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= Possible emergence of fixed wireless networks

— Cellular-like, static architecture

— Multi-hop wireless path to wireline gateway.

* Mesh nodes form the backbone, with a subset having
broadband wide-area connectivity.

* Mobile devices attach to mesh (AP) nodes.
— |EEE 802.11s standardization.

Significant government interest as a digital pervasive
information infrastructure..

— Mesh deployments in Garland (TX), Portland (OR),
Auckland (NZ), Philadelphia, Taiwan

Significant vendor interest as a low-OPEX broadband
alternative to homes.

— Startups: Firetide, Tropos, MeshDynamics

— Router/Chipset Vendors: Intel and Motorola
(MeshConnex)

— Consumer (Gateway Devices): Microsoft Mesh
Networking Toolkit

\

Wireless Mesh: Residential/ Community Multi-Hop Connectivity
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Rate-Channel Diversity and Implications

= Problem: Data throughput rates are still very low = makes
wireless uncompetitive for even standard enterprise
applications

— Interference among nodes on different paths
— Interference among packets on the same flow on different links.
— Asymptotic capacity degrades as 1/sqrt(N) for arbitrary flows.

= Emergence of high-speed and variable rate WLANS.
— 802.11a/b provide up to (2, ..., 22, 54) Mbps
— Higher speeds (108 Mbps++) under standardization.
— Larger bit-rate> smaller coverage area

= Emergence of multiple radios (NICs) on a single node.

— Radio tuned to orthogonal channels—> permits larger concurrent
reuse.

» 3/12 non-overlapped channels for 802.11b/a
— Radio channels reconfigurable in software.
» Typical channel switching time 180-200 ms with commodity cards.

— 5-6 fold increase in capacity over single-channel mode has been
reported.
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Exploiting Rate-Diversity for Low-Latency

Broadcast Traffic
= Major trend in mesh-architecture is used of Ak I
multiple-radios, multiple-channels. 2 T e e
. . £ ] b <oee QAMIES (EMbps)
— Bulk of research on unicast traffic ( Channel gy 1'1 T S v
Assignment [Raniwala,2005], 2 opooboa = —— DEPSK (IMbgs)
Interference&Robustness [Bicket,2005], Routing I R N .
Metrics [Draves,2004]) — 11 :
0 N L L L I
= QOur research focuses on multicast (broadcast) traffic T mem

over wireless mesh architectures. Theoretical UDP rate-distance variation for

— Natural interplay between wireless broadcast 802.11 (Holland, 2000)
medium and routing protocols. 4000 (—
3600 gy TR,
.. . B g 3000 _¥+£¢: + * .
= Current research: How to efficiently distribute broadcast & R -
data using rate and channel-diverse mesh links? g POrAia v, . .
: L , S 2000 b P
— Important for various latency-sensitive multicast 2 :?éx e I T U .
traffic (VoD, MMOGS) 2 L %.ﬂ?* e
. o E 1000 | .p 2, o, e L0 H
— Sensor feeds (broadcast dissemination of = \ *fﬁfr: :
audio/video sensors and “presence”) 500, :{;i {3 o
. n Rt T o Fore] £ TN SR k] =
— Community sports events 0 500 1000 1500 2000

Distance (meters)

Observed real-life rate/distance diver sity (Roofnet, 2005)
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Multicast Forwarding in Multi-Channel, Multi-Rate Mesh
= Fundamental questions
— Should we use multi-rate multicast?

“‘.---.,’ — Design questions e.g. How to choose
.* * the rates? Etc.

age questions e.g. How do we exploit
Hrate multicast?

=  Minimum network
broadcast latency
that exploits

*  Multi-rate

*  Wireless
multicast
advantage
(WMA)

= Metric: broadcast
latency = time till all
nodes receive packet.

» Forwarding Tree “1”

memsssssssdp  Forwarding Tree “2”
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Talk Themes

single-radio WMN

Multi-channel, multi-radio Wi
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Multi-Rate: Canonical Example

©, O, @ ®

| | 1 | |
|
i d =400 i d=100 E d =400 i d =400 :
 t=11 I t=1 I t=11 I t=11 I
| | 1 | |
[ [ [ |
L1 =>(2,5) : 2->3 : 3—>4 !
| | | | Time
| | | 43 .
0 11 22
1 -2
v L. L 1->s
Lo - ! 3—>4 '
1 ' ' »Time
|| | |
01 12 23

= Multi-rate multicast ~= single-rate multicast

= A new degree-of-freedom

O

Broadcast latency = 33,
p= 1 pkt/33 time units

Broadcast latency = 23,
p= 1 pkt/23 time units

— Multicasting the same packet more than once but at different rates to a

different subset of neighbors
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(SRSC) Minimum Latency Broadcast: Three Step

Heuristic
1 TOp:bJ EI a@! E g E ﬁ: IR] §||ﬂ l; ! m ii . pme Bifter topology construction
b ro w @ a h@?qe e 100 Bifter topalogy construction
P 4 14001300 : : ' ' ' w
1 ! ‘7 1300 MOO*T . /Z
— Take mdﬁﬂdwwmwmmlawcount. 120 o
account. 1100|1100

— Take multi-rate and WMA into .

