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Abstract— Peer groups leverage the presence of knowledgeable
individuals in order to increase the knowledge level of other
participants. The ‘smart’ formation of peer groups can thus
play a crucial role in educational settings, including online
social networks and learning platforms. Indeed, the targeted
groups formation problem, where the objective is to maximize
a measure of aggregate knowledge, has received considerable
attention in recent literature. In this paper we initiate a dynamic
variant of the problem that, unlike previous works, allows the
change of group composition over time while still targeting
to maximize the aggregated knowledge level. The problem is
studied in a principled way, using a realistic learning gain
function and for two different interaction modes among the
group members. On the algorithmic side, we present DYGROUPS,
a generic algorithmic framework that is greedy in nature and
highly scalable. We present non-trivial proofs to demonstrate
theoretical guarantees for DYGROUPS in a special case. We also
present real peer learning experiments with humans, and perform
synthetic data experiments to demonstrate the effectiveness of our
proposed solutions by comparing against multiple appropriately
selected baseline algorithms.

I. INTRODUCTION

Online social networks and learning platforms enable the
formation of targeted groups for peer learning. As an example,
peer learning associations1, social Q&A sites2, even crowd-
sourcing platforms3 investigate how interaction between like-
minded individuals can improve knowledge and understanding
on a topic, or simply promote improved well-being of the
individuals. Indeed, systematic targeted groups formation can
leverage the presence of knowledgeable individuals in order to
educate group participants on a myriad of topics, and support
efforts to dispel rumors and misinformation.

A. Novelty

The importance of targeted groups formation has been
recognized in the literature. Recent works have studied the
effect of targeted one-shot groups formation to optimize peer
learning [1], [2], where the objective is to form a set of groups
to maximize some type of aggregate learning. These works
view groups as static, in the sense that every individual is
assumed to be a member of only one group through the end of
the process. What is not studied is the effect of time, and more
concretely the potential of allowing the formation of a targeted
set of groups to be repeated a certain number of times, as
opposed to a single shot process. We hypothesize that dynamic
group formation will enable more individuals to ‘learn from

1https://peerlearningassociation.weebly.com/
2https://www.quora.com
3https://appen.com/

the best’, can better utilize intermediate learning gains, and
has the potential to improve overall peer learning outcomes,
both in theory and practice. Ours is the first systematic effort
to model this problem and study algorithms for it.
B. Practical Motivation

Imagine a peer learning scenario in a physical classroom
or on an online learning platform. Separating the participants
into equal-size groups for homework assignments or projects
is common practice to ensure relatively similar workload
among students, while enabling effective interaction among
the peers [3]. However, in the case when there are multiple
group homework assignments or projects, fixed groups may
be not optimal. Research has shown that successful groups
evolve naturally [4], [5], and that the ability of dynamically
altering group composition results in groups that persist for
longer [6], [7]. This suggests that dynamic groups may offer
benefits. Going back to the classroom example, it would be
intuitively better to change the group membership of the
students across the assignments so that everyone gets the
opportunity to learn from the best participants, with the hope
that the total ‘educational welfare’ is maximized.
C. Technical Contributions

We undertake the first formal attempt to study dynamic
group formation to optimize peer learning. We follow previous
related works [1], [8]–[10] and adopt common definitions and
assumptions used to quantify the single-shot group formation.
We then introduce a vast generalization and study the effect
of time and how the flexibility of changing membership and
learning from others can improve the outcome. Specifically,
we make the following contributions:

(i). We initiate the study of the targeted dynamic groups
formation (referred to as Targeted Dynamic Grouping or TDG)
problem. We assume that the process consists of a predefined
number of rounds (α). Each round entails a grouping of the
participants into groups of size (k), and a defined learning
gain for each individual, controlled by a linear learning gain
function f . We consider two different interaction modes of
learning within each group. One induces a star, where the
interaction of any group member is limited only to the most
knowledgeable individual of that group. The other induces a
clique-like structure, where all possible pairs of within-group
interactions take place. Our goal is to find dynamic groupings
that maximize the aggregate learning gain after α rounds.

(ii). We delve into an investigation of the nuances of
our proposed problem. We present an algorithmic framework
DYGROUPS that is greedy in nature, and highly scalable.



DYGROUPS runs in Θ(αn) time for both clique and star inter-
action modes, where n is the number of members. The greedy
approach comes with an interesting twist. In each round, there
are multiple k-groupings that maximize the aggregate learning
for that round. Among them, DYGROUPS selects the one that
also maximizes the variance of the participants’ skills after
the round. We also present an in-depth proof of the optimality
of the proposed algorithm in a special case. We prove that
DYGROUPS can always find the overall optimal solution for
the star interaction structure when k = 2. However, extending
the optimality proof to more general cases (k > 2) appears to
be a far more difficult and interesting problem.

(iii). We run two independent rigorous experiments on real
fact-learning in peer groups comparing multiple baseline al-
gorithms. Specifically, we recruited about 200 human subjects
from Amazon Mechanical Turk and asked them to learn facts
about COVID-19 through peer interaction. The experimental
results corroborate two crucial hypotheses with statistical sig-
nificance that are central to our formulation and proposed so-
lutions. First, it validates that workers’ skills improve through
peer interaction. Second, it experimentally demonstrates that
changing group composition over time is important and that
DYGROUPS outperforms baseline solutions. Additionally, we
run large scale synthetic data experiments and implement
several baselines (along with recent related works [2], [8])
to validate the theoretical claims and scalability aspects of our
proposed solutions.

This paper is organized as follows. Our model and problem
formalization are discussed in Section II. Our algorithmic
framework and its running time properties are discussed in
III. Section IV contains theoretical proofs of our statements.
Experiments using human subjects as well as large scale
simulation studies are shown in Section V. The related work is
introduced in Section VI. We present a discussion and outline
future works in Section VII, and conclude in Section VIII.

II. MODEL & DEFINITIONS

We consider n participants who undergo a learning process
in rounds, or time steps. Before step t each participant is
associated with a positive real number, quantifying their skill
level. In every round, k non-overlapping equi-sized groups are
formed. Each participant interacts 1-on-1 only with members
of their group. The learning outcome of a 2-person interaction
is determined by the learning gain function. The total learning
gain within a group is further determined by a specified
interaction mode. After one round, skill levels are updated.
The process continues inductively for α steps.

We now proceed to define the highlighted terms in the
above description. We will be using the following example
to illustrate the notions.

[TOY EXAMPLE]. Imagine a small number of n = 9 stu-
dents taking a course on Python Programming that comprises
of α = 4 assignments during the course of a semester. In
every round we will be forming k = 3 disjoint groups of
size 3. We assume that in the beginning of the course, the

skills of the students in Python programming are as follows:
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] 4.

