Spanning Edge Centrality:
Large-scale Computation and Applications

Charalampos Mavroforakis
Boston University

cmav@cs.bu.edu

loannis Koutis
University of Puerto Rico
) _ Rio Piedras
ioannis.koutis@upr.edu

ABSTRACT

The spanning centrality of an edge e in an undirected graph
G is the fraction of the spanning trees of G that contain e.
Despite its appealing definition and apparent value in certain
applications in computational biology, spanning centrality
hasn’t so far received a wider attention as a measure of edge
centrality. We may partially attribute this to the perceived
complexity of computing it, which appears to be prohibitive
for very large networks. Contrary to this intuition, span-
ning centrality can in fact be approximated arbitrary well
by very efficient near-linear time algorithms due to Spiel-
man and Srivastava, combined with progress in linear system
solvers. In this article we bring theory into practice, with
careful and optimized implementations that allow the fast
computation of spanning centrality in very large graphs
with millions of nodes. With this computational tool in our
disposition, we demonstrate experimentally that spanning
centrality is in fact a useful tool for the analysis of large
networks. Specifically, we show that, relative to common
centrality measures, spanning centrality is more effective in
identifying edges whose removal causes a higher disruption
in an information propagation procedure, while being very
resilient to noise, in terms of both the edges scores and the
resulting edge ranking.

Categories and Subject Descriptors

H.2.8 [Database Management|: Database Applications—
Data mining; G.2.2 [Discrete Mathematics|: Graph The-
ory—Graph algorithms, Trees

Keywords

edge centrality; spanning trees; graph algorithms; social net-
works

Copyright is held by the International World Wide Web Coefere Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyip&rto the
author’s site if the Material is used in electronic media.

WWW 2015, May 18-22, 2015, Florence, Italy.

ACM 978-1-4503-3469-3/15/05.
http://dx.doi.org/10.1145/2736277.2741125 .

Richard Garcia-Lebron
University of Texas
) San Antonio
richard.garcialebron@utsa.edu

Evimaria Terzi
Boston University

evimaria@cs.bu.edu

1. INTRODUCTION

Measures of edge centrality are usually defined on the ba-
sis of some assumption about how information propagates
or how traffic flows in a network. For example, the between-
ness centrality of an edge is defined as the fraction of shortest
paths that contain it; the underlying assumption being that
information or traffic travels in shortest paths [7]. Although
more complicated measures of centrality are conceivable, be-
tweenness centrality is simple by design: its goal is to yield a
computable measure of importance, which can quickly pro-
vide valuable information about the network.

Operating under the requirement for simplicity, all edge-
importance measures are subject to weaknesses. Between-
ness centrality is no exception, having partially motivated a
number of other measures (Section 2). It’s clear for exam-
ple that information doesn’t always prefer shortest paths;
we have all experienced situations when it makes sense to
explore slightly longer road paths in the presence of traf-
fic. However, it is not clear how to modify betweenness
to accommodate such randomness. At the same time, be-
tweenness centrality can be unstable; the addition of even
one ‘shortcut’ link can dramatically change the scores of
edges in the network [27]. Yet, betweenness centrality is
at its core very sensible: information may not always take
shortest paths, but it rarely takes much longer paths.

These considerations lead us to focus on a simple and nat-
ural alternative model, where information propagates along
paths on randomly selected spanning trees. The idea can ac-
tually be viewed as a relaxation of the shortest-paths prop-
agation model: information is ‘allowed’ to randomly explore
longer paths, which however contribute less in the impor-
tance measure, because the associated spanning trees are
less frequent, as (in some sense) is reflected by the NP-
hardness of finding long paths. A number of findings lend
support to this intuition: In social networks, information
propagates following tree-shaped cascades [15, 26]. Simi-
larly, in computer networks, packages are distributed in the
network through tree-shaped structures [18, 28].

We thus define the spanning centrality of an edge e as
the fraction of the spanning trees of the graph that con-
tain e. Spanning centrality as a measure for evaluating the
significance of edges was introduced in the network analysis
literature by Texeira et al. [33] in the context of evaluat-
ing phylogenetic trees. Computing spanning centrality, by
definition involves counting spanning trees, a task that can

be carried out in polynomial time using Kirchhoff’s classical
matrix-tree theorem [29]. Using this observation, Texeira et
al. described an exact algorithm for computing the spanning
centrality of all m edges in an n-node graph in O(mn3/2)
time. Despite its appealing definition, spanning centrality
hasn’t so far received wider attention as a measure of edge
importance. This may be partially because, even with the
clever observation in [33], the required computation time
appears to be prohibitive for most networks of interest.

In this work we remove the aforementioned computational
obstacle. We describe a fast implementation of an al-
gorithm for spanning centrality that requires O(m log?n)
time, or even less in practice (Section 5). The algorithm
is randomized and it computes approrimations to spanning
centralities, but with strict theoretical guarantees. In prac-
tice, for a network consisting of 1.5 million nodes, we can
compute spanning centrality values that are within 5% of the
exact ones in 30 minutes. The algorithm is based on the fact
that the spanning centrality of an edge is equal to its effec-
tive resistance when the graph is construed as an electrical
resistive network. The core component of our implemen-
tation is a fast linear system solver for Laplacian matrices
[25]. The computation of spanning centrality is also crucially
based on the remarkable work of Spielman and Srivastava
[31]. Leveraging these two existing algorithmic tools is how-
ever not sufficient: our ability to experiment with large-scale
networks also relies on a set of computational speedups,
which include parallelization, exploitation of the input graph
structure, and space-efficient implementations. Incidentally,
our implementations allow the faster computation of a larger
class of electrical centralities (Section 6).

With this computational tool in our disposition we em-
bark in the first experimental analysis of spanning central-
ity as a measure of edge importance, including comparisons
with a number of previously proposed centrality measures
(Section 7). Our experimental evaluation demonstrates the
practical utility of spanning centrality for analyzing very
large graphs stemming from different application domains.
More specifically, we demonstrate its resilience to noise, i.e.
additions and deletions of edges. Our experiments illus-
trate that spanning centrality is significantly more resilient
than other edge-importance measures, in terms of both the
edges scores and the the resulting edge ranking. Thus, the
edges with high spanning centrality scores are robust to
noisy graphs or graphs that change over time. Further,
we investigate the ability of spanning centrality to capture
edge-importance with respect to more realistic information-
propagation processes that don’t readily yield computable
measures. Our experiments show that removing edges with
high spanning centrality incurs significant disruptions in the
underlying information-propagation process, more so than
other edge-importance measures. This suggests that an ef-
fective and computationally efficient way for disrupting the
propagation of an item in a network is cutting the links with
high spanning centrality.

2. RELATED WORK

In the graph-mining literature, there exists a plethora of
measures for quantifying the importance of network nodes
or edges [1, 4, 6, 7, 8, 10, 12, 13, 19, 21, 27, 30, 33]. Here,
we limit our review to edge-importance measures.

