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Abstract—Self-organizing maps (SOMs) are a popular ap-
proach for neural network-based unsupervised learning. However
the reliability of self-organizing map implementations has not
been investigated. Using internal and external metrics, we define
and check two basic SOM properties. First, determinism: a given
SOM implementation should produce the same SOM when run
repeatedly on the same training dataset. Second, consistency:
two SOM implementations should produce similar SOMs when
presented with the same training dataset. We check these
properties in four popular SOM implementations. We ran our
approach on 381 popular datasets used in health, medicine, and
other critical domains. We found that implementations violate
these basic properties. For example, 375 out of 381 datasets have
nondeterministic outcomes; for 51–92% of datasets, toolkits yield
significantly different SOM clusterings; and clustering accuracy
might be so inconsistent as to vary by a factor of four between
toolkits. This undermines SOM reliability, and the reliability of
results obtained via SOMs. Our study shines a light on what to
expect, in practice, when running actual SOM implementations.
Our findings suggest that for critical applications, SOM users
should not take reliability for granted; rather, multiple runs and
different toolkits should be considered and compared.

Index Terms—Self-organizing maps, neural networks, AI test-
ing, AI reliability, nondeterminism, validation

I. INTRODUCTION

Self-organizing maps (SOMs) are a neural network-based
approach for mapping relationships between objects in high-
dimensional spaces onto a low-dimension space, usually a
neuronal grid [1]. Main uses for SOMs include exploratory
data mining [2], dimensionality reduction, clustering, or pre-
clustering. Figure 1 shows an example SOM on dataset Zoo,
which is used to cluster 101 animals into 7 groups based on
17 characteristics (features). Each circle indicates a neuron,
while the clusters, e.g., “Fish” or “Mammal” are indicated via
neurons of the same color. Note how animals that have related
attributes in the 17-dimensional space are clustered together
in the 2-dimensional output SOM.

SOM have been used in critical domains, e.g., finance [3],
[4], drug discovery [5], [6], or medical sciences [7]. However,
SOM reliability has not been questioned. In this paper we
do so, by focusing on two key issues. First, nondeterminism:
when running an SOM implementation repeatedly on the same
dataset yields different results. Second, inconsistency: when
running two different SOM implementations on the same
dataset yields different results.

We illustrate nondeterminism in Figure 2, on the
AP Colon Lung dataset, from the Gene Expression for Oncol-
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Fig. 1. SOM for dataset Zoo, toolkit RKoh.

ogy repository.1 Specifically, we show that two independent
runs of the same, simple procedure – training an SOM on
AP Colon Lung – can yield two very different results between the
two runs. Figure 2(a) shows the original dataset with ground
truth (two clusters shown in green circles and orange triangles,
respectively). Figure 2(b) shows the SOMs constructed by the
R/Kohonen (RKoh) toolkit, on this dataset, in two different
runs. Finally, Figure 2(c) shows the resulting SOMs and
clusters, for the two runs in the middle; the red and cyan colors
indicate the different neurons clusters on the map (separated
by the thick black line). Notice the substantial differences in
cluster assignments and SOMs between the top and bottom
figures; this is due to nondeterminism.

We now illustrate inconsistency: how SOM clustering out-
comes (hence accuracy) for the same dataset differ not only
across runs, but also across toolkits. We conducted 30 in-
dependent runs for each toolkit on the aforementioned Zoo
dataset. Figure 3 shows violin plots for clustering accuracy
(i.e., distribution of accuracy across the 30 runs). Note that
RKoh yields consistently high accuracy (0.78–0.79), whereas
for MiniSom, accuracy varies from 0.47 to 0.82 depending
on the run. In contrast, TFSom’s accuracy (0.23–0.29) is less
than the minimum accuracy for the other toolkits. Hence the
choice of toolkit crucially impacts the resulting accuracy.

In the rest of the paper we quantify, via statistical tests on
internal/external metrics, how SOMs obtained via training on
the same dataset differ across runs and across toolkits.

In Section II we define SOM and discuss the experimental
setup: metrics, datasets, toolkits. We investigate four popular

1GEMLeR by Stiglic and Kokol [8]: using genetic markers to differentiate
between different clinical conditions such as various types of cancer.
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Fig. 2. Different SOMs obtained via two different runs in RKoh, dataset AP Colon Lung.

toolkits (SOM packages) – MiniSom, R/Kohonen, TensorFlow
SOM, MATLAB – described in Section II-C. We ran our
analysis on 381 datasets: about 290 of these were medical
datasets, and the rest were benchmarking datasets; a qualitative
and quantitative description is provided in Section II-D.
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Fig. 3. Clustering accuracy ranges for dataset Zoo.