2. MulticasBHSAHRG: At each node of tree, aoo ™1 ’
decide number and destination of local Boo| |
multicasts. 700| g0l ]
- \ﬁOMHg I@g éttg% U 50300 560 660 T(I)D B(I)O 960 10IDD 11bD 12‘0(6) 1300
node o re ecide num 500

400 500 GODO 700 8O0 900 1000 1100 1200 1300

and destlnatlon of local

3. Trans'mlégi.kﬁf‘s%ﬁeduling:. For defined set
of transSMAFSIRNsa SRR OAT lRBUES Ko

transmls%gﬂ order.

— Precedence constraints from broadcast tree
— Conflict graph from radio interference
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(SRSC) WCDS: Heuristic for Rate-Aware

Broadcasting .
) 1400 %
L Add one (node,rate) pair every ool % .,
Iteration 1200} .
— Current estimate of WCDS is D Heer
10001 o
- 1
—-C=U {X S D} N(X,rx) 00 F 4
- Nodes in C are said to be covered o
B0
— Find X e D and rate r, such that 0o} .
IN(X1rx)\C| *r, IS maximized 00 B0 600 @ 800 60 1000 1100 125% 1300
WCDS after topology construction
1500 T T T T
1400
13{]0—-8 S
= Basic Intuition: Maximize the product of the 120
rate and the number of not-yet-covered nodes 1;22
900
800
= Tied into later result: Efficiency of a rate for ol
broadcast is measured by Rate x Coverage s00}
area 5020[} S(I)[} G(IJO ?(I]D B(I]O QCI]CI 10I0[) 11I0[) 12I00 1300
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(SRSC) Main Results

—.— BIB —+—BIB
et —o—CDS
10- ==spT ™ 16k SPT |
=== CDS —&—WCDS
== \CDS

Normalised worst case delay
Percentage topologies here multiple transmissions regired
|

0 & 4 & & ¢ 2
a0 800 a0 1000 1100 1200 1300

30 40 50 60 70 80 90 100 sqare root of area

Number of nodes

Rate-awar e heuristic resultsin 1/6t Number of additional transmissions per

minimum latency delay (X6 throughput) node NOT of much use-~10% reduction in
latency in ~10% of topologies
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Minimum Latency Delay: Theory and Future

Broadcast area A = nd”"2 Rate | Range
Packet size = p m— 9
Covers A in time p/r r

p’r

d
0.5*d 4—‘

0.55 - =

Broadcast latency of WCDS to CDS

Result: Simulations support conjecture that rate

of increase of transmission rate* decrease in
area determines utility of rate.

| © 2006 IBM Corporation

Needs 4 broadcaststo cover A

Timerequired =4*p / (p*r)

10"
distance

Result: Shannon limit suggeststhat a

10’

limited set of multiple rates will always
be useful




IBM Research

Talk Themes

NCreasing througnhput via rate diversity
WIVIN
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(MRMC) MWT: Multi-Radio Version of WCDS

= Add one (node,rate, channel) tuple for every
iteration

— Current estimate of WCDS is D

— C = U{x € D} N(x,Iy, Cy)
* Nodes in C are said to be covered
— Find x e D and rate r, channel ¢, such that
IN(X,ry CO\C| * ry is maximized

— In case of tie, choose the Cx that is least used in the x’s
“conflict graph”

= Basic Intuition: Maximize the product of the rate and the
number of not-yet-covered nodes

— Additionally, investigate the choice of multiple
channels in each node.

D
MAX(Fo*3 a2 g2

= Caveat: Does NOT consider the possibility of multiple rD* 2 Dy 3)
concurrent transmissions by a single node. R < I
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(MRMC) PAMT: Parallelized, Approximate-Shortest Multi-Channel
Tree

= Add one (node,rate, channel) tuple for every
iteration

— Current estimate of WCDS is D

— C = U{x € D} N(x,Iy, Cy)
* Nodes in C are said to be covered
= Find X e D and rate r, channel c, such that
IN(X,ry CO\ C| * ry is maximized
= Each node x e D associated with latency value lat(x) =
latency of path from S to x.

— Avoid counting in N(x,r, Cy) nodes that can be reached by
another channel C?, (for all y e D) with a latency (lat(y)+
1/ryysmaller than lat(x)+ 1/ ry.