Betweeness centrality remains very popular, and its sim-
plicity can lead to relatively fast implementations despite

its quadratic running time. As a consequence, a lot of
work has been devoted in its fast computation. The sim-
plest approach leads to an O(nm) time algorithm for un-
weighted graphs (O(nm+n?logn) if the graph is weighted),
where n (resp. m) is the number of nodes (resp. edges) in
the graph [7]. The main bottleneck of that computation
lies in finding the all-pairs shortest paths. Existing algo-
rithms for speeding up this computation rely on reducing
the number of such shortest-path computations. For exam-
ple, Brandes and Pich [9] propose sampling pairs of source-
destination pairs. Then, they experimentally evaluate the
accuracy of different source-destination sampling schemes,
including random sampling. Geisberger et al. [14] also pro-
pose sampling source—destination pairs. The only difference
is that, in their case, the contribution of every sampled pair
to the centrality of a node depends on the distance of that
node from the nodes in the selected pair. Instead of sam-
pling random source-destination pairs, Bader et al. [2] sam-
ple only sources from which they form a DFS traversal of
the input graph. Therefore, the shortest-paths from the se-
lected source to all other nodes are retrieved. The key of
their method is that the sampling of such sources is adap-
tive, based on the exploration (through DFS trees) that has
already been made. The trade-off between the speedups
and the accuracy in the resulting methods is clear as these
methods do not provide any approximation guarantees.

Current-flow centrality is another edge-centrality measure
proposed by Brandes and Fleischer [8]. Current-flow assigns
high scores to edges that participate in many short paths
connecting pairs of nodes. We show that both spanning and
current-flow centralities belong in the same class of electrical
centrality measures and we describe a speedup of the original
algorithm (proposed by Brandes and Fleischer). In a more
recent work, De Meo et al. [10] propose k-path centrality
as a faster-to-compute alternative to current-flow centrality.
This centrality counts the number of times an edge is visited
by simple random walks of length at most k starting from
every node in the network. We note that on their largest
reported dataset consisting of 1.1 million nodes and 4.9 mil-
lion edges their algorithm requires about 6 hours (for very
small values of k). We can deal with very similar datasets
in less than 1 hour.

3. PRELIMINARIES

We will assume that the input consists of a connected and
undirected graph G = (V, E) with n nodes (i.e., |V| = n)
and m edges (i.e., |E| = m). When we deal with matrices,
we will be using MATLAB notation. That is, for matrix
X, we will use X (3,:) (resp. X(:,7)) to refer to the i-th row
(resp. j-th column) of X.

Graphs as electrical networks: Throughout the paper,
we will view the input graph as a resistive network, i.e., an
electrical circuit where every edge is a resistor with fixed
(e.g., unit) resistance. By attaching the poles of a battery
to different nodes in the network, we will seek computational
methods for evaluating the current that passes through the
different edges.

The Graph Laplacian matrix: Given a graph G = (V, E),
the Laplacian of G is an nxn matrix L such that, if deg(v) is
the degree of node v in the graph G, then L(%,%) = deg(z) for
every ¢ and L(i,j) = —1if (¢,j) € E; otherwise L(z,j) = 0.

The incidence matrix: Given graph G = (V, E), we define
the edge-incidence matriz B of G to be an m X n matrix such
that each row of B corresponds to an edge in F and each
column of B corresponds to a node in V. The entries B(e, v)
for e € E and v € V take values in {—1,0,1} as follows:
B(e,v) =1 if v is the destination of edge e, B(e,v) = —1 if
v is the origin of e and B(e,v) = 0 otherwise. For undirected
graphs, the direction of each edge is specified arbitrarily.

Fast linear solvers: Our methods rely on the Combina-
torial Multigrid (CMG) solver [25]. CMG is based on a set
of combinatorial preconditioning methods that have yielded
provably very fast linear system solvers for Laplacian matri-
ces and the more general class of symmetric diagonally dom-
inant (SDD) matrices [23, 24]. SDD systems are of the form
Az = b where A is an n X n matrix that is symmetric and di-
agonally dominant: i.e., for every i, A(i,i) > >°.; |A(i, j)|.
For such systems, the solver finds a solution T such that

|z — x||a = €||z||a, where || - ||a is the A-norm of a vector,
ie., ||z|| = VaTAz. If m is the number of non-zero entries

of the system matrix A, the theoretically guaranteed solvers
run in O(mlognlog(1/e)) time, but the CMG solver has an
even better empirical running time of O(mlog(1/¢)).

4. SPANNING CENTRALITY

The spanning centrality of an edge assigns to the edge an
importance score based on the number of spanning trees the
edge participates in. That is, important edges participate
in many spanning trees. Formally, the measure has been
defined recently by Teixeira et al. [33] as follows:

DEFINITION 1 (SPANNING). Given a graph G = (V, E)
which is connected, undirected and unweighted, the SPAN-
NING centrality of an edge e, denoted by SC(e), is defined as
the fraction of spanning trees of G that contain this edge.

By definition, SC(e) € (0,1]. In cases where we want to
specify the graph G used for the computation of the SC of
an edge e, we extend the set of arguments of SC with an
extra argument: SC(e, G).

Intuition: In order to develop some intuition, it is interest-
ing to discuss which edges are assigned high SC scores: the
only edges that achieve the highest possible SC score of 1 are
bridges, i.e., edges that, if removed, make G disconnected.
This is means that they participate in all possible spanning
trees. The extreme case of bridges helps demonstrate the
notion of importance captured by the SC scores for the rest
of the edges. Assuming that spanning trees encode candi-
date pathways through which information propagates , then
edges with high SC are those that, once removed, would
incur a significant burden on the remaining edges.

Spanning centrality as an electrical measure: Our al-
gorithms for computing the SPANNING centrality efficiently
rely on the connection between the SC scores and the ef-
fective resistances of edges. The notion of effective resis-
tance comes from viewing the input graph as an electrical
circuit [11], in which each edge is a resistor with unit resis-
tance. The effective resistance R(u,v) between two nodes
u,v of the graph — that may or may not be directly con-
nected — is equal to the potential difference between nodes
u and v when a unit of current is injected in one vertex (e.g.,
u) and extracted at the other (e.g., v).

In fact, it can be shown [5, 11] that for any graph G =
(V,E) and edge e € E, the effective resistance of e, de-
noted by R(e), is equal to the probability that edge e ap-
pears in a random spanning tree of G. This means that
SC(e) = R(e). This fact makes the theory of resistive elec-
trical networks [11] available to us. The details of these
computations are given in the next section.

Spanning centrality for weighted graphs: We note here
that all the definitions and the results we explain in the
next sections also hold for weighted graphs under the fol-
lowing definition of SPANNING centrality: Given a weighted
graph G = (V, E,w), where w(e) is the weight of edge e,
the weighted SPANNING centrality of e is again defined as
the fraction of all trees of G in which e participates in, but,
in this case, the importance of each tree is weighted by its
weight. Specifically, the SPANNING centrality in weighted
graphs is computed as: Y, w(T)/> ;o w(T). Here, T
refers to the set of all spanning trees of G, while 7. is the
set of spanning trees containing edge e. Also, w(7T) denotes
the weight of a single tree T and is defined as the product of
the weights of its edges, i.e., w(T) = [[.cr w(e). In other
words, when the edge weight corresponds to the probability
of the existence of that edge, w(7T) corresponds to the like-
lihood of T. The weighted SPANNING centrality maintains
the probabilistic interpretation of its unweighted version; it
corresponds to the probability that edge e appears in a span-
ning tree of G, when the spanning trees are sampled with
probability proportional to their likelihood w(T).