In Section III we define nondeterminism via a rigorous sta-
tistical test. In Sections IV and V we quantify nondeterminism
using internal and external metrics. For a given toolkit and
dataset, we measure how output SOMs vary across 30 runs.
We found that, for our examined 381 datasets, at most 6 lead to
deterministic results; hence the vast majority of datasets induce
nondeterministic SOM outcomes. In Section VI we define
inconsistency via a statistical test, and present our findings:
for 51–92% of datasets, toolkits yield SOM clusterings with
significantly different accuracy distributions.

II. DEFINITIONS AND EXPERIMENTAL SETUP

We now define the main concepts and describe the setup
for our approach.

A. SOM Definition

SOMs are based on unsupervised competitive learning using
neural networks. An SOM clusters (maps) high-dimensional
data onto a two-dimensional neuron grid. Typically, the grid
topology (how neurons are connected) is hexagonal or rectan-
gular. The network “learns” as the grid neurons adapt to the
latent structure of the dataset; in other words, SOMs apply
competitive learning to adjust weights to neurons. SOMs are
useful for managing and visualizing large datasets or high-
dimensional datasets, because the datasets are simplified into
clusters in the two-dimensional space. As neurons might shift
from run to run, SOMs might yield solutions and results that
are potentially inconsistent from run to run.

B. SOM performance metrics

Prior research [9], [10] has introduced metrics for SOM
performance and the quality of the training algorithm. Forest et
al.’s SOMperf package [11] measures SOM quality via internal
and external metrics. Internal metrics reflect the “native”
quality of the SOM construction and its fit to the input data. In
contrast, external metrics measure the implementation based
on output labels compared to ground truth, e.g., SOM clusters
vs. known clusters. We leverage Forest et al.’s metrics and
package to collect input data for our analyses.

2



TABLE I
NUMBER OF DATASETS WITH STATISTICALLY INVARIANT RUNS; ‘-’ INDICATES THAT ALL DATASETS’ RUNS VARIED SIGNIFICANTLY. “MED” AND “TRM”

ARE SHORT FORMS OF MEDIAN AND TRIMMED MEAN, RESPECTIVELY.
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MiniSom - 1 - - - - 2 2 2 3 5 4 - 1 - - - - - - -
MATLAB 1 4 1 - 4 - 1 4 1 5 6 5 - - - - - - - - -
RKoh - - - - 3 - 3 4 3 5 6 6 - 4 - - 6 - - - -
TFSom - 3 - - - - - 4 - - 2 - - 3 - - 5 - - 2 1

C. Toolkits

We investigate four popular2 SOM packages, as follows.
MiniSom [15], based on Python/Numpy; RKoh – the Koho-
nen package [16] for R [17]; MATLAB’s selforgmap tool-
box [18]; and TFSom – the TensorFlow Self-Organizing Map
package [14] built on top of TensorFlow [19].

D. Datasets

We used 381 datasets from OpenML [20] for MiniSom,
RKoh, and MATLAB. For TFSom we only used 361 of these
381 datasets (on 20 datasets, runtime exceeded our imposed
3-hour limit per run). About 290 of these datasets are drawn
from the medical domain or bioinformatics, while the rest
are specifically designed to evaluate ML implementations. As
these datasets are used to benchmark classification approaches
we have cluster labels (ground truth). The following table
summarizes the characteristics of our datasets: on average,
datasets have 219 instances, 16 dimensions, and 2.38 clusters.

Min Max Geometric Mean
Instances 36 2201 219
Features (attributes) 1 61,359 16
K (# of clusters) 2 50 2.38

III. NONDETERMINISM DEFINITION AND TEST

We define nondeterminism for a toolkit as follows: con-
structing SOMs repeatedly using that toolkit, on the same
dataset, with the same parameters leads to statistically sig-
nificant variation in the resulting SOM.

