, J. Mertz, M. E. Hasselmo, H. G. Rotstein, X. Han
Cellular voltage rhythmicity organizes distinct spiking output modes in the hippocampus
(2023)
Cell Reports, 42:112906
*

*
U. Chialva, V. Gonzalez Bosca, H. G. Rotstein
Low-dimensional models of single neurons: A review
(2023)
Biological Cybernetics, 117: 163 - 183
*

*
X. Li, O. Itani, D. Bucher, H. G. Rotstein, F. Nadim
Distinct Mechanisms Underlie Electrical Coupling Resonance and Its Interaction with Membrane Potential Resonance
(2023)
Frontiers in Systems Biology, 3:1122433.
*

*
D. Levenstein, V. A. Alvarez, A. Amarasingham, H. Azab, R. C. Gerkin, A. Hasenstaub, R. Iyer, R. Jolivet, S. Marzen, J. D. Monaco, A. A. Prinz, S. Quraishi, F. Santamaria, S. Shivkumar, M. F. Singh, R. Traub, F. Nadim (*) , Horacio G. Rotstein (*), A. D. Redish (*)
On the role of theory and modeling in neuroscience
(2023)
J Neurosci, 43:1074-1088
*

*
Y. Mondal, R. F. O. Pena, Horacio G. Rotstein
Temporal filters in response to presynaptic spike trains: Interplay of cellular, synaptic and short-term plasticity time scales
(2022)
J Comp Neurosci, 50:395-429
*

*
E. Stark, A. Levi, H. G. Rotstein
Neuronal resonance can be generated independently at distinct levels of organization
(2022)
PLoS Comp Biol, 18:e1010364
*

*
E. Khan, S. Saghafi, C. Diekman, H. G. Rotstein
The emergence of polyglot entrainment responses to periodic inputs in vicinities of a Hopf bifurcation
(2022)
Chaos, 32:063137
*

*
E. Khan, S. Saghafi, C. Diekman, H. G. Rotstein
The emergence of polyglot entrainment responses to periodic inputs in vicinities of a Hopf bifurcation
(2022)
Chaos, 32:063137
*

*
R. F. O. Pena, H. G. Rotstein
Oscillations and variability in neuronal systems: Interplay of autonomous transient dynamics and fast deterministic fluctuations
(2022)
Journal of Computational Neuroscience, 50:331-355
*

*
H. G. Rotstein
Nonlinearities shape the response patterns to oscillatory inputs in an electrochemical cell model: resonance and more complex patterns
(2022)
SIAM J. Appl. Dyn. Sys. (SIADS), 21:500-522
*

*
R. F. O. Pena, H. G. Rotstein
The voltage and spiking responses of subthreshold resonant neurons to structured and fluctuating inputs: emergence and loss of resonance and variability
(2022)
Biological Cybernetics, 116:163-190
*

*
D. Lederman, R. Patel, O. Itani, H. G. Rotstein
Parameter estimation in the age of degeneracy and unidentifiability
(2022)
Mathematics, 10:170
*

*
A. Churkin, S. Kriss, A. Uziel, A. Goyal, R. Zakh, S. J. Cotler, O. Etzion, A. Shlomani, H. G. Rotstein, H. Dahari, D. Barash
Machine learning for mathematical models of HCV kinetics during antiviral therapy
(2021)
Mathematical Biosciences, 343:108756
*

*
J. Reves-Szemere, H. G. Rotstein, A. Ventura
Frequency preference response in covalent modification cycles under substrate sequestration conditions
(2021)
Nature (npj) Systems Biology and Applications, 7:32
*

*
B. Bel, R. Cobiaga, W. Reartes, H. G. Rotstein
Periodic solutions in threshold-linear networks and their entrainment
(2021)
SIAM J. Appl. Dyn. Sys. (SIADS), 20:1177-1208
*

*
T. Ito, S. L. Brincat, M. Siegel, R. D. Mil, B. J. He, E. K. Miller, H. G. Rotstein, M. W. Cole
Task-evoked activity quenches neural correlations and variability in large-scale brain systems
(2020)
PLoS Comput. Biol., 16:e1007983
*