All the algorithms that we introduce in the next section
can be used for weighted graphs with the above definition
of SPANNING centrality. The only modification one has to
make is to form the m x m diagonal weight matrix W, such
that W(e,e) = w(e), and then define the weighted graph
Laplacian as L = BTW B. This matrix can then be used as
an input to all of the algorithms that we describe below.

5. COMPUTING SPANNING CENTRALITY

In this section, we present our algorithm for evaluating the
spanning centrality of all the edges in a graph. For that, we
first discuss existing tools and how they are currently used.
Then, we show how the SDD solvers proposed by Koutis et
al. [24, 23] can speed up existing algorithms. Finally, we
present a set of speedups that we can apply to these tools
towards an efficient and practical implementation.

5.1 Tools

Existing algorithms for computing the SPANNING central-
ity are based on the celebrated Kirchoff’s matrix-tree theo-
rem [17, 34]. The best known such algorithm has running
time O(mn?®/?) [33], which makes it impossible to use even
on networks with a few thousands of nodes and edges.

Random projections for spanning centrality: The
equivalence between SC(e) and the effective resistance of
edge e, denoted by R(e), allows us to take advantage of
existing algorithms for computing the latter. The effective
resistances of all edges {u,v} are the diagonal elements of
the m X m matrix R computed as [11]:

R=BL'B”, (1)

where B is the incidence matrix and LT is the pseudoin-
verse of the Laplacian matrix L of G. Unfortunately, this
computation requires O(n®) time.

Equation (1) provides us with a useful intuition: the effec-
tive resistance of an edge e = {u, v} can be re-written as the
distance between two vectors that only depend on nodes u
and v. To see this consider the following notation: for node
v € V assume an n X 1 unit vector e, with value one in its
v-th position and zeros everywhere else (i.e., e,(v) = 1 and
ev(v') =0 for v # v'). Using Equation (1), we can write the
effective resistance R (e) between nodes u,v € V as follows:

2

R(e) = (eu—en)"Li(eu—en) = HBLT(eu —e)]2

Thus, the effective resistances of edges e = {u,v} can be

viewed as pairwise distances between vectors in {BLTeU}Uev.

This viewpoint of effective resistance as the L2 distance
of these vectors, allows us to use the Johnson-Lindenstraus
Lemma [20]. The pairwise distances are still preserved if we
project the vectors into a lower-dimensional space, spanned
by O(logn) random vectors. This observation led to Algo-
rithm 1, which was first proposed by Spielman and Srivas-
tava [31]. We refer to this algorithm with the name TreeC.

Algorithm 1 The TreeC algorithm.
Input: G = (V,E).
Output: R(e) for every e = {u,v} € £
Z =[], L = Laplacian of G
Construct random projection matrix @ of size k X m
Compute Y = QB
fori=1...kdo
Approximate z; by solving: Lz; = Y (:,1)
Z =1Z;2])
return R (e) = || Z(:,u) — Z(:,v)||§

In Line 2, a random {0, +1/v/k} matrix Q of size k x m
is created. This is the projection matrix for k = O(logn),
according to the Johnson-Lindenstrauss Lemma. Using this,
we could simply project matrix BL' on the k random vectors
defined by the rows of @), i.e., computing QBL'. However,
this would not help in terms of running time, as it would re-
quire computing L' which takes O(n®) steps. Lines 3 and 5
approximate QBLT, without computing the pseudoinverse of
L: first, Y = @B is computed in time O(2m logn) — this is
because B is sparse and has only 2m non-zero entries. Then,
Line 5 finds an approximation of the rows z; of matrix QBL'
by (approximately) solving the system Lz; = y;, where y; is
the i-th row of Y. Therefore, the result of the TreeC algo-
rithm is the set of rows of matrix Z = [2{ ...,z], which is
an approximation of QBL'. By the Johnson-Lindenstrauss
lemma we know that, if & = O(logn), the TreeC algorithm
will guarantee that the estimates R(e) of R(e) satisfy

(1 —€)R(e) < R(e) < (14 €)R(e),

with probability at least 1 —1/n. We call € the error param-
eter of the algorithm. Now, if the running time required to
solve the linear system in Line 5 is I(n,m), then the total
running time of the TreeC algorithm is O(I(n,m)logn).

Incorporating SDD solvers: Now, if we settle for approx-
imate solutions to the linear systems solved by TreeC and
we deploy the SDD solver proposed by Koutis et al. [24, 23],

then we have that I(n, m) = O(mlogn), therefore achieving
a running time of O (m log® nlog (%)) Additionally, with

probability (1 — 1/n), the estimates R(e) of R(e) satisfy
(1- 9%R(e) < R(e) < (1+ R(e). 2)

We refer to the version of the TreeC algorithm that uses
such solvers as the Fast-TreeC algorithm. The running time
of Fast-TreeC increases linearly with the number of edges
and logarithmically with the number of nodes. This depen-
dency manifests itself clearly in our experiments in Section 7.

5.2 Speedups
We now describe three observations that lead to signifi-

cant improvements in the space and runtime requirements
of Fast-TreeC.

Space-efficient implementation: First, we observe that
intermediate variables Y and Z of Algorithm 1 need not be
stored in k£ X n matrices but, instead, vectors y and z of size
1 x n are sufficient. The pseudocode that implements this
observation is shown in Algorithm 2. In this case, the algo-
rithm proceeds in k = O(log n) iterations. In each iteration,
a single random vector ¢ (i.e., a row of the matrix @ from
Algorithm 1) is created and used for projecting the nodes.
The effective resistance of edge e = {u, v} is computed addi-
tively — in each iteration the portion of the effective resis-
tance score that is due to the particular dimension is added
to the total effective resistance score (Line 6 of Algorithm 2).

Algorithm 2 The space-efficient version of Fast-TreeC.
Input: G = (V, E).
Output: R(e) for every e = {u,v} € E

1: L = Laplacian of G

2: fori=1...k do

Construct a vector q of size 1 x m

Compute y = qB

Approximate z by solving: Lz =y

return R (e) = R (e) + ||2(u) — 2(v)]|3

Parallel implementation: Algorithm 2 reveals also that
Fast-TreeC is amenable to parallelization. The execution of
every iteration of the for loop (Line 2 of Algorithm 2) can
be done independently and in parallel, in different cores, and
the results can be combined. This leads to another running-
time improvement: in a parallel system with O(logn) cores,
the running time of the parallel version of the Fast-TreeC
algorithm is O (m log n log (%)) In all our experiments we
make use of this parallelization.

Reducing the size of the input to the 2-core: As it
has been observed in Section 4, the bridges of a graph par-
ticipate in all the spanning trees of the graph and thus have
SC score equal to 1. Although we know how to extract
bridges efficiently [32], assigning to those edges SC score of
1 and applying the Fast-TreeC algorithm on each discon-
nected component would not give us the correct result. It is
not clear how to combine the SC scores from the different
connected components. However, we observe that this can
still be done for a subset of the bridges.