Nondeterminism is fundamentally problematic for several
reasons. First, it violates users’ expectation that repeated runs
have the same outcome, or at least outcomes that are statis-
tically indistinguishable. Second, it leaves SOM users at the
mercy of the random number generator, i.e., a “lucky” random
seed can lead to a better SOM. Finally, nondeterminism
undermines users’ confidence in SOM reliability in general.
We now define nondeterminism in a statistically rigorous way.

Statistical test for nondeterminism: We use a sensitive
statistical measure of nondeterminism that improves over the
tests introduced by Yin et al. in the context of clustering
nondeterminism [21]: the metric values are nondeterministic if
the 30 runs’ outcomes have statistically significant variance.
Yin et al. used Levene’s [22] test set up as follows: the 30
values constitute one group, while the other group has the
same mean, size, and no variance (all 30 elements are equal
to the mean of the first group). If Levene’s test yields a
p < 0.05, they concluded that the runs vary significantly. The

2As indicated by the number of users [12], [13] or GitHub stars [14], [15].

problem with using Levene’s test is that it is a mean-based test
hence it is most appropriate for symmetric, moderate-tailed
distributions. We improve the statistical tests as follows: we
run a Levene’s mean-based test, as well as Brown-Forsythe’s
median-based test (good for skewed distributions) and Brown-
Forsythe’s trimmed mean-based test (good for heavy-tailed
distributions) [23]. Of these three, we pick the most sensitive,
i.e., the one that finds variance across the largest number
of datasets. If the underlying test results in a p < 0.05 we
conclude that the toolkit is nondeterministic.

IV. NONDETERMINISM RESULTS: INTERNAL METRICS

Internal metrics use the native properties of the SOM model
and input dataset in order to evaluate the quality of the SOM
implementation on dimensionality reduction. We consider six
internal metrics; we discuss their definition, significance, and
analysis results shortly.

Parameters: SOM’s recommended size is 5×
√
N neu-

rons where N is the number of samples in the dataset to
analyze [24]. For example, if a dataset has 150 samples, we
have 5×

√
150 = 5×12.24 = 61.23. Hence the recommended

map has 64 neurons, arranged in an 8-by-8 grid. To keep the
SOM map settings consistent across all the tools, we have used
a hexagonal topology and Manhattan distance as the activation
distance. We now discuss each metric in turn.

A. Quantization Error

1) Definition: Quantization error applies to clustering al-
gorithms in general. The error is computed from the average
Euclidean distance of sample vectors to the centroid, or
best matching unit, by which they are represented. A lower
quantization error value is desirable.

2) Results: Our nondeterminism hypothesis was confirmed
using the three statistical tests. The “Quantization errors”
columns of Table I show the number of datasets for which the
tests indicate statistical invariance across runs. These numbers
are small and consistent across tests (1–4 datasets depending
on the toolkit and test). Put otherwise, for the vast majority,
375–381 datasets quantization error differs significantly across
runs, confirming our nondeterminism hypothesis.

We illustrate one such difference between runs of the dataset
ecoli3 in Figure 4. The figure shows the quality, i.e., mean
distance of objects mapped to a neuron to the original data
point. For each neuron, quality ranges from dark blue (low
error) to green (moderate error) to red (high error). Note the

3Protein localization sites in bacteria.
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Fig. 4. Quantization error nondeterminism for dataset ecoli, toolkit RKoh. Low error in dark blue, higher error in light blue/green/red. The run with minimum
quantization error (59.75) is shown on the left while the run with maximum error (79.07) is shown on the right.

TABLE II
WIDEST-3 DIFFERENCES IN QUANTIZATION ERROR ACROSS RUNS.

Toolkit Dataset Min Max Range Stddev

MiniSom
lsvt 5.8E+8 9.7E+8 3.9E+8 9.3E+7
micro-mass 1.4E+7 1.5E+7 9.1E+5 2.2E+5
tokyo1 3.9E+5 5.1E+5 1.3E+5 2.7E+4

MATLAB
lsvt 1.7E+8 4.0E+8 2.3E+8 6.2E+7
micro-mass 9.1E+6 9.5E+6 3.7E+5 7.9E+4
schlvote 1.6E+5 5.2E+5 3.6E+5 9.0E+4

TFSom
tokyo1 1.2E+6 1.3E+6 9.1E+4 3.9E+4
analcatdataoly 1.8E+5 2.3E+5 4.6E+4 1.7E+4
sleuth ex1221 2.0E+4 5.8E+4 3.8E+4 8.1E+3

RKoh
lsvt 5.5E+8 6.9 E+8 1.4E+8 3.9E+7
micro-mass 1.2E+7 1.3E+7 4.0E+5 9.3E+4
schlvote 6.7E+5 9.8E+5 3.1E+5 6.4E+4

good fit on the left (mostly dark blue) and the worse fit on the
right (more green and light blue neurons).

