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ABSTRACT

Ensemble learning, in its simplest form, entails the training of multiple models
with the same training set. In a standard supervised setting, the training set can
be viewed as a ‘teacher’ with an unbounded capacity of interactions with a single
group of ‘trainee’ models. One can then ask the following broad question: How
can we train an ensemble if the teacher has a bounded capacity of interactions
with the trainees?
Towards answering this question we consider how humans learn in peer groups.
The problem of how to group individuals in order to maximize outcomes via co-
operative learning has been debated for a long time by social scientists and poli-
cymakers. More recently, it has attracted research attention from an algorithmic
standpoint which led to the design of grouping policies that appear to result in
better aggregate learning in experiments with human subjects.
Inspired by human peer learning, we hypothesize that using partially trained mod-
els as teachers to other less accurate models, i.e. viewing ensemble learning as a
peer process, can provide a solution to our central question. We further hypothe-
size that grouping policies, that match trainer models with learner models play a
significant role in the overall learning outcome of the ensemble. We present a for-
malization and through extensive experiments with different types of classifiers,
we demonstrate that: (i) an ensemble can reach surprising levels of performance
with little interaction with the training set (ii) grouping policies definitely have an
impact on the ensemble performance, in agreement with previous intuition and
observations in human peer learning.

1 INTRODUCTION

Humans learn in peer groups. That is necessitated by resource constraints, as teachers are relatively
scarce and they have a bounded individual teaching capacity. The problem of how to group students
in order to maximize outcomes via cooperative learning has been debated for a long time by social
scientists and policymakers and it remains a sensitive issue (Esposito, 1973; Richer, 1976; Boaler
et al., 2000). However, broadly speaking, it is clear that higher-skilled teachers are usually matched
with higher-skilled students, reflecting perhaps a collective intuition that such groupings maximize
an overall ‘educational welfare’ of the human society, under practical resource constraints.

From a machine learning point of view, human educational systems can be viewed as mechanisms
for training ensembles of individuals. This analogy between ensemble learning and human education
has inspired previous works on ensemble methods (see section 5) and is central to the present work.

1.1 MAIN MOTIVATION AND FOCUS: PEER ENSEMBLE LEARNING

We are inspired by the following human peer learning scenario:

N individuals undergo a learning process in T rounds. In each round, the individuals are divided
into K groups, and in each group, the highest-skilled individual becomes the teacher for that group.
The question is then how different grouping decisions affect the aggregate knowledge collected by
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the N individuals in T rounds and the goal is to design grouping policies that maximize aggregate
learning.

This scenario was studied recently from an algorithm perspective which led to the design of grouping
policies that appear to also lead to better aggregate learning in experiments with human subjects Wei
et al. (2021).

Motivated by these recent findings, we study an analogous problem in the context of machine learn-
ing. Human individuals are replaced by identical-architecture classifiers. One of the N models is
replaced by the ‘environment’ that holds the training set X . Then, in each of the T rounds of learn-
ing, the models get grouped, and the ‘best’ model M of each group acts as the tutor by providing to
the rest of the group M ’s own partially accurate labeling M(X) of the training set X .

1.2 MOTIVATION #2: ENSEMBLE TRAINING UNDER TRAINING CAPACITY CONSTRAINTS

A natural objective when training an ensemble of N classifiers is to maximize test accuracy. There-
fore there has been significant research in ensemble training algorithms, like Adaboost (Freund &
Schapire, 1995; 1999) and Gradient Boost (Breiman, 1997; Friedman, 2001). These algorithms
are sequential by nature. On the other hand, maximizing accuracy under natural training-time con-
straints leads to parallel algorithms, with bagging being a prominent example (Efron, 1979; Breiman,
1996). An interesting characteristic of bagging is that -by design- each classifier has restricted ac-
cess to the dataset, both to its points and their attributes. It is precisely that restriction that makes
bagging more powerful relative to a basic ensemble.

In this paper we view the number of accesses to the labels as an additional resource, and we impose a
constraint on how many learners can interact in the standard forward-backpropagation manner with
the true labels in each parallel round of learning1.