Learning Gain Function for 2-Person Interactions. The
learning outcome for a 2-person interaction between partici-
pants i, j depend only on ∆ = |si−sj |. Specifically, if si > sj ,
then after their interaction:

(i) si is unaltered, and (ii) sj is updated to sj + f(∆)

We call f(∆) the learning gain function. In the rest of this
paper we will work with linear functions f(∆) = r∆, where
r ∈(0,1) is a learning rate parameter that is part of the input 5.

As the learning function involves an asymmetry between
the two parts, we let f(i→ j) denote the skill gain of person
j from their interaction with person i. Note that if the skill of
i is lower than that of j, then f(i→ j) = 0.

In the TOY EXAMPLE, with a learning rate or r = 0.5, a
pairwise interaction between the 3-rd and the 9-th member
with skills 0.3, 0.9 respectively, s9 remains unaltered at 0.9.
On the other hand, s3 becomes 0.3 + 0.5× (0.9− 0.3) = 0.6.

Interaction Modes, Group Learning Gain. In each round,
participants are split into non-overlapping equi-sized groups.
The size of the groups is fixed throughout the α rounds. Each
participant has 2-person interactions with other participants
from their group. The learning gain within the groups will be
determined by the interaction mode, which will be the same for
all groups, throughout the process. We consider two possible
interactions modes:

(i) Star Mode. Every participant of the group learns from
the highest-skilled member of the group, and skill levels are
updated according to the learning gain function. Specifically
if pi is ith highest-skill participant of a group x, the learning
gain of group x is

gstar(x) =
∑
pj 6=p1

f(p1 → pj). (1)

In the TOY EXAMPLE, assume [0.9, 0.5, 0.3] are assigned to
a group and the interaction model is star model. In this case
0.9 is unaltered in the group, and 0.5, 0.3 will both learn from
0.9 and are updated to 0.7, 0.6 after the learning, assuming a
learning rate r = 0.5. In this case the total learning gain of
the group (soon to be defined formally) is 0.5.

(ii) Clique Mode. All possible pairwise interactions take
place. Suppose that pi is the participant with the ith highest
learning skill in a group x. That implies that pi will learn and
gain skill from (i− 1) persons. Then, we define the learning
gain of a group x as follows:

gcliq(x) =
∑
pi∈x

1

i− 1
(
∑
pj 6=pi

f(pj → pi)) (2)

In plain words, the total gain for pi is the average of its
positive gains from 2-person interactions within its group. The

4The distribution of the initial skill values can be arbitrary. How to
estimate numerical values for the initial skills of the individuals in a
real situation is an orthogonal issue. In our experimental evaluation,
we demonstrate a realistic way of estimating their initial skills.

5The case r=1 is relatively straightforward and we omit it.



averaging operation ensures that the order of skill levels is
preserved within the group after the round, as it would be
expected in practice.

In the TOY EXAMPLE, assume [0.9, 0.5, 0.3] form a group.
As before, 0.9 is unaltered. However, 0.3 learns not only from
0.9 but also from 0.5. Therefore, the new skill value for 0.3
after learning is 0.3+(0.5(0.5−0.3)+0.5(0.9−0.3))/2 = 0.5.
Since 0.5 only learns from 0.9, the new skill value of 0.5 is
0.7 as the same in the previous example. The overall group
learning gain is 0.4.

Aggregated Learning Gain per Round. Given a grouping
Gt of k groups at round t, the aggregated learning gain of the
grouping under either mode is defined as:

LG(Gt) =
k∑
x=1

g(x). (3)

Problem 1. Targeted Dynamic Grouping (TDG): Given as
input a set of n individuals and their skills, an integer k rep-
resenting the number of groups, and an integer α representing
the number of rounds, our goal is to compute a sequence of
groupings G1 . . . ,Gα that maximizes the aggregated learning
gain over α rounds:

max
{G1...,Gα}

α∑
t=1

LG(Gt)

III. ALGORITHMS AND RUNNING TIME

We start with the presentation of the generic algorithmic
framework DYGROUPS. Then we instantiate it for the Star
and Clique modes in Sections III-A and III-B respectively.
To avoid disrupting the flow of ideas, we defer the formal
statements and proofs for our claims to Section IV.

DYGROUPS is fairly simple; we take a greedy stride in
solving the problem. Since the process of forming k groups
is to be repeated over α rounds, in each round t, DYGROUPS
calls subroutine DYGROUPS-LOCAL to form a grouping Gt of
k groups so as to locally maximize LG(Gt) at round t. The
new skill values become part of the inputs for round t+1 and
the process repeats. Algorithm 1 presents the pseudo-code.

Algorithm 1 DYGROUPS-MODE

1: input: Set S of n skills, where si is the skill of individual i,
number of groups k, learning rate r, number of rounds α.

2: output: Collection of α groupings, each consisting of k
equi-sized groups, where Gt is the grouping in round t

3: for t = 1 : α do
4: Gt = DYGROUPS-MODE-LOCAL(S,k)
5: S = UPDATE-SKILLS-MODE(Gt,S)
6: end for
7: return G1,G2, . . .Gα

Three remarks are in order:
a. DYGROUPS-MODE is a generic framework in the sense

that it can be instantiated for different interaction modes, by
instantiating the two subroutines it calls. We will see how to
do that specifically for the Star and Clique modes.

b. The greedy approach is a reasonable choice in this frame-
work. As we will see shortly, DYGROUPS-MODE-LOCAL can
solve the round-local maximization problem very efficiently
in both the Star and Clique modes. It thus lends to a highly
scalable algorithm, both with respect to n and k. There is
additional theoretical support to our choice. As we shall show
in Section IV-C, DYGROUPS-STAR, does produce the optimal
solution for k = 2.

c. The running time of routine DYGROUPS-MODE is
clearly O(α(Tg + Tu)), where Tg, Tu are the running times
of DYGROUPS-MODE-LOCAL and UPDATE-SKILLS-MODE
respectively.

We also note that storing a grouping Gt requires Ω(n)
memory, and so each round of the algorithm requires Ω(n)
time. This leads to the following lower bound on the running
time of DYGROUPS-MODE.

Claim 1. DYGROUPS-MODE requires Ω(αn) time.

A. DYGROUPS-STAR

We begin by noting that UPDATE-SKILLS-STAR has a very
straightforward implementation. Each skill update takes O(1)
time, because each participant interacts only with the ‘teacher’
of their group. Thus the total running time is O(n).

On the other had, designing DYGROUPS-STAR-LOCAL is a
very interesting problem. Let us call the highest-skilled person
in some group, the teacher of that group. We first observe
that the learning gain is maximized if the teachers of the k
groups are selected to be the k highest-skilled participants,
and that is true irrespectively of the split of the remaining
n−k participants into the k groups. This is due to the linearity
of the learning function. The proof of this claim appears in
Section IV, Theorem 1.

