Chapter 19: Real-Time Systems

Objectives

- To explain the timing requirements of real-time systems
- To distinguish between hard and soft real-time systems
- To discuss the defining characteristics of real-time systems
- To describe scheduling algorithms for hard real-time systems

Overview of Real-Time Systems

- A real-time system requires that results be produced within a specified deadline period.
- An embedded system is a computing device that is part of a larger system (i.e., automobile, airliner.)
- A safety-critical system is a real-time system with catastrophic results in case of failure.
- A hard real-time system guarantees that real-time tasks be completed within their required deadlines.
- A soft real-time system provides priority of real-time tasks over non-real-time tasks.
System Characteristics

- Single purpose
- Small size
- Inexpensively mass-produced
- Specific timing requirements

System-on-a-Chip

- Many real-time systems are designed using system-on-a-chip (SOC) strategy.
- SOC allows the CPU, memory, memory-management unit, and attached peripheral ports (i.e. USB) to be contained in a single integrated circuit.

Bus-Oriented System

Features of Real-Time Kernels

- Most real-time systems do not provide the features found in a standard desktop system.
- Reasons include
 - Real-time systems are typically single-purpose.
 - Real-time systems often do not require interfacing with a user.
 - Features found in a desktop PC require more substantial hardware that what is typically available in a real-time system.
Virtual Memory in Real-Time Systems

- Address translation may occur via:
 - (1) **Real-addressing mode** where programs generate actual addresses.
 - (2) **Relocation** register mode.
 - (3) Implementing full **virtual memory**.

Implementing Real-Time Operating Systems

- In general, real-time operating systems must provide:
 1. Preemptive, priority-based scheduling
 2. Preemptive kernels
 3. Latency must be minimized

Minimizing Latency

- **Event latency** is the amount of time from when an event occurs to when it is serviced.
Interrupt Latency

- Interrupt latency is the period of time from when an interrupt arrives at the CPU to when it is serviced.

Dispatch Latency

- Dispatch latency is the amount of time required for the scheduler to stop one process and start another.

Real-Time CPU Scheduling

- Periodic processes require the CPU at specified intervals (periods)
- p is the duration of the period
- d is the deadline by when the process must be serviced
- t is the processing time

Scheduling of tasks when P_2 has a higher priority than P_1

- Deadlines
 - P_3
 - P_1
 - P_1, P_2
Rate Monotonic Scheduling

- A priority is assigned based on the inverse of its period
- Shorter periods = higher priority;
- Longer periods = lower priority

P₁ is assigned a higher priority than P₂.

Earliest Deadline First Scheduling

- Priorities are assigned according to deadlines:
 - the earlier the deadline, the higher the priority;
 - the later the deadline, the lower the priority.

Proportional Share Scheduling

- T shares are allocated among all processes in the system.
- An application receives N shares where N < T.
- This ensures each application will receive N / T of the total processor time.
Pthread Scheduling

- The Pthread API provides functions for managing real-time threads.

- Pthreads defines two scheduling classes for real-time threads:
 1. SCHED_FIFO - threads are scheduled using a FCFS strategy with a FIFO queue. There is no time-slicing for threads of equal priority.
 2. SCHED_RR - similar to SCHED_FIFO except time-slicing occurs for threads of equal priority.

Wind Microkernel

- The Wind microkernel provides support for the following:
 1. Processes and threads;
 2. preemptive and non-preemptive round-robin scheduling;
 3. manages interrupts (with bounded interrupt and dispatch latency times);
 4. shared memory and message passing interprocess communication facilities.

VxWorks 5.0

- embedded real-time application
 - POSIX library
 - Java library
 - file systems
 - TCP/IP
 - virtual memory
 - Wind microkernel
 - graphics library
 - hardware level
 (Pentium, Power PC, MIPS, customized, etc.)

End of Chapter 19