Learning an ensemble of models under constraints on the frequency of querying the training set, is
a question that – to our knowledge– has not been considered in the literature. While the question
is not motivated by current practical considerations, it is not hard to imagine ways for it to acquire
practical importance. More importantly though, it is a potentially fundamental learning-theoretic
question whose study can lead to novel insights in machine and human learning.

1.3 CONTRIBUTIONS

There are conceivably many ways one can specify and further study our main question. We approach
it via the analogy between human education and ensemble learning. We hypothesize that using
partially trained models as ‘teachers’ to other less accurate models, i.e. viewing ensemble learning as
a peer process, can provide a solution to our central question. We further hypothesize that grouping
policies should play an important role in maximizing the performance of the ensemble.

Towards addressing our hypotheses, we present a concrete formulation of the problem and we con-
duct extensive experiments with various types of neural network classifiers. We demonstrate that:

a. Grouping policies have a significant impact on the ensemble performance, in agreement with
previous theoretical findings and observations in human peer learning.

b. A peer learning-based ensemble can reach surprising levels of performance even under training
resource constraints.

2 PEER ENSEMBLE LEARNING: FORMULATION AND QUESTIONS

We are given a training set X with categorical labels y. We want to train an ensemble of N -1
identical-architecture classifiers h1, . . . , hN−1, in T training rounds. In each round, each classifier
Ci can either act as a learner, or as a trainer by providing its (partially correct) predictions hi(X) for
the training set X . We view the training set as the N th “classifier” hN , which will always be used
as a trainer providing y = hN (X) to some of the learners.

1In this paper we consider an epoch as one round of learning.
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In a standard parallel ensemble training, the training set is used to train N -1 classifiers per round,
as shown in Figure 1(a). Motivated by peer learning we generalize the parallel round to a setting
where the N classifiers are split into k groups of size C = N/k and each group has one trainer hi

that provides labels hi(X) to its group. The groups and their trainers can be updated in each round.

The above scenario implies a training capacity constraint C = N/k − 1 for hN .

Figure 1: (a) One round of training in basic ensemble learning. (b,c) Peer ensemble learning with groups of
size 2 and N/2. The trainer models and their mappings to learner models can change in every round.

Under this general framework we pursue two basic directions of research.

a. Grouping policies and their effect under a fixed training capacity. Assuming a fixed value for
the training capacity C = N/k, there are M = N !/C! different possible groupings in each round,
and MT different policies, i.e. sequences of groupings. One basic question is to what extent the
choice of policy affects various metrics of ensemble performance.

We can identify a natural baseline: a random split into k groups in each round. We can then seek to
design policies that will outperform a baseline random policy.

Looking at the ensemble from a social perspective, we are interested in studying metrics beyond
the standard validation/test accuracy of the ensemble, but also the aggregate accuracy, the median
accuracy, or a random sub-ensemble accuracy. We are more generally interested in properties of the
distribution of the models h1, . . . , hN−1 after T rounds.

b. The effect of the training capacity restriction. It is probably expected that imposing the training
capacity restriction C may result in reduced ensemble performance metrics, e.g. reduced accuracy
for a given number of epochs/rounds. On the other hand it is a priori unclear if a capacity-restricted
ensemble can make a more efficient use of the training set, i.e. reach a higher accuracy for a fixed
number of access to the true labels hN (X). Thus our second goal is to examine the effect of C on
key ensemble metrics.

3 EXPERIMENTAL STUDY

Architectures and Datasets. We do experiments with three different types of architectures and
two different types of datasets. More concretely, we use ‘toy’ versions of LeNet and Resnet (LeCun
et al., 1998; He et al., 2016). These networks are used on Fashion-MNIST dataset which is consist of
60,000 training images and 10,000 test images of fashion and clothing items, taken from 10 classes,
where each image is a standardized 28×28 size in grayscale (784 total pixels). We also use a standard
GCN (Kipf & Welling, 2017; Zhou et al., 2020) on ogbn-arxiv dataset which is a un-directed graph,
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representing the citation network between all Computer Science (CS) arXiv papers, where each node
is an arXiv paper with a 128-dimensional feature vector. For each of these datasets we use a fixed
split to training, validation and test datasets.