Let us first provide some intuition before making a more
general statement. Consider an input graph G = (V, E) and
an edge e = {u, v} connecting node v of degree one to the
rest of the network via node u. Clearly e participates in
all spanning trees of G and, therefore, SC(e,G) = 1. Now
assume that edge e and node v are removed from G, resulting

Figure 1: A network, viewed as an electrical resistive circuit.
The thickness of an edge represents the amount of current
it carries, if a battery is attached to nodes s and t.

into graph G’ = (V' \ {v}, E \ {e}). Since e was connecting
a node of degree 1 to the rest of G, the number of spanning
trees in G’ is equal to the number of spanning trees in G.
Thus, SC(e’, G') = SC(€’, G) for every edge €' € E \ {e}.

Now the key observation is that the above argument can
be applied recursively. Formally, consider the input graph
G = (V,E) and let C2(G) = (V', E’) be the 2-core of G,
i.e., the subgraph of G that has the following property: the
degree of every node v € V' in C2(G) is at least 2. Then,
we have the following observation:

LEMMA 1. IfG = (V, E) is a connected graph with 2-core
C2(G) = (V' E’), then for every edge e € E’

SC(e, C2(G)) = SC(e, G).

The above suggests the following speedup for Fast-TreeC:
given a graph G = (V, E), first extract the 2-core C2(G) =
(V',E’). Then, for every edge e € E’ compute SC(e) using
the Fast-TreeC algorithm with input C2(G). For every e €
E\ E', set SC(e) = 1.

The computational savings of such a scheme depend on
the time required to extract C2(G) from G. At a high level,
this can be done by recursively removing from G nodes with
degree 1 and their incident edges. This algorithm, which
we call Extract2Core, runs in time O(m) [3]. Our exper-
iments (Section 7) indicate that extracting C2(G) and ap-
plying Fast-TreeC on this subgraph is more efficient than
running Fast-TreeC on the original graph, i.e., the time
required for running Extract2Core is much less than the
speedup achieved by reducing the input size. By default, we
use this speedup in all our experiments.

6. A GENERAL FRAMEWORK

In this section, we show that SPANNING centrality is an
instance of a general class of edge-centrality measures, which
we call electrical measures of edge centrality. We introduce
a framework that offers a unified view to all the existing
measures and leads to novel ones. Finally, we demonstrate
how SDD solvers can be utilized within this framework.

6.1 Electrical measuresof centrality

The common characteristic of the electrical measures of
centrality is that they view the input graph G as a resis-
tive circuit, i.e., an electrical network where every edge is a
resistor of constant (e.g., unit) resistance. To get a better
understanding of these measures, consider Figure 1. Sup-
pose that we hook the poles of a battery to nodes s and ¢

and apply a voltage difference sufficient to drive one unit
of current (1A) from s to t. Doing that, each node in the
network will get a voltage value and electrical current will
flow essentially everywhere. At a high level, the electrical
measures quantify the importance of an edge by aggregating
the values of the flows that pass through it over different
choices for pairs of nodes s and t. In fact, specific combi-
nations of aggregation schemes and battery placements lead
to different definitions of edge-importance measures.

More formally, consider two fixed nodes s and ¢ on which
we apply a voltage difference sufficient to drive one unit of
current (1A) from s to t. Let the (s,t)-flow of edge e =
{u, v}, denoted by fs(u,v), be the flow that passes through
edge e in this configuration. We can now derive the following
instances of electrical measures of edge centrality:

SPANNING centrality: For spanning centrality, we only con-
sider a single battery placement and get the following alter-
native definition of the centrality of edge e = {u, v}:

SC(e = {u,v}) = fuo(u,v).

CURRENTFLOW centrality: If we consider the average flow
that passes through an edge, where the average is taken
over all distinct pairs of nodes (s,t), then we get another
centrality measure known as current-flow:

OrCle = {u,vh) & g5 3 fulw)
2) (s;t)

This measure was first proposed by Brandes and Fleisher [8].

From the combinatorial perspective, CURRENTFLOW con-
siders an edge as important if it is used by many paths in the
graph, while SPANNING focuses on the participation of edges
in trees. The idea of counting paths is also central in the def-
inition of betweenness centrality [7]. However, betweenness
centrality takes into consideration only the shortest paths
between the source-destination pairs. Therefore, if an edge
does not participate in many shortest paths, it will have low
betweenness score. This is the case even if that edge is still
part of many relatively short paths. More importantly, the
betweenness score of an edge may change by the addition
of a small number of edges to the graph (e.g., edges that
create triangles) [27]. Clearly, the CURRENTFLOW central-
ity does not suffer from such unstable behavior since it takes
into account the importance of the edge in all the paths that
connect all source-destination pairs.

B -CURRENTFLOW centrality: Instead of plugging a single
battery in two endpoints (s,t), we can consider plugging 3
batteries into 8 pairs of distinct endpoints (s;,¢;). For any
such placement of 8 batteries, we can again measure the
current that flows through an edge e = {u,v} and denote
it by fs,,t;y(u,v). Then, we define the §-CURRENTFLOW
centrality of an edge as:

B—CFC(e:{u,v}):ﬁ S Fenan (w,0),
(

5i,t;)ECH

where C}, denotes the set of all feasible placements of 3 bat-
teries in the electrical network defined by G. We can view [-
CURRENTFLOW as a generalization of CURRENTFLOW; the
two measures are identical when g = 1.

6.2 Computing electrical measures

In order to compute the centralities we described above,
we need to be able to compute the flows fs:(u,v). Using
basic theory of electrical resistive networks, the computation
of these flows for a fixed pair (s,t) can be done by solving
the Laplacian linear system Lz = b. The right hand side of
the system is a vector with the total residual flows on the
nodes. Specifically, we let b(s) = 1,b(t) = —1 and b(u) =0
for all w # s,t. This is because one unit of current enters
s, one unit of current leaves s and a net current of 0 enters
and leaves every other node by Kirchoff’s law. As we have
already discussed, setting a voltage difference between s and
t assigns voltages to all the other nodes. The values of these
voltages are given in the solution vector x. Then,

fot(u,0) = |2(u) — 2 (v)| ()

The algorithm of Brandes and Fleisher [8]: From the
above, the computation of one set of flows for a fixed pair
(s,t) requires the solution of one linear system. Of course.
we need (’;) linear systems in order to account for all pairs s
and ¢. As shown by Brandes and Fleisher [8], it is enough to
find the pseudo-inverse LT of the Laplacian L once; then the
scores can be computed in O(mnlogn) time. In fact, this
computation expresses the solution of each of the (Z) linear
systems as a simple ‘lightweight’ linear combination of the
solution of n systems that can be found in the columns of L.
Brandes and Fleisher point out that the pseudo-inverse can
be computed via solving n linear systems in O(mn?’/2 logn).

Proposed speedups: Using our state-of-the-art solver for
SDD, the running time of finding L' drops to O(mnlogn),
matching the post-processing part that actually computes
the scores. Of course, this running time remains quadratic.