We thus have to select from exponential number of locally
optimal groupings in each round 6. Our further insight is to
select the grouping G that has the maximum variance of skill
values among the locally optimal groupings. This is done as
follows. Suppose p1, . . . , pk are the k teachers. Recall that
we have to assign the other n − k participants to a teacher.
In order to do that we split them into k provisional groups
of size s = n/k − 1, solely based on their skill level: each
person in provisional group i has skill equal or higher relative
to every person in group i + 1. Then we form group i, by
assigning the ith provisional group to teacher pi. The proof
that this assignment maximizes variance appears in Section IV,
Theorem 2. Algorithm 2 gives an implementation.

The running time of DYGROUPS-STAR-LOCAL is domi-
nated by O(n log n) for the sorting step. It is easy to see that
the remaining lines take O(n) time. Thus, the overall running
time of DYGROUPS-STAR is O(αn log n), which notably is
independent of k.

We now illustrate our discussion using the TOY EXAMPLE
from Section II. We first follow a sequence of three groupings

6e.g. when k = n/2 there are (n/2)! locally optimal solutions, and when
k = 2 there are

( n−2
(n−2)/2

)
locally optimal solutions.



Algorithm 2 DYGROUPS-STAR-LOCAL

1: input: Set S of n skills, where si is the skill of individual i,
number of groups k.

2: output: Grouping G consisting of k groups of size n/k.
3: X = sort(S,descending) // sorted skill values
4: Let pi be the participant with skill X[i]
5: t = k + 1; s = n/k − 1;
6: for i = 1 : k do
7: Assign ‘teacher’ pi to group gi
8: for j=1:s do
9: Assign pt to group gi

10: t = t+1
11: end for
12: end for
13: return G = {g1, g2, ..., gk}

that selects an arbitrary locally optimal grouping in each
round.

Round 1: [0.9, 0.1, 0.2], [0.8, 0.3, 0.4], [0.7, 0.5, 0.6].
Updated Skills: [0.9, 0.8, 0.7, 0.65, 0.6, 0.6, 0.55, 0.55, 0.5].
Round 2: [0.9, 0.55, 0.5], [0.8, 0.6, 0.55], [0.7, 0.65, 0.6]

Updated Skills: [0.9, 0.8, 0.7, 0.675, 0.65, 0.7, 0.675, 0.725, 0.7]

Round 3: [0.9, 0.675, 0.65], [0.8, 0.7, 0.675], [0.725, 0.7, 0.7]

Final: [0.9, 0.8, 0.725, 0.7125, 0.7125, 0.75, 0.7375, 0.7875, 0.775]

The total learning gain after 3 rounds is 2.4.

Let us now introduce how DYGROUPS-STAR runs.
Round 1: [0.9, 0.6, 0.5], [0.8, 0.4, 3], [0.7, 0.2, 0.1]

Updated Skills: [0.9, 0.8, 0.7, 0.75, 0.7, 0.6, 0.55, 0.45, 0.4]

Round 2: [0.9, 0.7, 0.7], [0.8, 0.6, 0.55], [0.75, 0.45, 0.4]

Updated Skills:[0.9, 0.8, 0.75, 0.8, 0.8, 0.7, 0.675, 0.6, 0.575]
Round 3: [0.9, 0.8, 0.75], [0.8, 0.7, 0.675], [0.8, 0.6, 0.575]

Final: [0.9, 0.8, 0.8, 0.85, 0.825, 0.75, 0.7375, 0.70, 0.6875]

The total learning gain after 3 rounds is 2.55.

While we do not know if DYGROUPS-STAR will in general
produce the optimal grouping sequence, we do present a proof
of this fact for k = 2, in Section IV-C . We note that
forming two groups is natural in applications, such as peer
programming, where one group does the programming and
the other peer reviews.

Finally we would like to shortly discuss the insight that
leads to the proof for k = 2. A further inspection of the
above example can reveal that the two different sequences
of groupings produce the same learning gain after the first 2
rounds. However the variance maximization policy leads to a
higher 3rd-order teacher in round 3. This availability of better
teachers earlier in the process is what leads to DYGROUPS-
STAR dominating other solutions.

B. DYGROUPS-CLIQUE

Let us begin with UPDATE-SKILLS-CLIQUE. By design,
in the Clique mode, every person learns from all the higher-
skilled persons in the group and so there are O(t2) interac-
tions, where t = n/k is the size of the group. However it is
possible to calculate all the updated skills within the group

in O(t) time, leading to an O(n) update algorithm. We prove
this fact in Section IV, Theorem 3.

Similarly to DYGROUPS-STAR, DYGROUPS-CLIQUE finds
a grouping that maximizes the gain for each round. This is
formally stated in Theorem 3. The Clique mode definition
leads us to a different grouping algorithm, which computes
the unique grouping G = {g1, . . . , gk} with the property that
the jth-ordered skill in gi is greater than or equal to the jth-
ordered skill in gi+1 for each i, j. Algorithm 3 provides an
implementation.

Algorithm 3 DYGROUPS-CLIQUE-LOCAL

1: input: Set S of n skills, where si is the skill of individual i,
number of groups k.

2: output: Grouping G consisting of k groups of size n/k.
3: X = sort(S,descending) // sorted skill values
4: Let pi be the participant with skill X[i]
5: t = 1; s = n/k;
6: for j = 1 : s do
7: for i = 1 : k do
8: Assign pt to group gi
9: t = t+1

10: end for
11: end for
12: return G = {g1, g2, ..., gk}

The running time of DYGROUPS-STAR-CLIQUE is domi-
nated by O(n log n) for the sorting step. It is easy to see that
the remaining lines take O(n) time. Thus, the overall running
time of DYGROUPS-CLIQUE is O(αn log n), which notably
is independent of k.

Let us illustrate the algorithm with TOY EXAMPLE.
Round 1: [0.9, 0.6, 0.3], [0.8, 0.5, 0.2], [0.7, 0.4, 0.1]

Updated: [0.9, 0.8, 0.75, 0.7, 0.65, 0.55, 0.525, 0.425, 0.325]

Round 2: [0.9, 0.7, 0.525], [0.8, 0.65, 0.425], [0.75, 0.55, 0.325]

Updated: [0.9, 0.8, 0.8, 0.75, 0.725, 0.6625, 0.65, 0.575, 0.4875]

Round 3: [0.9, 0.75, 0.65], [0.8, 0.725, 0.575], [0.8, 0.6625, 0.4875]

Final: [0.9, 0.825, 0.8, 0.8, 0.7625, 0.7375, 0.73125, 0.66875, 0.609375]
The total learning gain after 3 rounds is 2.334375.