Pre-training. Motivated by the analogy to human peer learning, in addition to starting the entire
ensemble training from scratch (i.e. with N -1 randomly initialized models), we also consider the
effect pre-training, where the initial models undergo different degrees of training with the true labels,
before they enter the ensemble training. More concretely, learner i undergoes i rounds of pre-
training.

Number of learners and groups. We set N = 10 throughout our experiments. We consider the
cases shown in Figure 1, i.e. k = 1, k = 2 and k = N/2. We refer to these cases as ’Split-in-Two’
and ’Split-in-Five’ groupings.

Policies. Grouping policies are based on measuring the validation accuracy of the learners
h1, . . . , hN−1, hN before each round. Concretely, let vi be the validation accuracy of hi, and
let mi be the models whose validation accuracy is the ith lowest in the list {v1, . . . , vN}.

Following Wei et al. (2021) we define two policies for selecting the groups:

Dynamic-A: [Best-Trains-Best]. The trainers of the k groups are models mN , . . . ,mN−k+1, i.e. the
models with highest validation accuracy. The rest of the ordered list mN−k, . . . ,m1 is split into k
contiguous buckets that are assigned in that order to mN , . . . ,mN−k+1. In other words, the best
trainers train the best learners.

Dynamic-B: [Equitable] The trainers of the k groups are models mN , . . . ,mN−k+1. The
rest of the models in the ordered list mN−k, . . . ,m1 are assigned in a round-robin fashion to
mN , . . . ,mN−k+1. In this grouping each trainer selects ‘equitably’ its learners.

We also consider the following two baselines.

Random:. The models are randomly split into k groups, and in each group the model with highest
validation accuracy becomes the trainer for that group.

Static: [Best-Trains-Worst] The trainers of the k groups are models mN , . . . ,mN−k+1, i.e. the
models with highest validation accuracy. The rest of the ordered list mN−k, . . . ,m1 is split into k
contiguous buckets that are assigned in the reverse order to mN , . . . ,mN−k+1. In other words, the
best trainers train the worst learners. This grouping is decided once before the first round and stays
the same throughout the T rounds.

Number of random experiments. For each setting for the tuple (pre-training,k, Policy,Dataset) we
train Ndataset experiments, where Nlenet = 10, Nresnet = 20, NGCN = 10. We report a number
of metrics for each round/epoch, taking the average of Ndataset values for each metric.

Metrics. In each round we record and report: (i) The ensemble accuracy on the test set. To compute
the ensemble prediction on a test point x, we compute N -1 probability distributions output by the
softmax layer of the corresponding classifiers, we multiply these probabilities pointwise, and we
select label corresponding the maximum product. (ii) The average accuracy of the N -1 classifiers
on the dataset.

4 RESULTS

In this section we summarize our experimental results.

a. The effect of grouping policies. The choice of grouping policy appears to affect the outcome of
the ensemble training. In Figure 2 we plot the ensemble accuracy per epoch and we comment on the
findings. Overall the results show that Dynamic-A gives a higher ensemble accuracy and beats the
Random baseline, although this is not entirely clear for Resnets. Similar observations hold for the
average ensemble accuracy as shown and discussed in Figure 4.

b. The effect of no pre-training. The experiments of part (a) are repeated without using pre-
training. The results are summarized in figures 7 and 6 of the Appendix. The absence of pre-training
induces a smoother convergence behavior, reduces the difference in performance among policies,
and possibly renders Dynamic-B better for average accuracy, at least for some architectures.
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c. The effect of the Capacity constraint. In Figure 5 we plot the ensemble accuracy with respect
to the total number of forward operations. Split-In-Five access the ground truth only once per 5
forward operations, i.e. a 20% frequency, whereas Split-In-Two access the ground truth 4 times per
8 forward operations, a 50% frequency. Not surprisingly, Split-In-Two outperforms Split-In-Five.

In Figure 3 we plot the ensemble accuracy by the number of true label accesses. Split-In-Two does
4 non-true label access for each true label access, while the corresponding Split-In-Five ratio is 1/1.
Nevertheless it squeezes more accuracy out of its limited ground truth use.

d.Misc results. The experiments of part (c) above are repeated for other policies. While the results
are the same for Dynamic-B and Random, an interesting phenomenon occurs for Static where Resnet
Split-in-Five ensembles are not just unable to learn, but tend to behave worse for later rounds.
Explaining this behavior is left open for future work.