This worst-case running time can be improved in practice
through sampling and parallelism. With sampling one can
construct an estimator of a measure, say CrC, denoted by
CrC as follows: instead of considering all pairs (s,t) we
can only consider a set Sy of k pairs (s,t) that are selected
uniformly at random. Similarly to Brandes and Fleisher [§]
we define

FORCle = {woh 21 Y fulwo), (@)

(s,t)€SE

which is an unbiased estimator of 5-CrC(e).

Note that for each (s,t) pair one has to solve a linear
system Lz = b in order to obtain the values fs:(u,v) of
Equation (3). It is for those systems that we use the state-of-
the art SDD solver. At the same time we observe that these
systems can be solved independently for different vectors b,
therefore parallelism can be exploited here too.

We call the algorithm that takes advantage of the state-
of-the art SDD solver and the parallelism of Fast-FlowC. We
evaluate the efficiency of this algorithm in Section 7.4.

7. EXPERIMENTS

In this section, we experimentally evaluate our methods
for computing the spanning centrality and we study its prop-
erties with respect to edge additions/deletions and informa-
tion propagation. For the evaluation, we use a large collec-
tion of datasets of different sizes, which come from a diverse
set of domains.

Experimental setup: We implemented both Fast-TreeC
and Fast-FlowC using a combination of Python, Matlab and
C code. The CMG solver [25] is written mostly in C and can
be invoked from Matlab. At the same time, in order to make
our methods easily accessible, we compiled them as a Python
library on top of the popular networkz! package [16]. The
code is available online?.

We ran all our experiments on a machine with 4 Intel Xeon
E5-4617 @ 2.9GHz, with 512GB of memory. We need to
note here that none of our algorithms pushed the memory
of the machine near its limit. For Fast-TreeC and Fast-
FlowC we used 12 hardware threads.

Datasets: In order to demonstrate the applicability of our
algorithms on different types of data, we used a large col-
lection of real-world datasets of varying sizes, coming from
different application domains. Table 1 provides a compre-
hensive description of these datasets shown in increasing size
(in terms of the number of edges). The smallest dataset con-
sists of approximately 4 x 10° nodes, while the largest one
has almost 3.8 x 10° nodes.

For each dataset, the first two columns of Table 1 report
the number of nodes and the number of edges in the Largest
Connected Component (LCC) of the graph that correspond
to this dataset. The third and fourth columns report the
number of nodes and edges in the 2-core of each dataset.
The 2-core of a graph is extracted using the algorithm of
Batagelj et al. [3]. The statistics of these last two columns
will be revisited when we explore the significance of applying
Extract2Core in the running time of Fast-TreeC.

In addition to their varying sizes, the datasets also come
from a wide set of application domains, including collabo-
ration networks (HepTh, GrQc, DBLP and Patents), social net-
works (wiki-Vote, Slashdot, Epinions, Orkut and Youtube),
communication networks, (Gnutella08, Gnutella3l, skit-
ter and Oregon) and road networks (roadNet-TX). All the
above datasets are publicly available through the Stanford
Large Network Dataset Collection (SNAP). 3 For consis-
tency, we maintain the names of the datasets from the orig-
inal SNAP website. Since our methods only apply to undi-
rected graphs, if the original graphs were directed or had
self-loops, we ignored the directions of the edges as well as
the self loops.

7.1 Experimentsfor SPANNING

Accuracy-efficiency tradeoff: Our first experiment aims
to convey the practical semantics of the accuracy-efficiency
tradeoff offered by the Fast-TreeC algorithm. For this, we
recorded the running time of the Fast-TreeC algorithm for
different values of the error parameter € (see Equation (2))
and for different datasets. Note that the running times re-
ported for this experiment are obtained after applying all
the three speedups that we discuss in Section 5.2.

The results are shown in Figure 2; for better readability
the figure shows the results we obtained only for a subset
of our datasets (from different applications and with differ-
ent sizes); the trends in other datasets are very similar. As
expected, the running time of Fast-TreeC decreases as the
value of €, the error parameter, increases. Given that the

http://networkx.github.io/
“http://cs-people.bu.edu/cmav/centralities
3http://snap.stanford.edu/data

http://networkx.github.io/
http://cs-people.bu.edu/cmav/centralities
http://snap.stanford.edu/data

Table 1: Statistics of the collection of datasets used in our experiments.

Dataset name

#Nodes in LCC

#Edges in LCC #Nodes in the 2-Core

#Edges in the 2-Core

GrQc 4158 13422 3413 12677
Gnutella08 6299 20776 4535 19012
Oregon 11174 23409 7228 19463
HepTh 8638 24 806 7059 23227
wiki-Vote 7066 100 736 4786 98 456
Gnutella3l 62561 147 878 33816 119133
Epinions 75877 405 739 37300 367162
Slashdot 82168 504 230 52181 474243
Amazon 334 863 925 872 305 892 896 901
DBLP 317080 1049 866 271646 1004 432
roadNet-TX 1351137 1878201 1068 728 1596 792
Youtube 1134890 2987 624 470 164 2322898
skitter 1694616 11094 209 1463 934 10863 527
Patents 3764117 16511740 3093271 15840895
8 hours. ‘ i i 16 hours
4 hours : S i Gnutellast —fl— Shours [Fast-Treec) NN |
2 hours | Epinions —7 oot racicore WO |
1 hourf Slashdot —@— 1 h(?ur [Fast-reccz @)
30 mins 30mnsf- 0 o=
) DBLP —f—— o 15minsf-————""""~"~~~~—~———
g 15 minsy =) _
= Youtube —>¢— é 5mins |-~~~ —
C% 5 mins roadNet-TX 4@7 ﬂ:: tmin b
skitter —A—
1 min

0.05 01 0.15 02 0.25
Error parameter €

Figure 2: Accuracy-efficiency tradeoff; y-axis (logarithmic
scale): running time of the Fast-TreeC algorithm; z-axis:
error parameter e.

y-axis in Figure 2 is logarithmic, this decrease in the run-
ning time is, as expected, exponential. Even for our largest
datasets (e.g., skitter and roadNet-TX), the running time
of Fast-TreeC even for very small values of € (e.g., e = 0.05)
was never more than 8 hours. Also, for ¢ = 0.15, which is
a very reasonable accuracy requirement , Fast-TreeC calcu-
lates the spanning centrality of all the edges in the graphs
in less than 1 hour.

Also, despite the fact that the roadNet-TX and skitter
datasets have almost the same number of nodes, skitter
runs significantly faster than roadNet-TX for the same value
of e. This is due to the fact that skitter has approxi-
mately 5 times more edges than the corresponding graph of
roadNet-TX and that the running time of Fast-TreeC is lin-
ear to the number of edges yet logarithmic to the number of
nodes of the input graph.

Effect of the 2-core speedup: Here, we explore the im-
pact of reducing the size of the input to the 2-core of the
original graph on the running time of Fast-TreeC. For this,
we fix the value of the error parameter ¢ = 0.1, and run
the Fast-TreeC algorithm twice; once using as input the

Figure 3: Limiting the computation on the 2-core shows a
measurable improvement in the running time of Fast-TreeC.

original graph G and then using as input the 2-core of the
same graph, denoted by C2(G). Then, we report the run-
ning times of both these executions. We separately also
compute the time required to extract C2(G) from G using
the Extract2Core routine described in Section 5.2.

