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Abstract

Most state-of-the-art hypergraph partitioning algorithms

follow a multilevel approach that constructs a hierarchy of

coarser hypergraphs that in turn is used to drive partition

refinements. These partitioners are widely accepted as the

current standard, as they have proven to be quite effective.

On the other hand, spectral partitioners are considered to

be less effective in cut quality, and too slow to be used in

industrial applications. In this work, we revisit spectral hy-

pergraph partitioning and we demonstrate that the use of

appropriate solvers eliminates the running time deficiency;

in fact, spectral algorithms can compute competing solutions

in a fraction of the time needed by standard partitioning al-

gorithms, especially on larger designs. We also introduce

several novel modifications in the common spectral parti-

tioning workflow, that enhance significantly the quality of

the computed solutions. We run our partitioner on FPGA

benchmarks generated by an industry leader, generating so-

lutions that are directly competitive both in runtime and

quality 1.

1 Introduction.

A hypergraph H = (V, E,, c) is defined as a set of
vertices V and hyperedges E where each hyperedge is a
subset of the vertex set V.  represents the weight of
the vertices where  : V → R>0 and c represents the
weight of the hyperedges where c : E → R>0. A two-
way partition of H is defined as a partition of the vertex
set V into two disjoint nonempty subsets (S,V−S) such
that an objective function is minimized.

2 Preliminaries.

In our spectral framework we approximate the hyper-
graph with a proxy graph, G = (V′, E′), where each
hyperedge is approximated by a weighted clique on its
nodes. We term G the attraction graph. A cut on the at-
traction graph is denoted by ctG(S,V−S), and serves

1In this work we use benchmarks and baseline software
provided by an industry leader, subject to final permis-

sion that will be communicated to the ACDA program
committee in a timely manner.

as a proxy of the cut in the hypergraph. The weight
on the vertices  is expressed as the complete graph J
where J(, j) = j ∀  ∈ V, j ∈ V. We term graph J
the repulsion graph. A cut on the repulsion graph de-
noted by ctJ(S,V − S) = (S)(V − S) quantifies
the balance of the partition.

The objective function our framework minimizes is:

(2.1) (G, J) =mnS⊆V
ctG(S,V − S)

ctJ(S,V − S)

Minimizing (2.1) implies minimizing the cut on the at-
traction graph while maximizing the cut on the repul-
sion graph. Generally, this favors balanced cuts. We ap-
proximately optimize (G, J) by solving a non-standard
generalized eigenvalue problem using the Laplacians on
G and J:

(2.2) G = λJ

where λ is the eigenvalue and  is the equivalent
eigenvector. The coordinates of  represents a linear
ordering of the vertex set V which is then partitioned
using some heuristic. This procedure is widely regarded
as spectral partitioning.

3 Related Work.

Hypergraph partitioning is a well-studied problem with
much research going into it over the last decade. The
most widely used heuristic is the multilevel paradigm
where a sequence of coarser hypergraphs is constructed,
thus forming a hierarchy. hMetis[2], KaHyPar[1] and
PaToH[3] are the most widely used partitioners in the
industry. All these partitioners follow the multilevel
paradigm.

Hypergraph spectral partitioning heuristics have
also been studied in the literature. Several heuristics
have been proposed, that in general fail to generate
high quality partitions compared to the likes of hMetis,
PaToH, KaHyPar. In general spectral partitioning
is considered to be runtime expensive and of inferior
partitioning quality. Our work aims to break this
notion and point towards a potential paradigm shift in
hypergraph partitioning.



4 Proposed Spectral Framework.

Our spectral framework is derived from classical spec-
tral methods but adds substantial new ideas. The com-
plete algorithm is shown in Algorithm 1. A core com-
ponent is the computation of the smallest eigenvector
of GL = λBL, where GL, BL are the Laplacians of
the graphs defined in Section 2. The Laplacians GL, BL
are dense, but they are never explicitly calculated. In-
stead, we are only computing matrix-vector multiplica-
tions with them, in time linear in the size of the hyper-
graph.

In order to solve the eigenvalue problem we use
LOBPCG[5] with CMG[6] as a preconditioner. To
construct the preconditioner we work with a spectral
sparsifier of G. The low stretch spanning tree (LST)
is computed using [8]. For refinement purpose we
implement our own single shot refinement where we
identify nodes on the cut which can close a hyperedge
while not violating the area constraints and move them
as a group to the other partition. This technique seems
to work well with our spectral partitioner. In addition
we use FM heuristics [7] to improve the cut even further.

Algorithm 1: Modified Spectral Partitioning

Input: Hypergraph H = (V, E,, c), Area
Constraints, τ

Output: Bipartition P = (S, V-S)
1 Find the smallest eigenvector μ of .
2 G′ : Reweigh edge each edge (,) in G with
|μ − μj|.

3 Compute Low Stretch Spanning Tree (LST) of
reweighed graph G’.

4 Sweep LST for best cut.
5 Refine best cut using local refinement heuristics.
6 Remove cut hyperedges and all Ej ≥ τ from H.
7 Contract connected components in H and build

coarse hypergraph Hc = (Vc, Ec,c, cc).
8 Run steps 1-8 on Hc and obtain partition

Pc = (Sc, Vc − Sc).
9 Project Pc to H: P = (S,V − S).

10 Refine P using local refinement heuristics.

5 Results and Conclusion.

All code has been written in Julia. We run our
partitioner on an Intel i7-9700, 2.67 GHz, 6 cores
processor. B-Cut and B-Time are obtained with a
hMetis-like industrial partitioner.

B-Cut and B-Time in the table denotes the baseline
partitioner cut and runtime respectively. S-Cut and S-
Time denotes the Spectral partitioner cut and runtime.
The B-Cut and S-Cut solutions have similar balance.

Benchmark B-Cut B-Time(s) S-Cut S-Time(s)

B1 1312 5.76 1274 14.28
B2 23794 122.6 26870 51.75
B3 9866 23.27 9132 27.65
B4 8973 43.51 12549 24.99
B5 2552 4.75 2591 12.23
B6 2721 5.45 2573 13.01
B7 782 19.48 764 18.28

Table 1: Benchmark Results

We believe we can attain more faster speeds with
optimized C++ and use parallelism, which is already
maximized in the baseline partitioner.
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