*
H. G. Rotstein, F. Nadim
Neurons and neural networks: Computational models
(2020)
In: Encyclopedia of Life Sciences. John Wiley \& Sons, Ltd: Chichester
*

*
H. G. Rotstein, E. Tabak
Analysis of spike-driven processes through attributable components
(2019)
Comm. Math. Sci., 17, 1177-1192
*

*
A. Bel, H. G. Rotstein
Resonance-based mechanisms of generation of relaxation oscillations in networks of non-oscillatory neurons
(2019)
Trends in Mathematics: Research Perspectives (CRM Barcelona, Summer 2018).
*

*
R. F. O. Pena, V. Lima, R. O. Shimura, C. C. Ceballos, H. G. Rotstein, A. C. Roque
Asymmetrical voltage response in resonant neurons shaped by nonlinearities
(2019)
Chaos, 29:103135
*

*
H. G. Rotstein, F. Nadim
Membrane potential resonance arising from responses of neuronal models to oscillatory inputs in current versus voltage clamp
(2019)
Biological Cybernetics, 113:373–395
*

*
A. Bel, A. Torresi, H. G. Rotstein
nhibition-based relaxation oscillations emerge in resonator networks
(2019)
Mathematical Modeling of Natural Phenomena., 14, 405
*

*
R. J. Leiser, H. G. Rotstein
Network resonance: impedance interactions via a frequency response alternating map (FRAM)
(2019)
SIAM J. Applied Dynamical Systems, 18:769-807.
*

*
A. Bel, H. G. Rotstein
Membrane potential resonance in non-oscillatory neurons interacts with synaptic connectivity to produce network oscillations
(2019)
J. Comp. Neurosci., 46:169-195.
*

*
T. Tran, C. T. Unal, L. Zaborskzky, A. Kirkwood, H. G. Rotstein, J. Golowasch
Ionic current correlations are ubiquitous: evidence from mammalian neurons
(2019)
Scientific Reports, 9:1687.
*

*
Y. Zhou, T. Vo, H. G. Rotstein, M. M. McCarthy, N. Kopell
M-current expands the range of gamma frequency inputs to which the neuronal target entrains
(2018)
J. Math. Neurosci., 8:13.
*

*
H. G. Rotstein
Subthreshold amplitude and phase resonance in single neurons: 2D models
(2018)
Encyclopedia of Computational Neuroscience (D. Jaeger and R. Jung, eds., Springer, New York).
*

*
H. G. Rotstein
Subthreshold antiresonance and antiphasonance in single neurons: 3D models
(2018)
Encyclopedia of Computational Neuroscience (D. Jaeger and R. Jung, eds., Springer, New York)
*

*
A. G. R. Turnquist, H. G. Rotstein
Quadratization: From conductance-based models to caricature models with parabolic nonlinearities
(2018)
Encyclopedia of Computational Neuroscience (D. Jaeger and R. Jung, eds., Springer, New York).
*

*
D. Burke, H. G. Rotstein, V. A. Alvarez
Striatal local circuitry: a new framework for lateral inhibition
(2017)
Neuron, 96:267-284
*

*
H. G. Rotstein.
Spiking resonances in models with the same slow resonant and fast amplifying ionic currents but different subthreshold dynamic properties
(2017)
J Comp Neurosci, 43:243-271.
*

*
H. G. Rotstein, E. Schneider, L. Szczupak
Feedback signal from motoneurons influences a rhythmic pattern generator
(2017)
J Neurosci, 37:9149-9159.
*

*
R. E. Kass, S.-I. Amari, K. Arai, E. N. Brown, C. O. Diekman, M. Diesmann, B. Doiron, U. T. Eden, A. Fairhall, G. M. Fiddyment, T. Fukai, S. Grun, M. Harrison, M. Helias, M. A. Kramer, H. Nakahara, J. Teramae, P. J. Thomas, M. Reimers, J. Rodu, H. G. Rotstein, E. Shea-Brown, H. Shimazaki, S. Shinomoto, B. M. Yu.
Computational Neuroscience: Mathematical and Statistical Perspectives
*