Figure 3 shows the runtime for all these operations. In the
figure, we use Fast-TreeC(G) (resp. Fast-TreeC(C2(G))) to
denote the running time of Fast-TreeC on input G (resp.
C2(@)). We also use Extract2Core to denote the running
time of Extract2Core for the corresponding input. For each
of these datasets, we computed the SC scores of the edges,
before (left) and after (right), and we report the running
time in the y-axis using logarithmic scale.

Note that on top of the box that represents the runtime
of Fast-TreeC(C2(G)), we have also stacked a box with size
relative to the time it took us to find that 2-core subgraph.
It is hard to discern this box, because the time spent for Ex-
tract2Core is minimal compared to the time it took to com-
pute the SPANNING centralities. Only in the case of smaller
graphs is this box visible, but again, in these cases, the to-
tal runtime does not exceed a minute. For instance, for
Patents (our largest graph) spending less than 5 minutes to
find the 2-core of the graph lowered the runtime of Fast-

TreeC down to less than 8 hours, which is less than half of
the original. Moreover, the difference between the height of
the left and the right bar for the different datasets behaves
similarly. Hence, as the size of the dataset and the runtime
of Fast-TreeC grow exponentially, so does the speedup.

7.2 Resilience under noise

In this experiment, we evaluate the resilience of SPANNING
centrality to noise that comes in the form of adding and
deleting edges in the original graph. We also compare the
resilience of SPANNING to the resilience of CURRENTFLOW
centrality [8] and BETWEENNESS centrality [7, 12], which are
the most commonly used measures of edge centrality.

Noise: Given the original graph G = (V, E) we form its
noisy version of G’ = (V,E’) by either adding or delet-
ing edges. We consider three methods for edge addition:
(a) random that picks two disconnected nodes at random
and creates an edge, (b) heavy that selects two nodes with
probability proportional to the sum of their degrees and (c)
light that selects two nodes with probability inversely pro-
portional to the sum of their degrees. Note that adding
edges with heavy imitates graph evolution under the scale-
free models, while the addition of edges with 1ight imitates
the evolution of newly-added nodes in an evolving network.
The edge deletion is performed similarly; we delete an al-
ready existing edge (a) randomly, (b) with probability pro-
portional to the sum of the degrees of its endpoints or (c)
with probability inversely proportional to the sum of the
degrees of its endpoints.

The number of edges ¢ added to or deleted from G is a
parameter to our experiment — expressed as a percentage of
the number of original edges in G.

Evaluation: We evaluate the resilience of a centrality mea-
sure both in terms of the values it assigns to edges that are
both in G and G’, as well as the ranking that these values
induce.

Formally, given a graph G = (V, E) and its noisy version
G' = (V,E'), let e be an edge in ENE’. If c. is the centrality
score of the edge in G and c, the value of the same score in
G’, then we define the relative change in the value of e as:

/
RelChange(e, G, G') = @
€
In order to aggregate over all edges in E, we define the
average relative change of ¢ with respect to G and G’ as

1
AvgRC(G, G') = ErE > RelChange(e).
e€cENE’

This evaluation metric captures the average relative change
in the value of the centrality scores in G and G’. Observe
that for edge additions, ENE’ = E, while, for edge deletions
ENE' = FE'. In general, AvgRC(G, G") takes values in [0, o)
and smaller values imply a more resilient centrality measure.

In order to evaluate how the ranking of the edges accord-
ing to a centrality measure changes in G and G’ — ignoring
the actual values of the measure — we proceed as follows:
first we generate the sets of edges that contain the top-k%
edges in G and G’, denoted by I(G,k) and I(G’, k) resp.
Then, we compare these sets using their Jaccard similarity.
That is, we define:

JaccSin(G, G’ k) =

70 r

50 | dondt]

2% 4% 6% 8% 10%
Edges added

SPANNING —— random O
BETWEENNESS ----- light X
CURRENTFLOW — — heavy []

Figure 4: Average relative change in the edge importance
scores. The z-axis shows the percentage of noisy edges added
to the original HepTh graph.

JaccSim takes values in [0,1]. Large values of Jaccard
similarity mean that the sets I(G, k) and I(G’, k) are simi-
lar. Consequently, larger values of JaccSim indicate higher
resilience of the measure under study.

Results: Figures 4 and 5 show the noise resilience of SPAN-
NING, CURRENTFLOW and BETWEENNESS centrality under
edge addition. This is measured using both AvgRC (Fig. 4)
as well as JaccSim (Fig. 5). The results that are shown
are for the HepTh network, but the trend was the same in
all the datasets that we tried. Note that while we use the
fastest known algorithms for both CURRENTFLOW [8] and
BETWEENNESS [7] (implemented in NetworkX), these algo-
rithms remain a bottleneck, so we cannot present compar-
ative experiments for larger networks. The edge additions
are performed using all the three sampling methods we men-
tioned above, i.e. random, heavy and light. The shown
results are averages over 10 different independent runs.

In both figures the z-axis corresponds to the number of
edges being added to form E’ as a fraction of the number
of edges in G = (V, E). For Figure 5, we picked k = 10 for
the percentage of the highest-ranking edges whose behavior
we want to explore; results for other values of k£ have very
similar trends.

Overall, we observe that as we add more edges, the AvgRC
increases for all the centralities, while JaccSim(G, G, k) de-
creases. This is expected, since we increasingly alter the
structure of the graph. What is surprising though is how
significantly smaller the values of AvgRC for SPANNING are,
especially when compared to the corresponding values for
BETWEENNESS, for the same number of edge additions. As
shown in Figure 4, SPANNING has, in the worst case, AvgRC

—
o
i
G}
SO
=
g
-
n
[8)
Q
S

TR)

0.4 I I I I I I I
2% 4% 6% 8% 10%
Edges added
SPANNING —— BETWEENNESS ------ CURRENTFLOW ——-
random O light X heavy [J

Figure 5: Jaccard similarity between the top 10%-scoring
edges in the original and the noisy graph. Note how resilient
the SPANNING centrality is to noise.

of value less than 0.1. In contrast, AvgRC of BETWEENNESS
reaches up to 71.5 for the 1light sampling. This indicates
that the values of SPANNING centrality are much more stable
under the edge addition schemes we consider than the values
of BETWEENNESS centrality. We also observe that CURRENT-
Frow exhibits behavior between 2x and 4x worse than
SPANNING, which is still much better than BETWEENNESS.
The results shown in Figure 5 show that the ranking of
edges implied by the SPANNING measure is also much more
stable than the ranking implied by either BETWEENNESS or
CURRENTFLOW. More specifically, for £ = 10, we observe
that JaccSim has, in the worst case, score equal to 0.91 —
which is very close to 1. The corresponding values for both
BETWEENNESS and CURRENTFLOW are significantly lower,
at 0.47 and 0.57 respectively. In addition to the above,
we observed that, even when adding a 10% noise to the
graph edges, more than 95% of the edges in I(G,10) are
still deemed important by SPANNING. Note that the trends
observed for JaccSim(G,G’, k) are similar for values of k
that are smaller than 10%. Due to the similarity of these
results to the ones we present here, we omitted them.
Overall, the resilience of SPANNING under edge additions
demonstrates that even when SPANNING is computed over
evolving graphs, it need not be recomputed frequently. In
fact, our experiments indicate that even when 10% more
edges are added in the original graph, both the centrality
values as well the ranking of edges implied by the SPANNING
centrality remain almost the same. Note that, although we
only show here the results for edge additions, our findings
for edge deletions are very similar and thus we omit them.