5 RELATED WORKS

We view this paper as an addition to the broad literature on machine learning methods inspired
by human education, including its social aspects. We have in particular drawn inspiration from
curriculum learning Bengio et al. (2009); Wu et al. (2021); Soviany et al. (2021) and works on
learning ensembles with diverse priors Jain et al. (2021).

6 CONCLUSION AND FUTURE WORK

We presented a study of ensemble learning as a peer process. Our work is inspired by human peer
group learning and it has been further motivated by a computational view of ensemble learning as a
parallel process with constraints on the ground truth access.

We performed a large set of experiments that appear to confirm that grouping policies play a role
in aggregate measures of ensemble learning, as we intuitively tend to believe about human peer
learning. Interestingly, our experiments show that a specific grouping policy designed in the context
of theoretical research on human peer learning Wei et al. (2021) appears to also result in better peer
ensemble learning.

In this paper we have omitted studying properties of the accuracy distribution of the ensemble mod-
els, in particular with respect to inequality (or “skill diversity”) measures that have been central
in the theoretical study of Wei et al. (2021), or other ensemble properties like robustness to ran-
dom or adversarial noise. We thus believe that this work is only the first step towards discovering
and studying new machine learning phenomena whose theoretical explanation can be an interesting
challenge.
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Figure 2: Ensemble Accuracy for Split-in-Five (left) and Split-in-Two (right) Grouping with Pre-Training.
Dynamic-A is clearly better in Lenet, and GCN, but more random experiments are needed to stabilize the
output for Resnet.

(a) Lenet (b) ResNet (c) GCN

Figure 3: Dynamic A Policy, Accuracy per true label accesses. Split-in-Two makes a more efficient use of
ground truth relative to Split-in-Five.
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Figure 4: Average Accuracy for Split-in-Five (left) and Split-in-Two (right) Grouping without Pre-Training.
Dynamic-A appears to outperform in Lenet and GCN although by smaller margins. The results are mixed for
Resnet and more random experiments are needed to stabilize the output.

(a) Lenet (b) ResNet (c) GCN

Figure 5: Dynamic-A Policy, accuracy by number of forward operations without Pre-Training. Not surprisingly
Split-In-Two ouperforms Split-In-Five, as it makes 4x higher use of the training set.
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A APPENDIX

A.1 EFFECT OF GROUPING POLICY WITHOUT PRE-TRAINING

(a) Lenet (b) Lenet

(c) ResNet (d) ResNet

(e) GCN (f) GCN

Figure 6: Ensemble Accuracy for Split-in-Five and Split-in-Two Grouping without Pre-Training. Dynamic-A
still appears to outperform but by a smaller margin relative to using pre-training. An additional aspect is that
the (average) convergence behavior of the ensemble performance becomes smoother.
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(a) Lenet (b) Lenet

(c) ResNet (d) ResNet

(e) GCN (f) GCN

Figure 7: Average Accuracy for Split-in-Five (left) and Split-in-Two (right) Grouping without Pre-Training.
Dynamic-A clearly outperforms in GCN, but the situation is reversed in Lenet.
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A.2 EFFECT OF TRAINING CAPACITY CONSTRAINT

(a) Lenet (b) ResNet (c) GCN

Figure 8: Dynamic B Policy, Forward Operations without Pre-Training

(a) Lenet (b) ResNet (c) GCN

Figure 9: Static Policy, Forward Operations without Pre-Training

(a) Lenet (b) ResNet (c) GCN

Figure 10: Random Policy, Forward Operations without Pre-Training
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(a) Lenet (b) ResNet (c) GCN

Figure 11: Dynamic B Policy, Ground Truth Access without Pre-Training

(a) Lenet (b) ResNet (c) GCN

Figure 12: Static Policy, Ground Truth Access without Pre-Training

(a) Lenet (b) ResNet (c) GCN

Figure 13: Random Policy, Ground Truth Access without Pre-Training
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