*
D. Fox, H.-A Tseng, T. Smolinsky, H. G. Rotstein, F. Nadim.
*

*
R. J. Leiser, H. G. Rotstein
*

*
H. G. Rotstein.
Resonance modulation, annihilation and generation of anti-resonance and anti-phasonance in 3D neuronal systems: interplay of resonant and amplifying currents with slow dynamics
(2017)
J Comp Neurosci, 43:35-63
*

*
H. G. Rotstein.
The shaping of intrinsic membrane potential oscillations: positive/negative feedback, ionic resonance/amplification, nonlinearities and time scales
(2017)
J Comp Neurosci, 42:133-166
*

*
H. G. Rotstein, M. Olarinre, J. Golowasch.
Dynamic compensation mechanism give rise to period and duty cycle level sets in oscillatory neuronal models
(2016)
J Neurophysiol, 116:2431-2452.
*

*
Y. Chen, X. Li, H. G. Rotstein, F. Nadim.
Membrane potential resonance frequency directly influences network frequency through gap junctions
(2016)
J Neurophysiol, 116:1554-1563
*

*
C. Schindewolf, D. Kim, A. Bel, H. G. Rotstein.
Complex patterns in networks of hyperexcitable neurons with multiple time scales
(2016).
Theoretical Computer Science C, 663:71-82
*

*
M. Espanol, H. G. Rotstein
Complex mixed-mode oscillatory patterns in a periodically forced excitable Belousov-Zhabotinsky reaction model
(2015)
Chaos, 25:064601 (1-18)
*

*
H. G. Rotstein.
Cluster-size dynamics: A phenomenological model for the interaction between coagulation and fragmentation processes
(2015).
J Chem Phys, 142:224101
*

*
H. G. Rotstein.
Subthreshold amplitude and phase resonance in models of quadratic type: nonlinear effects generated by the interplay of resonant and amplifying currents
(2015).
J Comp Neurosci, 38:325-354
*

*
H. G. Rotstein.
Frequency preference response to oscillatory inputs in two-dimensional neural models: a geometric approach to subthreshold amplitude and phase-resonance
(2014).
J Math Neurosci, 4:11 (1-41)
*

*
H. G. Rotstein, F. Nadim
Frequency preference in two-dimensional neural models: a linear analysis of the interaction between resonant and amplifying currents
(2014).
J Comp Neurosci, 37:9-28
*

*
E. Stark, R. Eichler, L. Roux, S. Fujisawa, H. G. Rotstein, G. Buzsaki
Inhibition induced theta resonance in cortical circuits
(2013).
Neuron, 80:1263-1276
*

*
H. G. Rotstein
Subthreshold amplitude and phase resonance in single cells
(2013)
Encyclopedia of Computational Neuroscience (Springer, New York)
*

*
H. G. Rotstein
Mixed-mode oscillations in single neurons
(2013)
In press:
Encyclopedia of Computational Neuroscience (Springer, New York)
*

*
H. G. Rotstein
Abrupt and gradual transitions between low and hyperexcited firing frequencies in neuronal models with fast synaptic excitation: a comparative study
(2013)
Chaos, 46:046104
*

*
T. J. Kaper, M. A. Kramer, H. G. Rotstein
Introduction to Focus Issue: Rhythms and dynamic transitions in neurological disease: modeling, computation, and experiment
(2013)
Chaos, 46:046001
*

*
H. G. Rotstein
Preferred frequency responses to oscillatory inputs in an electrochemical cell model: Linear amplitude and phase resonance
(2013)
Phys Rev E, 88:062913
*

*
H. G. Rotstein, F. Nadim.
Neurons and neural networks: Computational models.
(2013) In: Encyclopedia of Life Sciences. John Wiley \& Sons, Ltd: Chichester
http://www.els.net/ [DOI: 10.1002/9780470015902.a0000089.pub3]
*

*
H. G. Rotstein, H. Wu
Dynamic mechanisms of generation of oscillatory cluster patterns in a
globally coupled chemical system
(2012)
J Chem Phys, 137:104908
CAMS-NJIT Technical Report 1112-10
(full version).
*

*
H. G. Rotstein, H. Wu
Swing, release, and escape mechanisms contribute to the generation of phase-locked cluster patterns in a globally coupled FitzHugh-Nagumo model
(2012)
Phys. Rev. E, 86:066207
*