Resilience of g-CURRENTFLOW: In addition to the ex-
periments we presented below, we also investigated the re-
silience of 5 -CURRENTFLOW. Our results are summarized as
follows: for larger values of 3, the AvgRC decreases to values

that are smaller than the values we observe for BETWEENNESS.

However even the smallest values are in the range [3, 5], thus
never as small as the values we observe for SPANNING. The
values of JaccSim on the other hand are consistently around
0.5. Although these results are not extensive, we conclude
that the SPANNING centrality is significantly more resilient
than 8-CURRENTFLOW under edge additions and deletions.

7.3 Edge-importance measures and informa-
tion propagation

A natural question to consider is the following: what do
all the different edge-importance measures capture and how
do they relate to each other? Here, we describe an ex-
periment that allows us to quantitatively answer this ques-
tion. On a high level, we do so by investigating how edges
ranked as important (or less important) affect the result of
an information-propagation process in the network.

Methodology: Given a network G = (V, E), we compute
the spread of an information propagation process, by pick-
ing 5% of the nodes of the graph, running the popular inde-
pendent cascade model [22] using these nodes as seeds and
computing the expected number of infected nodes in the end
of this process. By repeating the experiment 20 times and
taking the average we compute the SPREAD(G).

For any edge-importance measure, we compute the scores
of all edges according to this measure, rank the edges in de-
creasing order of this score and then pick a set of ¢ edges,
where ¢ = 0.02|E|, such that they are at positions ((k —
e+ 1)...kl, for k = 1,...,|E|/f. We refer to the set
of edges picked for any k as Ex. For every k, we then re-
move the edges in Ej, forming graph G, and then compute
SPREAD(GY%). In order to quantify the influence that the set
E, has on the information-propagation process we compute:

Ay = SPREAD(G) — SPREAD(GYy,).

Clearly, larger the values of Ay imply a larger effect of the
removed edges Fj on the propagation process.

We experiment with the following four measures of im-
portance: SPANNING, CURRENTFLOW, BETWEENNESS and
RANDOM. Recall that the betweenness score of an edge is
the fraction of all pairs shortest paths that go through this
edge [12]. RANDOM simply assigns a random order on the
edges in E.

Results: Figure 6 shows the values of Ay in the case of
the HepTh network, for £k = 1,...,49 when sets E}, are de-
termined by the different importance measures. Overall we
observe that the trend of A, varies across measures. More
specifically, in the case of SPANNING centrality (Figure 6a),
Ay takes larger values for small k and appears to drop con-
sistently until £ = 30. This behavior can be explained by
the definition of the SPANNING centrality — an edge is im-
portant if it is part of many spanning trees in the network —
and the fact that the propagation of information in a graph
can be represented as a spanning tree. CURRENTFLOW and
BETWEENNESS (Figures 6b and 6¢) behave differently. They
appear to give medium importance scores to edges that have
high impact on the spread. For CrC, these are the edges
in E, for k € [38,43] and, for BETWEENNESS, the edges
for k € [13,18]. These edges correspond to the peaks we
see in Figures 6b and 6¢c. Observe that, for BETWEENNESS,
this peak appears for smaller values of k, indicating that
in this particular graph, there are edges that participate
in relatively many shortest paths and, once removed, they
disconnect the network, hindering the propagation process.
Finally, the results for RANDOM show no specific pattern,
indicating that what we observed in Figures 6a—6c¢ is statis-
tically significant.

Ay
B
Ay

O 5 100 15 20 25 3 3 40 45 50 0 5 10 15 20 25 3 3 40 45 50

(a) SPANNING (b) CURRENTFLOW

Figure 6: The values Ay as a function

7.4 Experimentswith CURRENTFLOW

In this last experiment, we give some indicative examples
of the efficiency of Fast-FlowC, which we described in the
end of Section 6.

One of the major problems that Fast-FlowC has to solve
is finding the right number of samples k that will be used
for the evaluation of Equation (4). In practice we deal with
this as follows: we run Fast-FlowC in epochs, each epoch
consisting of 1000 independent samples of (s,t) pairs. For
the rest of the discussion we will use Fast-FlowC(7) to refer
to Fast-FlowC that stops after i epochs. If we use F'™* to
denote the ground-truth centrality values, computed via an
exhaustive algorithm that goes through all (s,t) pairs, and
F* to denote the output of Fast-FlowC(i), then we could de-
cide to stop when CorrD(F*, F"") is reasonably small. Here,
CorrD(F, F’) is the correlation distance between the two vec-
tors F' and F”, and is computed as 1 minus their correlation
coefficient. Thus, CorrD(F, F') € [0, 2].

In the absence of ground-truth, we use the self-correlation
index T = CorrD(F*, F""1) to decide whether the number of
samples is sufficient. We terminate when 7 is close to 0.

In order not to bias our experiments with the large num-
ber of edges that have very small centrality scores, we only
consider the top-10% scored edges in F* and F*~! and we
compute Coer(Fi717Fi) projected on the union of these
sets of edges. After all, importance measures aim at finding
the highly scoring edges.

Also, in our experiments we found that drawing 1000 sam-
ples of (s,t) pairs between any two consecutive iterations of
Fast-FlowC(7) is adequate to guarantee that the correlation
between F* and F*~! is due to the convergence of the sam-
pling procedure and not the closeness of the readings.

Ideally, we would like CorrD(F*, F*) to be small for values
of i for which 7 is also small. Our experiments with small
datasets indicate that this is the case. As a result, 7 can
be used as a proxy for convergence of Fast-FlowC for larger
datasets.

In Table 2, we report the running time of §-Fast-FlowC
for 7 < 0.02 as well as the running time for the exact com-
putation of CURRENTFLOW (from NetworkX) for three dif-
ferent datasets: GrQc, Oregon and Epinions. Note that for
Epinions, the largest of the three datasets, the exact algo-
rithm does not terminate within a reasonable time. On the
other hand for the medium-size dataset, i.e., Oregon, Fast-
FlowC takes only 2-3 minutes (depending on the choice of
B), while the exact algorithm requires time close to 5 hours.

Ay

A

O 5 100 15 20 25 3 3 40 45 50 0 5 10 15 20 25 3 3 40 45 50

(c) BETWEENNESS (d) RANDOM

of k for the different importance measures.