= Basic Intuition: Do not count nodes that can be reached abtﬂeo\x( r CB; (11) * 11 Fz (54) * 1, r g (22) * 1,

lower latency by an idle interface (on any node already in
set). D b —D
* * 2)*1
— Behavior mimics a shortest path tree, subject to WBA I B (54) 1’ = 1)*1, r.R( )* D)
and interface availability.
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(MRMC) Performance Results #1

N= 10, Area=1200"1200 m2 C!—B C=8, Area=1200"1200 m2

y ; ; ; ; ; 1.8
'12§ LT PR P R PP T F  EEREs AEEETREEE - .|
> el owseT) | eyeer] A
2 . 3] '1_?' ...... MWT ...........:...........:...........:...... -
IR U ) RO S SR S— | oMT 1 o ~&—LMT
& e | —B—PAMT ®W16F-| ¥ I
o w
03 £ £ - ..Ej L R L] [LTT T TERCN:EESNRRERN
o 1.15 =
g A% 14
E 1-1 R et temmstamr immmr imbar o e e et e e e e tiae e ﬂ
g g1
© : . : : : =
; . R ; ; | o
E '1[]5_..; .......... n. ......... I. .......; .......... - .......... -. .......... g '1'2
2 - . S 147
1 ; ; ; . f———f———F ,
1 | |
1 2 3 4 2 o ! 8 10 20 30 40 50 60 70

Number of Interfaces Q (and Number of Channels C) Number of nodes (N)

*PAMT providesthe best performance by exploiting Concurrency, Wir eless Broadcast
Advantage and Path L atency

* Relatively small number of radios (2/3) per node provide significant improvement in
performance (within 10-20%) of infinite channel, infinite radio case)

» Overall normalized latency increases with node density (due to contention effects)
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(MRMC) Performance Results #2: (8011.a/b)

N=30; Area= 1 km x 1 km; CCA; 802.11a Q=C=3; Area= 1 km x 1 km; CCA; 802.11b
13 T T T T T T T T T T T
r —0— MSPT 18
—a— MWT 17} —O0— MSPT
1R —#— LMT —a— MWT
—— PAMT 16} — LMT
11k —%— PAMT

-
a
T

-
=)

T

-

S T

-
N
T T T

Mean broadcast latency (in ms)
Mean broadcast latency (in ms)
@

10

1 2 3 4 5 6 7 20 30 40 50 60 70 80 90 100

Number of interfaces Q (Q=C) Number of nodes N
802.11a latency vs. Q 802.11b latency vs. N

*PAMT can reducethe broadcast latency down to ~8-10 msecs (802.11a) and ~10-12 msecs
(802.11b) with Q=3 interfaces.

* MSPT performanceis pretty decent if we have alarge number of radios and channels.

*Overall latency increases with node density (due to contention effects)
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(MRMC) Performance Results #3

MSPT, Q=2; Area= 1 km x 1 km; 802.11b
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—6— CCA
—8— VCA
—#— INSTC

—_
~
T

-
()
T

—_
N

Mean broadcast latency (in ms)
o

—_
w
T

12
2

3 4 5 6 7 8
Number of radio channels (C)

ar —b>—VCA

PAMT, Q=2; Area= 1 km x 1 km; 802.11b

—%— CCA
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*Perfor mance depends on the channel allocation strategy. Two competing objectives:

*High connectivity (lower network depth, prevent disconnection and bottlenecks)

L ow interference (reduce contention on link to avoid MAC delays)

« For PAMT, CCA resultsin the lowest latency; for MSPT, INSTC resultsin lowest latency.

 Algorithmsthat exploit trx. Parallelism do better under greater connectivity.

*Channel assignment designed for unicast traffic is counter productiveto broadcast traffic.
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Talk Themes

single-radio WMN

Multi-channel, multi-radio WMN
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QoS-Aware Multicasting: Improving Network
“Capacity”
= Multiple point-to-multipoint flows in a mesh

— Goal: Increase the capacity (cumulative throughput) of admitted flows, without incurring
excessive latency.

= Challenges with even a centralized routing algorithm:
— Interference between multicast transmissions is not symmetric.

— “Interference ring” transmissions change with change of receiver subset.
 Particular challenge for multicast trees built “receiver-to-source”.
“transmission interference graph”.