IV. PROOFS

All formal statements in this Section refer back to the
informal discussion in Section III.

A. DyGroups-Star

Theorem 1. Suppose S = [s1, . . . , sn] is a set of skills in
descending order. Then: (a) An optimal grouping into k equi-
sized groups, i.e. a grouping that maximizes the learning gain,
must assign s1, . . . , sk to different groups. (b) Every grouping
that assigns s1, . . . , sk is optimal.

Proof. Given a group g let sg,i denote the ith highest skill in
g. Also, let t = n/k denote the size of the groups. (a) For
the sake of contradiction, suppose that G is optimal and that
it does not assign s1, . . . , sk to the same group. That implies
that there are two groups g, g′ ∈ G such that sg,2 > sg′,1. Let



Cg be the cumulative value of the t − 2 smallest skills in g,
and let C ′g be the cumulative value of the t− 1 smallest skills
in g′. The total gain A in the given grouping is given by:

r [(sg,1 − sg,2) + ((t− 2)sg,1 − Cg) + ((t− 1)sg′,1 − Cg′)]

We can now swap the two skills g2, g′1 between g and g′. In
this new grouping, the new total gain B is

r [(sg,1 − sg′,1) + ((t− 2)sg,1 − Cg) + ((t− 1)sg,2 − Cg′)]

The statement is meaningful when t > 2. Given that sg,2 >
sg′,1, t > 1, we get that B > A, which is a contradiction.
(b) Suppose now that G is an arbitrary optimal grouping. Let
g, g′ be two arbitrary groups in G, and let sg,i, sg′,j two
skills from g, g′ different than the top skills (i.e. i, j 6= 1).
Swapping sg,i and sg′,j between the two groups leaves the
total gain invariant, as follows from a simple application of
the definition. Now if G and G′ are two different arbitrary
optimal groupings, then they must agree on the leaders of the
k groups, by part (a). One can then apply a sequence of swaps
such as the one described above, to transform G into G′, while
leaving the gain invariant along the sequence. Therefore the
total gain of G and G′ must be the same.

Theorem 2. The output G of DYGROUPS-STAR-LOCAL is
the grouping of highest variance among the groupings that
maximize the learning gain on input set S.

Sketch. For the sake of contradiction suppose G′ is another
optimal grouping. Let G′ = {g′1, . . . , g′k}. By Theorem 1, since
G′ is optimal, the highest skills s1 ≥ . . . ≥ sk of its groups
are fixed, and they are the same in the corresponding groups
of G. Since G 6= G′, there must be some i > j such that g′i
contains skill s′, and g′j contains skill s, with s < s′.

Now let G′′ be the grouping after swapping s′ and s in G′.
By Theorem 1, the mean skill µ is the same in G′ and G′′
after the update. The variance after the update in G′ is:

A = C + (s+ r(si − s))− µ)2 + (s′ + r(sj − s′))− µ)2

where C is a sum of squares, each coming from one of the
other n − 2 updated skill values. Similarly the variance after
the update in G′′ is:

B = C + (s′ + r(si − s′))− µ)2 + (s+ r(sj − s))− µ)2

We can now calculate B−A, using the facts that si > sj and
s < s′, and get B > A. This is a contradiction.

B. DyGroups-Clique

Theorem 3. UPDATE-SKILLS-CLIQUE can be implemented
in O(n) time.

Proof. Let t = n/k be the size of one group. We fix an
arbitrary group, and assume that the initial set of descending-
sorted skills is s1, . . . , st. Now let ci =

∑i
j=1 sj . Clearly

each ci+1 can be computed from ci with one addition. Hence
computing all ci’s takes O(t) time. Let s′1, . . . , s

′
t be the

updated set of skills. Clearly, we have s′1 = s1 since the

highest-skilled person does not learn from anyone in the group.
Also, for i > 1, using our definitions from Section II we have

s′i+1 = si + r(ci − isi+1)/i

Thus, having computed the ci’s, the calculation of all new
skills requires O(t) time. Doing that for k groups gives a
total running time of O(n).

Theorem 4. DYGROUPS-LOCAL-CLIQUE produces a group-
ing that maximizes the gain for the input set of skills.

The proof follows a similar reasoning with that of the proof
of Theorem 1. However the calculations are rather lengthy, and
so we omit it due to space constraints.

C. DyGroups-Star For Two Groups

Terminology: when we say a grouping is locally-optimal
we mean that maximizes the gain for that round only, but
possibly not for the entire process. If it is not locally optimal,
then we say it is non-locally optimal.

Theorem 5. DYGROUPS-STAR is optimal for the TDG prob-
lem when k = 2.

The proof is rather non-trivial and is presented in several
steps. We first present an equivalent yet alternative objective
function of the TDG problem that is pivotal for the proof. We
then present a set of helper lemmas that are crucial and finally
prove Theorem 6.

An equivalent objective function: Let s01, ..., s
0
n be the

input skill values in decreasing order. The TDG objective is:

Maximize
α∑
t=1

LG(Gt)

Assume the skill value of a member i after α rounds is sαi , and
s0i is the initial skill value of i. Then, the objective function
can be written as:

Maximize
n∑
i=1

sαi − s0i

We thus convert the input to the distance to the highest-skilled
member: 0, b02, b

0
3..., b

0
n, where b0i = s01−s0i . In the TOY EXAM-

PLE the s1, .., s9 are [0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1].
Therefore, b1, ..., b9 are [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8].

Therefore, the equivalent objective function of the TDG
problem is

Minimize
n∑
i=1

bαi (4)

Assume D =
∑n
i=1 b

0
i . Since the most skilled member will

always lead a group, we can assume b0x is the teacher in the
other group. In each group, there are n

2 − 1 members learning
from the leader. Assume i is one of them and x is the leader
in i’s group. The skill value s1i after one round will be:



a0i + r(a0x− a0i ). So, the skill distance b1i after this round will
be:

s1 − s1i =

= s1 − s0i − r(s0x − s0i )
= b0i − r(b0i − b0x)

= (1− r)b0i + rb0x

Therefore, the aggregated skill distance after the first round
will be:∑

i∈[2,...,n]
i6=x

(1− r)b0i + (
n

2
− 1)rb0x + b0x

=
∑

i∈[2,...,n]
i6=x

(1− r)b0i + (
n

2
− 1)rb0x + (b0x − rb0x) + rb0x

=
∑

i∈[2,...,n]

(1− r)b0i +
n

2
rb0x

=(1− r)D +
n

2
rb0x

By this, we can assume bix is the teacher of the second
group for the round i (i < α) and adapt the equation above
recursively. According to this, we can re-write the objective
function as:

Minimize
n

2
r

α∑
i=1

bix(1− r)α−i +D(1− r)α (5)

Since the second part is constant, the problem becomes to
find a series of groupings which maximize the skill value
of the second teacher in the group. For the purpose of the
proof, we will stick to this alternative objective function for
the remainder of this subsection.