Table II shows the widest-3 ranges across runs. For example,
in MiniSom, for dataset lsvt, quantization error varied between
5.8 × 108 and 9.7 × 108; for the same dataset, but using
MATLAB, the range varied between 1.7 × 108 and 4 × 108.
Therefore, MiniSom and MATLAB have non-overlapping
ranges across our 30-run experiments, which is a source for
concern. Finally, note that the minimum vs. the maximum
quantization error can vary by 2x–3x, e.g., MATLAB schlvote
(min: 1.6×105, max: 5.2×105) or TFSom sleuth ex1221 (min:
2.0×104, max: 5.8×104). A quantization error that differs by
a factor of 3 across different runs raises a reason for concern.

B. Topographic Product

1) Definition: The topographic product (TP) indicates
whether the size of the map is an appropriate fit onto the
dataset. TP is computed by comparing the ranking orders in the
input and output spaces, respectively; essentially, TP measures
the quality of the topology preservation. If TP < 0, the map
size is too small. Conversely, if TP > 0, the map size is too
large. Surprisingly, we found datasets where the TP can be
positive in one run and negative in the next run. However,
it is important to note that the topographic product presents
reliable results only for linear datasets [11].

2) Results: In Table III, we see how topographic product
varies across runs and tools. Certain datasets such as analcat-
data reviewer consistently have a larger topographic product,

TABLE III
WIDEST-3 DIFFERENCES IN TOPOGRAPHIC PRODUCT.

Toolkit Dataset Min Max Range Stddev

MiniSom
analcatdata reviewer 0.70 1.94 1.24 0.29
arsenic-male-bladder 0.16 0.50 0.34 0.07
arsenicfemalebladder 0.18 0.52 0.34 0.07

MATLAB
analcatdata reviewer 1.86 3.52 1.66 0.42
analcatdata neavote 2.24 3.84 1.60 0.38
aids 0.26 1.50 1.24 0.24

TFSom
haberman 0.25 3.77 3.52 1.10
energy-efficiency 0.37 2.80 2.43 0.75
rmftsa ctoarrivals 0.28 2.26 1.98 0.60

RKoh
analcatdata reviewer 1.66 2.41 0.75 0.14
Titanic 0.36 0.72 0.36 0.11
analcatdata neavote 0.15 0.37 0.22 0.06
fri c0 500 50 -0.17 -0.14 0.03 0.01

RKoh’s fri c0 250 50 -0.15 -0.12 0.03 0.01
negative fri c0 500 25 -0.15 -0.13 0.02 0.01
TP fri c1 1000 10 -0.14 -0.12 0.02 0.01
values analcatdatabankruptcy -0.003 0.01 0.01 0.002

autoUniv-au6-750 -0.003 0.003 0.006 0.002
volcanoes-e4 -0.003 0.002 0.005 0.001

indicating a larger mapsize. However despite this consistency,
certain toolkits have better results. For example, in MiniSom,
the min TP for analcatdata reviewer is 0.70 and the max TP is
1.94, which, while still greater than 0, it is the best performing
toolkit as its max value is around the minimum value of the
other toolkits. For instance, MATLAB has a max TP of 3.52
and min of 1.86 for the same dataset.

In the last seven rows of Table III we focus on the RKoh
toolkit. While TP is positive for the other three toolkits in
all cases, RKoh managed to produce negative TP values for
some datasets where other toolkits had positive TP values
(see the four fri c* rows). Additionally, RKoh also managed to
simultaneously indicate that a dataset’s SOM size is too small
and too large as shown with the datasets analcatdata bankruptcy,
autoUniv-au6-750, and volcanoes-e4 (last three rows). Figure 5
provides a visualization of TP nondeterminism for dataset
colic,4 with a good fit on the left and a poor fit on the right.