I
‘6 " v6 v9
s, ° ?
‘E(V;";Fj ) : 4 a
Y 1‘3‘ \7 v7 Ve vi0
O R Y v g
, \\\ v2 i !;; J/ T{I" I?IFJ J '[(1’; FJ J

X o - b

R: v3 v5 8 vl
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Different Metrics for Broadcast Selection

KWCMA: (same as WCDS) \ :

fwema(t(vi, Fj)) = |N(vi, F)| x p(vi, Fj)

=
o

« MRA: Maximum RTTF

farra(r(vi, F)) = RTTF (r(v;, F;)|p(vi, F})) S/ I T R o
! 5
2

* WMRA: max rate*RTTF

frura(T(vi, Fy)) = p(vi, Fj) X 04l
RTTF (7(v;, Fj)|p(vi. F;))

=
in

D 3 | | | | | 1
50 (] 70 80 ag 100
Number of nodes in network

* RTTF-Aware Coverage:

] * Result: RCA outperforms other algorithms
Froa(T(vi, Fy)) = |N(vi, E5)| % p(vi, Fj) in total capacity achieved (no. of 0.1 Mbps

x RTTF(7(vi, F;)|p(v;, F})) flows admitted)
* Results not spectacular for broadcast
as ‘' no routing around hotspot’.
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QoS-Aware Multicasting: RCAM and Performance

 RCAM isarecever-driven multicast
tree formation algorithm.
» Basic idea: Each receiver
computes least cost path to source
and grafts at first ancestor already
on the multicast tree.

» Key differenceisin the computation of
COSt:
* WBA: ¢(v,,V,)=0if v, isaready
on multicast tree and can reach v,
* Incorporateratediversity and
contention:

1
p(va, vp)

c(Vg,vp) = X

1
1 — maX (v, v;)<rxd(pr) CTTF (1)

Netwaork throughput (Mbps)

ul B

5 10
Mumber of multicast rersivers ner aroun (00

400 nodesin 1.5kmX1.5km; L=0.1 M bps, 802.11a

Result: RCAM increases the total feasible

multicast load of the network by ~70-90% by

considering both load and route diversity.
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—1
—_— -

Performance of Distributed Multicasting Algorithms

. . . . Protocol Type Interface and Rate
* MRDT isadistributed version of the rate/channel - channel diversity | diversity
. . MREDT distributed v v
aware broadcasting tree algorithm. It has 4 steps: PAMT [0] | centralized 7 .
. . MDW [18 distributed *
« Form a CDS (no rate/channel diversity). B e % %

» Decide ‘nodes’ that a marked nodes must
‘cover’ —(U2V2W VS, U2W).

» Rate maximization: shift nodes to other nodes/
interfaces if it increases overall RAP value
* RCAM is areceiver-driven multicast tree
formation agorithm.

* Build a source-routed spanning tree over t
resulting CDS (eliminates many trx).
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Talk Themes

nel, single-radio WMN

Multi-channel, multi-radio WMN
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Reliability for Link-Layer Multicast

= Big drawback of basic tree ' '
algorithms: packet loss rate ransmissions (analogue o

Increases with tree depth (no
MAC-layer reliability).
= Two alternatives: /®

— Provide link-layer reliability by f
retransmissions. ®_4»_® G)i
— Provide reliability through
redundant transmissions
(forest/mesh)

= Question: what’s the cost of

retransmission-based
reliability? ETX=1.1, EMT=1.34

| © 2006 IBM Corporation
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PROD: Probabilistically Reliable Delivery

= EMT can be calcuated as a
function of link reliability fjand N;
(# of children)

F R
fi :1_di,j*di,j
= EMT is given by:
1| 1 1
EMT, = —-1j° :
' E[: :] EE'IZEH" e - ].-.[IIE-E "f':-J

= PROD is receiver-driven multicast

— Node x join node on tree with Fig. 3. Frofacel Zxamyle
smallest ‘incremental EMT cost’

c(x,v) = EMT(v,childu x) —
EMT(v, child)

| © 2006 IBM Corporation
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PROD: Performance Results
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* PROD decreases packet |oss rates by ~30% and end-to-end latency for reliable delivery by

~15%. (Probabilistic as max. retries=5; MAC layer=BMM instead of 802.11

» Reliable delivery latency ~70-80 msecs, compared to 10-20 msecs for best-effort multicasting
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Insights and Open Questions

= Rate-diversity for link-layer broadcasts is critical for low latency and higher
throughput.

— Such latency is critical consideration for broadcast/multicast data applications.

= A limited number or radios/node and multiple channels offers significant benefits.
— PAMT algorithm adapts to the number of radio interfaces and channels

— Use of 2 or 3 radios per node can bring the broadcast latency to within 20% of the ideal
(infinite radio) case; with 1 radio we incur ~100% overhead.

— Building a multicast tree that combines WBA with rate diversity can increase the
network’s multicast capacity by ~70-90%

= Ongoing work to address:

— Robustness vs. delay sensitivity: How to provide resilience against link-losses while
keeping broadcast latency low.

* Is mesh vs. link-layer reliability the right approach?

— How do the algorithms change when new physical layer technologies (e.g.,
cooperative diversity) become available?
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