Lemma 1. There exist 2
(
n−2
n
2−1
)

local optima in each round.

Proof. According to the Star mode, the teacher of group-
1 is the highest skilled individual (s1) and the teacher of
group-2 is the second highest skilled individual (with skill
s2). The assignment of the remaining individuals inside these
two groups does not interfere with the learning gain function.
Since there are such 2

(
n−2
n
2−1
)

possible assignments. Therefore,
we have 2

(
n−2
n
2−1
)

local optimals in each round.

Lemma 2. DYGROUPS-STAR in conjunction with
DYGROUPS-STAR-LOCAL is not worse than any other
solutions that produce local optima in each round.

Proof. Assume X is the series of groupings that are produced
by DYGROUPS-STAR with DYGROUPS-STAR-LOCAL and
there is another solution X ′ that also contains local maximum
groupings but different from X . Therefore, in X ′, there must
be at least one grouping that is not present in X . For a
local maximum solution, the teacher of the second group is
the second most skilled person. According to the objective

function, if X ′ is a better solution than X , X ′ should have
higher second skilled person at some rounds.

Let’s assume that such a scenario occurs in round t.This
entails individual i attains higher skill value in X ′ than in X
and this skill value exceeds the second highest skill value in
round t− 1. It means either i achieves higher learning gain in
X ′ than X , or i has higher skill value in X ′ before t− 1.

In DYGROUPS-STAR-LOCAL, the 3rd to n
2 individuals are

placed in the first group, which ensures the largest skill in-
crease. Therefore, the aforementioned scenario can not happen.
Thus, DYGROUPS-STAR in conjunction with DYGROUPS-
STAR-LOCAL will not produce any worse objective function
than any other local maximum solution.

Theorem 6. DYGROUPS-STAR is not worse than any other
solution that contains non-local optima.

Proof. The overall proof consists of multiple steps. First, we
assume a case when the alternative solution with objective
value X ′ contains only one non-local optima. Then, we extend
the proof to the case when the alternative solution contains
multiple (y) local solutions that are not local optima.

(Only one non-local optima:) First, let’s assume there
is a solution X ′ that contains only one non-local optimum
grouping at round t (t < α). Other than that, DYGROUPS-
STAR and this other solution both produce local optima in the
first t − 1 rounds. Let bt

′

i be the skill difference of the i-the
member in the t-th round (recall Equation 4). Let bt

′

x (x > 2)
be the skill difference of the second teacher. So, the objective
function value of X ′ will be:

D(1− r)α + r
n

2
(
t−1∑
i=1

bi
′

2 (1− r)α−i + bt
′

x (1− r)α−t

+ bt+1′

2 (1− r)α−t−1 +
α∑

i=t+2

bi
′

2 (1− r)α−i)

For our solution X , the objective value is:

D(1− r)α + r
n

2
(
t−1∑
i=1

bi2(1− r)α−i + bt2(1− r)α−t

+ bt+1
2 (1− r)α−t−1 +

α∑
i=t+2

bi2(1− r)α−i)

Since bt
′

2 ≤ bt
′

x , bt
′

2 is placed in the first group t. Therefore,
bt

′

2 becomes to (1 − r)bt
′

2 after round t. Noted that, bt
′

2 ≤
bt

′

i , i ≥ 3, so (1 − r)bt−1
′

2 ≤ (1 − r)bt−1
′

i , i ≥ 3. That means
(1 − r)bt−1

′

2 is the teacher of the second group(bt+1′

2 ) of X ′

at round t+ 1.
The minimum skill difference (that is the b value where

smaller is better) that the second teacher can attain is bi
′

2 , i < t
of X ′ is bi2. So, we can rewrite the objective value of X ′ as:

D(1− r)α + r
n

2
(
t−1∑
i=0

bi2(1− r)α−i + btx(1− r)α−t

+ bt2(1− r)α−t +
α∑

i=t+2

bi
′

2 (1− r)α−i)



Then, there are two possible cases: (Case 1:) bt2 stays
as the second teacher in X from t to α; (Case 2:) A new
second teacher shows up in round u (u > t) with bt3(1−r)u−t.

(Case 1:) The objective value of X is:

D(1− r)α + r
n

2
(
t−1∑
i=1

bi2(1− r)α−i + bt2(1− r)α−t

+ bt2(1− r)α−t−1 +
α∑

i=t+2

bt−12 (1− r)α−i)
(6)

The objective value for X ′ is:

D(1− r)α + r
n

2
(
t−1∑
i=1

bi2(1− r)α−i + btx(1− r)α−t

+ bt2(1− r)α−t +
α∑

i=t+2

bt2(1− r)α−i+1)

(7)

So, Equation 6 - Equation 7 is:

r
n

2
(bt2 − btx(1− r)α−t)

Since there is no position change in the second teacher,
bt2 ≤ btx(1 − r)α−t. Therefore, Equation 6 - Equation 7 ≤ 0
and proved.

(Case 2:): In this case, (1 − r)u−tbt3 ≤ bt2. In addition,
since there is no change in the second teacher before round
u, bt2 ≤ (1− r)u−t−1bti, i ≥ 3.
Therefore, (1 − r)bt2 ≤ (1 − r)u−tbti, i ≥ 3. Overall, the
objective function value of X is:

D(1− r)α + r
n

2
(

t−1∑
i=0

bi2(1− r)α−i + bt2(1− r)α−t

+ . . .+ bt2(1− r)α−u+1 + (1− r)u−tbt3(1− r)α−u

+ min(bt4(1− r)u−t+1, bt2(1− r))(1− r)α−u−1

+
α∑

i=u+2

bi2(1− r)(α−i))

Similarly, the objective value of X ′ needs to be discussed
considering two cases:

The third highest skilled individual is the teacher of the
second group:

D(1− r)α + r
n

2
(
t−1∑
i=0

bi2(1− r)α−i + bt3(1− r)α−t

+ bt2(1− r)α−t + . . .+ bt2(1− r)α−u+1

+ min(bt4(1− r)u−t+1, bt2(1− r))(1− r)α−u−1

+
α∑

i=u+2

bi
′

2 (1− r)α−i)

We can observe that since X ′ has the same second skill
value as X at the round u + 1, and X ′ adopts the local
maximum groupings after round t, so X and X ′ has the same
objective value in this case.