*
H. G. Rotstein, S. Coombes, A. M. Gheorghe
Canard-like explosion of limit cycles in two-dimensional piecewise-linear models of FitzHugh-Nagumo type
(2012)
SIAM J Appl Dyn Sys (SIADS), 1:135:180
CAMS-NJIT Technical Report 1112-4
(full version).
*

*
T. Kispersky, J. A. White, H. G. Rotstein.
The mechanism of abrupt transition between theta and hyper-excitable spiking activity in medial entorhinal cortex layer II stellate cells
(2010)
PLoS One 5:e13697
Supplementary Material
*

*
Y. Boubendir, V. Mendez, H. G. Rotstein.
Dynamics of one- and two-dimensional fronts in a bistable equation with delayed feedback: Propagation failure and control mechanisms
(2010) Phys. Rev. E., 82:036601 .
*

*
J. Jalics, M. Krupa, H. G. Rotstein.
Mixed-mode oscillations in a three time-scale system of ODEs motivated by a
neuronal model
(2010) Dynamical Systems - iFirst 1-38.
*

*
H. G. Rotstein, M. Wechselberger, N. Kopell
Canard induced mixed-mode oscillations in a medial entorhinal cortex layer II stellate cell model
(2008) Siam J. Appl. Dyn. Sys. (SIADS), 7:1582-1611.
*

*
M. Brons, T. J. Kaper, H. G. Rotstein
Introduction to Focus Issue: Mixed Mode Oscillations: Experiment, Computation,
and Analysis
(2008) Chaos 18:015101, Focus Issue on Mixed-Mode Oscillations.
*

*
M. Krupa, N. Popovic, N. Kopell, H. G. Rotstein
Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron
(2008) Chaos 18:015106, Focus Issue on Mixed-Mode Oscillations.
*

*
H. G. Rotstein, F. Nadim.
Neurons and neural networks: Computational models.
(2007) In: Encyclopedia of Life Sciences. John Wiley \& Sons, Ltd: Chichester
http://www.els.net/ [DOI: 10.1002/9780470015902.a0000089.pub2]
*

*
A. B. L. Tort, H. G. Rotsein, T. Dugladze, T. Gloveli, N. Kopell.
Formation of gamma coherent cell assemblies by oriens lacunosum-moleculare interneurons in the hippocampus: a modeling study.
(2007) PNAS 104:13490-13495.
Supplementary material (Table 1),
Supplementary material (Table 2).
*

*
N. Kopell, D. Pervouchine, H. G. Rotstein, T. Netoff, M. Whittington, T. Gloveli.
Multiple rhythms and switches in the nervous system
(2006)
Proceedings of the Second International Symposium on the Frontier of Applied Mathematics in honor of Prof. C. C. Lin.
*

*
H. G. Rotstein, T. Oppermann, J. A. White, N. Kopell.
The dynamic structure underlying subthreshold oscillatory activity and
the onset of spikes in a model of medial entorhinal cortex stellate cells.
(2006) J. Comp. Neurosci., 21:271-292.
*

*
D. D. Pervouchine, T. I. Netoff, H. G. Rotstein, J. A. White,
M. O. Cunningham, M. A. Whittington, N. Kopell.
Low-dimensional maps encoding dynamics in the entorhinal cortex and
the hippocampus.
(2006) Neural Computation, 18:2617-2650.
*

*
H. G. Rotstein, R. Kuske.
Localized and asynchronous patterns via canards in coupled calcium
oscillators.
(2006) Physica D. 215:46-61.
*

*
H. G. Rotstein, A. M. Zhabotinsky, I. R. Epstein.
Localized structures in a nonlinear wave equation stabilized by negative global feedback: one-dimensional and quasi-two-dimensional kinks
(2006) Phys. Rev. E., 74:016612
*

*
T. Gloveli, T. Dugladze, H. G. Rotstein, R. D. Traub, H. Monyer, U. Heinemann,
M. Whittington, N. Kopell.
Orthogonal arrangement of rhythm-generating microcircuits in the hippocampus
(2005) PNAS 102:13295-13300.
Supplementary material
*