Dataset Fast-FlowC algorithm Exact
B=1) (B=05) (B =120) algorithm
GrQc 2.1 mins 1.3 mins 1.3 mins 20 mins
Oregon 3.3 mins 1.9 mins 1.4 mins 4h 40mins
Epinions 12h 23mins 5h 26mins 3h n/a

Table 2: Time until termination of Fast-FlowC and the ex-
act algorithm. We terminate for 7 < 0.02 .

8. CONCLUSIONS

In this paper, we studied the problem of efficiently com-
puting the SPANNING centrality of edges in large graphs.
More specifically, we described a randomized approximate
algorithm that builds upon seminal work in the theory com-
munity on the effective resistances of graphs and on effi-
ciently solving laplacian linear systems. While the algorithm
we describe exploits these ideas, we also introduce efficient
speedups, that we deploy in order to achieve scalability even
for very large graphs. Overall, our experimental evaluation
gives ample empirical evidence of the efficiency of the pro-
posed algorithm and its ability to handle large graphs. In-
dicatively, our method can compute the SPANNING central-
ity of all the edges of a graph with more than 1.5 million
nodes and 11 million edges in less than 30 minutes, while
offering low error guarantees. In addition to that, our ex-
periments explored the properties of SPANNING and showed
that (i) it is resilient to noise and (ii) ranks the edges ac-
cording to their participation in an information-propagation
process. In an attempt to generalize the ideas behind SPAN-
NING centrality, we showed that it is an instance of a class
of edge-importance measures, which we call electrical mea-
sures. In the paper, we showed multiple instances of such
measures and demonstrated how the algorithmic tools we
relied upon for the computation of SPANNING can also be
used for efficiently computing these measures.

Acknowledgments: The authors would like to thank Pet-
ros Drineas, George Kollios and Malik Magdon-Ismail for
useful discussions on topics related to this paper. This re-
search was supported by: NSF CAREER #1253393, NSF
grants: CNS #1017529, III #1218437, IIS #1320542 and
gifts from Microsoft and Hariri Institute of Computing. I.
Koutis is supported by NSF CAREER CCF-1149048. Part
of this work was undertaken while I. Koutis was visiting
ICERM (Institute of Computational and Experimental Re-
search in Mathematics).

0.
1]

2]
8]
[4]

[5]
(6]
[7]

8]

[9]

(10]

(11]

(12]

(17]

(18]

(19]

20]

(21]

(22]

23]

REFERENCES

J. M. Anthonisse. The rush in a directed graph. SMC,
1971.

D. A. Bader, S. Kintali, K. Madduri, and M. Mihail.
Approximating betweenness centrality. In WAW, 2007.
V. Batagelj and M. Zaversnik. An o(m) algorithm for
cores decomposition of networks. CoRR, 2003.

A. Bavelas. A mathematical model for group
structure. Human Organizations, 7, 1948.

B. Bollobas. Modern Graph Theory. Springer, 1998.

S. P. Borgatti. Centrality and network flow. Social
Networks, 27, Jan. 2005.

U. Brandes. A faster algorithm for betweenness
centrality. Journal of Mathematical Sociology, 25(2),
2001.

U. Brandes and D. Fleischer. Centrality measures
based on current flow. In STACS, 2005.

U. Brandes and C. Pich. Centrality estimation in large
networks. International Journal of Bifurcation and
Chaos, 17(7), 2007.

P. De Meo, E. Ferrara, G. Fiumara, and

A. Ricciardello. A novel measure of edge centrality in
social networks. Knowledge-based Systems, 30, 2012.
P. Doyle and J. Snell. Random walks and electric
networks. Math. Assoc. America., Washington, 1984.
L. C. Freeman. A Set of Measures of Centrality Based
on Betweenness. Sociometry, 40(1), Mar. 1977.

L. C. Freeman, S. P. Borgatti, and D. R. White.
Centrality in valued graphs: A measure of betweenness
based on network flow. Social networks, 13(2), 1991.
R. Geisberger, P. Sanders, and D. Schultes. Better
approximation of betweenness centrality. In ALENEX,
2008.

M. Gomez-Rodriguez, J. Leskovec, and A. Krause.
Inferring networks of diffusion and influence. TKDD,
5(4), 2012.

A. A. Hagberg, D. A. Schult, and P. J. Swart.
Exploring network structure, dynamics, and function
using NetworkX. In Proceedings of the 7th Python in
Science Conference (SciPy2008), Aug. 2008.

J. M. Harris, J. L. Hirst, and M. J. Mossinghoff.
Combinatorics and Graph Theory. Undergraduate
Texts in Mathematics, Springer, 2008.

C. Huitema. Routing in the Internet. Prentice Hall,
2000.

V. Ishakian, D. Erdos, E. Terzi, and A. Bestavros.
Framework for the evaluation and management of
network centrality. In SDM, 2012.

W. Johnson and J. Lindenstrauss. Extensions of
lipschitz mappings into a hilbert space. In Conference
in modern analysis and probability, 1982.

U. Kang, S. Papadimitriou, J. Sun, and H. Tong.
Centralities in large networks: Algorithms and
observations. In SDM, 2011.

D. Kempe, J. Kleinberg, and E. Tardos. Maximizing
the spread of influence through a social network. In
Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining.
ACM, 2003.

I. Koutis, G. L. Miller, and R. Peng. A nearly-m log n
time solver for sdd linear systems. In FOCS, 2011.

24]

(25]

(34]

I. Koutis, G. L. Miller, and R. Peng. A fast solver for a
class of linear systems. Commun. ACM, 55(10), 2012.
I. Koutis, G. L. Miller, and D. Tolliver. Combinatorial
preconditioners and multilevel solvers for problems in
computer vision and image processing. Computer
Vision and Image Understanding, 115(12), 2011.

T. Lappas, E. Terzi, D. Gunopulos, and H. Mannila.
Finding effectors in social networks. In KDD, 2010.
M. Newman. A measure of betweenness centrality
based on random walks. Social networks, 27(1), 2005.
R. J. Perlman. An algorithm for distributed
computation of a spanningtree in an extended lan. In
SIGCOMM, 1985.

G. Royle and C. Godsil. Algebraic Graph Theory.
Graduate Texts in Mathematics. Springer Verlag,
1997.

A. Shimbel. Structural parameters of communication
networks. Bulletin of Mathematical Biology, 15, 1953.
D. A. Spielman and N. Srivastava. Graph
sparsification by effective resistances. SIAM J.
Comput., 40(6), 2011.

R. E. Tarjan. A note on finding the bridges of a graph.
Inf. Process. Lett., 2(6), 1974.

A. S. Teixeira, P. T. Monteiro, J. A. Carrico,

M. Ramirez, and A. P. Francisco. Spanning edge
betweenness. In Workshop on Mining and Learning
with Graphs, 2013.

W. Tutte. Graph Theory. Cambridge University Press,
2001.

	Introduction
	Related work
	Preliminaries
	Spanning centrality
	Computing spanning centrality
	Tools
	Speedups

	A general framework
	Electrical measures of centrality
	Computing electrical measures

	Experiments
	Experiments for Spanning
	Resilience under noise
	Edge-importance measures and information propagation
	Experiments with CurrentFlow

	Conclusions
	References