Any other individual with btx is the teacher of the second
group:

D(1− r)α + r
n

2
(
t−1∑
i=0

bi2(1− r)α−i + btx(1− r)α−t

+ bt2(1− r)α−t + ...+ bt2(1− r)α−u+1

+min(bt3(1− r)u−t+1, bt2(1− r))(1− r)α−u−1

+
α∑

i=u+2

bi
′

2 (1− r)α−i)

As before, X ′ is not better than X after u. In fact, it could be
easily shown, X ′ gets worse (with higher value of the objective
function in Equation 4), as we consider any other individuals
with larger btx as the teacher.

Overall, the optimal solution that only contains one round of
non-local maximum grouping cannot achieve better objective
value than ours. We can also observe two facts, for round
u > t:

1. When bu
′

2 > bu2 , the objective value of X ′ is the same or
worse than X (Case 1, no swap after the round t).

2. When bu
′

2 = bu2 , the objective values of two methods are
equal (Case 2 after the swap round).

Multiple y one non-local optimas: Next we prove the case
when there exists y non-local optimas in X ′. Before the second
non-local maximum grouping and after the the first non-local
maximum grouping, the aforementioned two facts hold.

Assume the i-th non-local maximum grouping is adopted
by X ′ at the round ti. When bv

′

2 = bv2(t1 < v < t2), it is the
exact same as the previous discussions: X ′ is not better than
X before the round u2. According to the algorithm, it always
put the 3rd to n

2 members into the first group. Therefore,
according to the lemma 2, this property will hold until the
next non-local maximum grouping happens in X ′.

Assume the second leader of X ′ at the round ti is btixi , and
X changes the second leader at the round z, so bv

′

2 > bv2(t1 ≤
v ≤ z). There are y non-local maximum groupings in X ′

before the round z. Then, the objective value of X ′ will be:

D(1− r)α + r
n

2
(

t1−1∑
i=0

bi2(1− r)α−i

+ bt1x1
(1− r)α−t1 + (1− r)bt12 (1− r)α−t1−1

+ . . .+ (1− r)bt12 (1− r)α−t2+1

+ bt2x2
(1− r)α−t2 + · · ·+ bα

′

2 )

(8)

And the objective value of X is:

D(1− r)α + r
n

2
(

t1−1∑
i=0

bi2(1− r)α−i

+ bt12 (1− r)α−t1 + bt12 (1− r)α−t1−1

+ ...+ bt12 (1− r)α−t2+1

+ bt22 (1− r)α−t2 + · · ·+ bα2 )

(9)

Therefore, Equation 9 - Equation 8 is:



y−1∑
i=0

bt12 (1− r)α−z+i −
y∑
i=1

btixi(1− r)
α−ti (10)

Since our algorithm always pick the second skilled person
as the leader of the second group, bt12 ≤ bt1x1

(1 − r)t2−t1−1,
and bt12 ≤ bt2x2

, and so on.. Therefore, Equation 10 is smaller or
equal to zero, and X is not worse than X ′. Overall, X is not
worse than any optimal solution that contains any non-local
maximum groupings. Hence, the proof.

Proof. (of Thorem 5) With Lemmas 1 and 2, we prove that
although there exists many local optima, DYGROUPS-STAR
in conjunction with DYGROUPS-STAR-LOCAL is not worse
than any other local optima solutions considering the objective
function in Equation 5. From Theorem 6, we prove that
DYGROUPS-STAR is not worse than any solution that does
not produce local optima. Combining these three, we therefore
prove that DYGROUPS-STAR produces global optima for the
TDG problem.

V. EXPERIMENTAL EVALUATION

We now present our experimental evaluation of DYGROUPS.
We perform two experiments with human subjects and then
we demonstrate the quantitative and runtime performance of
DYGROUPS on synthetic data.

A. Human Subjects Experiments

The main purpose of this study is to experimentally exam-
ine: a. The effectiveness of peer learning, i.e. whether indi-
vidual skills improve through interactions with peers. b. The
effectiveness of DYGROUPS, relative to baseline solutions.

We consider an application on learning facts from peers
through targeted dynamic groups formation.We present two
experiments with human subjects. They are similar but they
have been conducted independently; also the second experi-
ment is more extensive. The experiments employ real workers
hired on Amazon Mechanical Turk (AMT) to learn facts
related to COVID-19 from their peers.

AMT Setup: We deploy multiple-choice questions as a
Human Intelligent Task (HIT) consisting of facts and rumors
about COVID-19. Those are shown to the workers as tasks7.
Workers are paid $5 if they stick with the entire learning
process. Each deployment was accessible for 24 hours and
1 hour is allotted to each worker.

Skill Assessment: Each HIT consists of 10 questions. The
HIT questions also comprise a skill assessment test; the skill
of each participant is set to be equal to the number of their
correct answers, divided by 10.

7

Sample questions:
• What is the longest incubation time of COVID-19 in the record?
A. 14 days, B. 19 days, C. 20 days, D. More than 20 days

• Which action will help to prevent COVID-19?
A. Wash your hands regularly and thoroughly
B. Taking a hot bath, C. Drinking alcohol, D. None of the above

Experiment-1. We recruit N = 64 individuals. They first
undergo PRE-QUALIFICATION: Workers are assigned individ-
ual assessment tests to estimate their skill level. Based on
the qualification outcome, we split them into two Populations
A,B each containing n = 32 participants. The split is random,
under the constraint that the two populations have very similar
skill distributions, and in particular the same average skill.
Population A follows DYGROUPS with a learning rate of
r = 0.5 and k = 4, while Population B follows a baseline
solution KMEANS (details in Section V-B). During the learning
process, each Population alternates between these two steps:
[GROUP-FORMATION]: Worker groups are formed, following
the respective policy. The workers are asked to answer the
questions collaboratively, by consulting with the rest of their
peers in their group. [POST-ASSESSMENT]: Another test, akin
to PRE-QUALIFICATION is performed to estimate the new skill
of the individuals - and compute the learning gain after each
round. The experiment consists of α = 3 rounds.

Experiment-2. This is identical to Experiment-1 except it is
conducted using N=128, that are split into four Populations of
size n = 32 following DYGROUPS and the baselines KMEANS,
LPA and PERCENTILE-PARTITIONS, further discussed in Sec-
tion V-B. The experiment consists of α = 2 rounds.

Parameter justification: The choice of parameters r=0.5
and k=4 in our experiments is not arbitrary. Before running the
actual experiment, we have made several initial deployments,
where we hired workers of varying expertise from AMT
and formed random groups of different size: small groups
of size 2, 3, 4, 5, and large groups of size 10, 12, 15, and let
them interact across multiple rounds. We have conducted pre-
assessment and post-assessment tests on these deployments
that steered us in the choice of parameters. From these initial
deployments we have learned that for these assigned fact
checking tasks, the new skill that individuals acquire after
interaction with another higher skilled peer is on average
half of the difference of skills between between them prior
to interaction. We also found that groups are most interactive
and manageable when they contain 4 − 5 people, and that
worker engagement tends to dissipate if works are asked to
participate in too many rounds. This leads us to set r = 0.5,
k=4, and α=2 or 3 for the actual experiments. We also have
observed that the one day time window is good enough for
each round, and the workers do not need to spend more than
one hour overall.
Summary of Results.