*
H. G. Rotstein, D. D. Pervouchine, C. D. Acker, M. J. Gillies, J. A. White,
E. H. Buhl, M. A. Whittington, N. Kopell.
Slow and fast inhibition and an h-current interact to create a theta rhythm in
a model of CA1 interneuron network.
(2005) J. Neurophysiol. 94:1509-1518.
*

*
R. Clewley, H. G. Rotstein, N. Kopell.
A computational tool for the reduction of nonlinear ODE systems possesing
multiple scales.
(2005) SIAM J. on Multiscale Modeling and Simulations 4:732-759.
*

*
H. G. Rotstein, N. Kopell, A. M. Zhabotinsky, I. R. Epstein.
Canard phenomenon and localization of oscillations in the Belousov-Zhabotinsky
reaction with global feedback.
(2003) J. Chem. Phys. 119:8824-8832.
*

*
H. G. Rotstein, N. Kopell, A. M. Zhabotinsky, I. R. Epstein.
A canard mechanism for localization in systems of globally coupled oscillators.
(2003) SIAM J. Appl. Math., 63:1098-2019.
*

*
V. Mendez, J. Fort, H. G. Rotstein, S. Fedotov.
Speed of reaction-diffusion fronts in spatially heterogeneous media.
(2003)
Phys. Rev. E. 68:041105.
*

*
M. E. Sola, H. G. Rotstein, J. C. Bazan.
The Ag/AgI/Graphite solid cell as iodine sensor: speed of response
and use of Cs-doped AgI as electrolyte.
(2002) J. Solid State Electrochemistry, 6:279-283.
*

*
H. G. Rotstein, R. Tannenbaum.
Cluster coagulation and growth limited by surface interactions
with polymers.
(2002) J. Phys. Chem. B, 106:146-151.
*

*
H. G. Rotstein, I. Mitkov, A. M. Zhabotinsky, I. R. Epstein.
Dynamics of Kinks in One- and Two- Dimensional Hyperbolic Models
with Quasi-discrete Nonlinearities.
(2001) Phys. Rev. E, 63:066613.
*

*
H. G. Rotstein, A. M. Zhabotinsky, I. R. Epstein.
Dynamics of one- and two-dimensional kinks in reaction
diffusion equations of Allen-Cahn type with a
quasi-discrete source of reaction.
(2001) Chaos, 11:833-842.
*

*
H. G. Rotstein,
S. Brandon, A. Novick-Cohen, A. A. Nepomnyashchy.
Phase field equations with memory: the hyperbolic case.
(2001) SIAM J. Appl. Math, 62:264-282.
*

*
M. Grasselli, H. G. Rotstein.
Hyperbolic phase-field dynamics with memory.
(2001) J.Math. Anal. Appl., 261:205-230.
*

*
B. Malomed, H. G. Rotstein.
Ramped-induced states in the parametrically driven Ginzburg-Landau
model .
(2001) Physics Letters A, 283:327-334.
*

*
H. G. Rotstein, A. I. Domoshnitsky, A. A. Nepomnyashchy.
Front motion for phase transitions in systems wity memory.
(2000) Physica D, 146:137-149.
*

*
B. Malomed, H. G. Rotstein.
A quasicrystallic domain wall in nonlinear dissipative systems.
(2000)
Physica Scripta, 62:164-168.
*

*
H. G. Rotstein, A. A. Nepomnyashchy.
Dynamics of kinks in two dimensional hyperbolic models.
(2000) Physica D, 136:245-265.
*

*
H. G. Rotstein, A. I. Domoshnitsky, A. A. Nepomnyashchy.
Phase transition dynamics with memory
Functional Differential Equations (1998), 5:439-451.
*

*
H. G. Rotstein, A. A. Nepomyashchy, A. Novick-Cohen.
Hyperbolic non-conserved phase field equations.
(1999) Journal of Crystal Growth, Proceedings of the ICCG12,
198-199:1262-1266.
*

*
H. G. Rotstein, S. Brandon, A. Novick-Cohen.
Hyperbolic flow by mean curvature.
(1999)
Journal of Crystal Growth, Proceedings of the ICCG12,
198-199:1256-1261.
*

*
H. G. Rotstein, A. Novick-Cohen, R. Tannenbaum.
Gelation and cluster growth with cluster-wall interactions (1998)
J. Stat. Phys, 90-1/2.
*