• Observation I. The aggregated skill improves with peer
interaction (75% confidence interval), i.e. peer learning
is effective. This can be seen in Figures 1 and 4(a) that
show that the learning gain of PRE-QUALIFICATION and
POST-ASSESSMENT scores after each round.

• Observation II. DYGROUPS outperforms the baselines
with statistical significance (Figures 4(a) and 1). Interest-
ingly, DYGROUPS outperforms even after the first round,
which shows that it is very competitive even as a single-
shot group formation algorithm.



We also note two serendipitous features of DYGROUPS
that are worth of further investigation:

• Observation III. DYGROUPS has higher worker retention
than other baselines (Figures 3, 4(b)). This anecdotally
indicates that under the same monetary rewards, the rate
of skill improvement may be an important factor towards
retaining participants in the process.

• Observation IV. As the amount of total skill left to be
learned decreases with α, we expect that the aggregate
learning must have a negative second derivative. How-
ever, in Figure 2, aggregated learning gain appears to
increase linearly in the first rounds of DYGROUPS. This
indicates that the learning rate may accelerate during the
first rounds.

B. Synthetic Data Experiments
1) Experimental Setup: Experiments are implemented in

C++ and performed on a machine with Intel i5 CPU and 4GB
Memory. In experiments involving randomness, we average
over 10 different runs. Due to space constraints, we present a
representative subset of our results.

Baseline Algorithms. We note that there are no prior works
on the dynamic groups formation problem. The closest related
works are [2], [8], both of which focus on the one-shot group-
ing problem. We thus design a range of baseline algorithms,
each employing a different grouping scheme applied for α
rounds:
• RANDOM-ASSIGNMENT. Groups are selected randomly.
• PERCENTILE-PARTITIONS. Groups are computed using

an algorithm from [8]. The algorithm involves a parame-
ter p, which is set to 0.75, following the discussion in [8].

• LPA. This uses an algorithm from [2].
• K-MEANS. This is an alternative grouping heuristic that

we devise as a baseline. The algorithm picks k random
participants as group ‘centers’ and assigns the rest to their
nearest group, that is not completely full.

We also implement BRUTE-FORCE, an exponential-time
algorithm that solves the TGD problem optimally. Naturally,
the algorithm can be run only for very small values of n and
k, and α.

Parameters. We vary the following seven parameters:
number of partipants:(n), number of groups:(k), number of
rounds:(α), interaction mode:(star/clique), distribution of the
initial skill values, learning rate:(r).

Distribution. We generate the initial skill values of people
using the log-normal and Zipf distributions. Both are guar-
anteed to produce positive skill values (unlike the normal
distribution). We set the mean µ = e and the standard
deviation σ =

√
e for the log-normal distribution. On the other

hand, the shape parameters of Zipf distribution are set to 2.3
and 10.

Summary of results. In the immediately subsequent sec-
tions, we can see the following.
• Section V-B2. DYGROUPS is superior compared to other

baselines in terms of improving the aggregated learning
gain, under a range of parameter settings.

• Section V-B3. BRUTE-FORCE matches DYGROUPS-
STAR for k = 2 and small values of α, n as predicted
by our theoretical results.

• Section V-B4. DYGROUPS methods induces significant
learning gains relative to RANDOM-ASSIGNMENT.

• Section V-B5. DYGROUPS allows higher ‘inequality’
among participants relative to RANDOM-ASSIGNMENT.

• Section V-B6. DYGROUPS is highly scalable and there-
fore suitable for large scale real world applications.

2) Effectiveness Experiments: We review experiments on
the effectiveness of DYGROUPS.

Default Parameters. Unless otherwise noted, k = 5,
n = 10000, ε = 0.05, r = 0.5, α = 5, star mode, with log-
normally distributed initial skills. Deciding appropriate values
for these parameters is often times application dependent.
In our synthetic data experiments, these default values are
decided based on the outcome of our real data experiments.

Varying n-[Figures 5(a,b)]. We record the aggregate learn-
ing gain LG as a function of n, for both initial skill dis-
tributions. The results demonstrate that aggregate learning
gain increases with increasing n. DYGROUPS convincingly
outperforms all other baselines.

Varying k-[Figures 6(a,b)]. We record the learning gain as
a function of the group size k. DYGROUPS outperforms other
baselines. We also notice that LG decreases with increasing
k. This is expected since with a higher number of groups, not
all groups get to have expert peers and therefore the learning
gain decreases.

Varying α-[Figures 7(a,b)]. As before, DYGROUPS con-
vincingly wins. As expected, a higher α induces a higher
aggregate learning gain.

Varying r-[Figures 8-9]. We record the aggregate learning
gain as a function of the learning rate r. We can observe
that DYGROUPS outperforms in the clique model for all of
r values. In the special case of r = 1, by definition of the star
mode, it takes logn/k(n) rounds to make everyone reach the
highest skill value for DYGROUPS and LPA.

3) Star Interaction Mode with k = 2: We experimentally
validate our theoretical claim presented in Section IV-C. We
compare BRUTE FORCE with DYGROUPS-STAR, where we
set α ∈ [1, 4], n ∈ {4, 6, 8} and the skill values are picked
from [0, 1] uniformly. We run 1000 different experiments with
the parameters picked at random. In all of them DYGROUPS-
STAR agrees with BRUTE-FORCE, i.e. it maximizes the ag-
gregate learning gain.

4) Learning Gain Relative to Random Groupings: In Fig-
ure 10 we plot the ratio of the learning gain of DYGROUPS
methods vs that of the RANDOM-ASSIGNMENT, as a function
of α and n. Specifically, for a fixed n = 10000 we let α
range over {2, 4, 6, 8, 16, 32, 64}. For a fixed α = 10 we let
n range over {10, 102, 103, 104, 105, 106}. It can be seen that
DYGROUPS achieve up to 30% higher learning gain relative
to random groupings over a small number of rounds. In-
terestingly, DYGROUPS-STAR is comparable to DYGROUPS-
CLIQUE under this special case, and thus the simpler star mode
may be a good proxy for the clique mode.



Fig. 1: Experiment-1: Learning gain
across rounds

Fig. 2: Linear fit to learning gain Fig. 3: Experiment-1: Worker retention

(a) Learning gain across rounds (b) Worker retention

Fig. 4: Experiment-2: Results

(a) Clique, log-normal (b) Star, Zipf

Fig. 5: Aggregate Learning gain - varying n

(a) Star, log-Normal (b) Clique, Zipf

Fig. 6: Aggregate Learning gain - varying k

(a) Clique, Zipf (b) Star, log-normal

Fig. 7: Aggregate Learning gain - varying α

(a) Clique, Zipf (b) Star, Zipf

Fig. 8: Aggregate Learning gain - varying r

(a) Clique, log-normal (b) Star, log-normal

Fig. 9: Aggregate Learning gain - varying r

5) Fairness: We measure the inequality of the distribution
of skills in DYGROUPS vs that in RANDOM-ASSIGNMENT.
For this experiment we use r = 0.1. We use two metrics: the

CV-coefficient of variation 8, and the well-known Gini coef-
ficient 9. Inequality drops with both methods (Figure 11(b)),

8CV is the ratio of the average by the standard deviation of skills.
9The Gini coefficient is G =

∑
i>j |si−sj |
n
∑
i |si|

, where si are skill levels.



(a) Varying α (b) Varying n

Fig. 10: Learning gain relative to RANDOM-ASSIGNMENT
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Fig. 11: Inequality relative to RANDOM-ASSIGNMENT

something which may be expected due to the fact that there
is an upper bound in the skill level. However, in Figure
11(a) we plot the ratio of the CV and the Gini index in
DYGROUPS-STAR and RANDOM-ASSIGNMENT. We observe
that DYGROUPS-STAR allow a higher inequality relative to
RANDOM-ASSIGNMENT in all rounds, and that the gap be-
tween the two methods appears to be widening over time.

6) Running Time Experiments: The running time of both
DYGROUPS variants is dominated by the time to sort the
skill values. This leads to excellent scaling behavior, shown
in Figures 12,13. In practice, the time to run DYGROUPS is
negligible. For instance, performing 5 rounds on n = 105

participants takes 0.18 sec.

VI. RELATED WORK

We are unaware of any existing works that present models
and algorithms for targeted groups formation in multiple
rounds. In this section, we present the relevant existing works.

Groups formation: Designing quantitative models and al-
gorithms for groups formation to optimize learning through
peer interaction is first studied by Agrawal et al. [1]. The
authors propose learning gain models and algorithms for the
one-shot groups formation problem. Esfandiari et al. [2], adapt
the learning gain functions of [1] but also add the additional
dimension of affinity to optimize peer learning. Besides [1],
[2], another of our prior works studies group formation to
optimize recommendation [11].

Related problems have been considered by the operation
research community; the problem is always formalized as
an Integer Programming Problem (ILP) and often solved
using simulated annealing [12], branch-and-cut [13] or genetic
algorithms [14]. From an algorithmic standpoint, Anagnos-
topoulos et al. [15] present a general framework for a task-
assignment problem and a series of approximation algorithms
with theoretical guarantees. In addition, Anagnostopoulos et
al. [16], study how to form teams for a series of arriving
tasks without overwhelming any expert, and there is some
communication between teams. Lappas et al. [17], introduce a
team formation problem that also involves skill requirements
and communication costs. Rangapuram et al. [18] propose
approximation algorithms for solving a constrained matching
problem via the densest subgraph problem. Sanaz et al. [19],
[20] solve the non-overlapping teams formation problems.

Especially in [19], the authors aim to maximize the potential
of students’ learning in online classes.

Unlike these existing works, we study peer learning in a
dynamic setting where group composition changes over time.
While we adapt learning gain models of [1], [2], we note that
the existing solutions do not extend to TDG.

Information Diffusion/ Gossip Propagation: TDG is in
some sense a diffusion problem: knowledge is diffused via
pair-wise interactions, and the objective is to attain the max-
imum possible diffusion (as measured by the total skill) in a
specified number of rounds. Diffusion problems are very well
studied in various contexts, including information diffusion
maximization in social networks (e.g. [5], [21]–[24]), and
gossip propagation (e.g. [25], [26]). A tangential topic is the
problem of influence maximization, introduced by Kempe,
Kleinberg, and Tardos [27].

However, all these works assume the presence of a graph
topology or network. Conversely, TDG assumes a fully con-
nected underlying network, and instead asks for a controlled
utilization of its resources over time in a group-like manner.

VII. DISCUSSION AND FUTURE WORK

We believe that our study can stimulate further research in
this space, along the following directions.

Alternative formulations. Our formulation assumes equal-
size groups and linear learning gain. These settings are directly
adopted from related works [1], [8], [28], [29], including
education literature. We note that DYGROUPS can be adapted
for the case when groups have varying sizes. Of course, more
complicated models are conceivable. A particularly interesting
problem is to study settings where the learning gain depends
on additional factors that capture “intrinsic learning ability”,
e.g. a time-evolving affinity among individuals [8] that impact
learning, or different learning rates for the participants. One
possible way to model the former problem is to solve a
bi-criteria optimization problem, with the goal of forming
dynamic groups where both affinity and skill evolves across
rounds. Another interesting question, motivated by Observa-
tion III in Section V-A is the impact of retention on the
aggregate learning gain. A faster overall learning gain may
still higher satisfaction among participants, and thus create a
positive feedback loop.

DYGROUPS for more groups. Recall that we proved the
optimality of DYGROUPS-STAR for the case k=2. Clearly,
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DYGROUPS can still be used to solve the problem when k > 2
and we conjecture that DYGROUPS-STAR is still optimal.
That said, the computational complexity of the problems for
different interaction modes is an open problem for larger
values of k, possibly of independent theoretical interest.

Other learning gain functions. As long as the learning
gain function is concave, DYGROUPS can be adapted to
solve TDG. Our initial research suggests that for non-linear
concave learning gain functions, DYGROUPS is not optimal,
thus raising questions on the approximability of the optimal,
or other theoretical guarantees.

Fairness. We have only scratched the surface with respect
to fairness. We believe that studying bi-criteria optimization
problems with respect to fairness and learning gain is an
extremely interesting theoretical and practical issue, even
within the scope of relatively limited peer learning models.

VIII. CONCLUSION

We initiate the study of peer-learning processes in rounds.
The problem is motivated by practical considerations of groups
in online social networks or offline classroom learning. In
each round, the participants are split into groups and learn
from interactions within their group. The objective is to find a
sequence of groupings that will maximize the total knowledge
at the end of the process. We introduce a model and an asso-
ciated algorithmic framework DYGROUPS for this problem.
Using the insights we gain from our theoretical study, we
design experiments with human subjects that provide evidence
corroborating our hypothesis that the choice of groupings can
indeed significantly impact the total amount of learning.
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