C. Trustworthiness/Neighborhood Preservation

1) Definition: Trustworthiness and Neighborhood Preser-
vation are both topological preservation measures. Trustwor-

4Horse surgery: surgical lesions and surgery outcome dataset.
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Fig. 5. Topographic product nondeterminism for dataset colic, toolkit RKoh, exposed by plotting the number of inputs mapped to each neuron. Grey spaces
(representing empty nodes) indicate that the map size is too large. The left map (predominantly red or darker orange) shows a more uniform distribution,
TP = 0.0006. The right map shows more empty nodes and thus a higher topographic product, TP = 0.0023; yellow or lighter orange spaces indicate a
skewed distribution, where many samples map to a single node.

TABLE IV
WIDEST-3 DIFFERENCES IN TRUSTWORTHINESS.

Toolkit Dataset Min Max Range Stddev

MiniSom
kc2 0.02 0.85 0.83 0.27
blood-transfusion 0.24 0.79 0.55 0.1
cm1 req 0.60 0.99 0.39 0.13

MATLAB
kc2 0.19 0.69 0.50 0.21
dbworld-subjects 0.41 0.73 0.32 0.07
dbworld-subjects-stem 0.50 0.78 0.28 0.07

TFSom
kc2 0.35 0.94 0.59 0.14
Titanic 0.35 0.88 0.53 0.23
pc1 req 0.45 0.88 0.43 0.14

RKoh
cm1 req 0.66 0.99 0.33 0.05
blood-transfusion 0.54 0.86 0.32 0.13
dbworld-subjects-stem 0.67 0.83 0.16 0.03

thiness displays whether the projected data points that are
visualized are actually close to each other in the input space.
Whenever one of the neighbors on the map lattice is not one
of the closest neighbors in the actual input space, the error is
increased. Trustworthiness is calculated from the average of
these errors. By swapping the input and output space rankings
in the calculations, we obtain Neighborhood Preservation. This
penalizes the data points which are close in the input space
but far apart in the output space. Both Trustworthiness and
Neighborhood Preservation values are weighted to be kept
within 0 to 1 (where 1 means perfect).

2) Results: Table IV shows trustworthiness results. For
RKoh, while there is variation across runs, ranging from 0.33
to 0.16, the overall trustworthiness is ideal, with values being
higher than 0.50 and closer to 1. MiniSom, however, has the
widest range (min 0.02, max 0.85) for dataset for kc2.

D. Distortion

1) Definition: Distortion is essentially the cost function that
the SOM tries to optimize: the sum of squared Euclidean
distances between samples and SOM prototypes, weighted
by a neighborhood function that depends on the distances
to the map’s best-matching unit. As distortion measures loss
(that the SOM function minimizes), a lower distortion is more
desirable.

2) Results: Table V shows the differences in distortion.
We observed high distortion in RKoh (lsvt where range was

TABLE V
WIDEST-3 DIFFERENCES IN DISTORTION.

Toolkit Dataset Min Max Range Stddev

MiniSom
micro-mass 1.5E+15 1.6E+15 1.9E+14 4.6E+13
oil spill 1.3E+13 3.3E+13 2E+13 4.9E+12
tokyo1 1.2E+13 2.2E+13 1E+13 2.2E+12

MATLAB
micro-mass 1.9E+15 2.3E+15 3.8E+14 1E+14
tokyo1 4.2E+12 6E+12 1.8E+12 4.6E+11
PieChart3 1E+11 6.2E+11 5.2E+11 1.1E+11

TFSom
oil spill 3.0E+13 3.5E+13 5.4E+12 2.7E+12
tokyo1 1.9E+13 2.3E+13 3.5E+12 8.0E+11
analcatdataoly 1.5E+12 2.2E+12 7.0E+11 2.2E+11

RKoh
lsvt 5.1E+19 7.3E+19 2.2E+19 5.6E+18
micro-mass 9.2E+14 9.6E+14 4.4E+13 1E+13
analcatdatabo 1.7E+12 2.9E+12 1.2E+12 3E+11

TABLE VI
WIDEST-3 DIFFERENCES IN KRUSKAL-SHEPARD ERROR.

Toolkit Dataset Min Max Range Stddev

MiniSom
chscase adopt 0.09 0.24 0.15 0.03
kc1-binary 0.07 0.21 0.14 0.02
arsenic-female-lung 0.12 0.26 0.14 0.03

MATLAB
analcatdata reviewer 0.00 0.22 0.22 0.05
analcatdata neavote 0.03 0.18 0.15 0.05
fri c4 250 100 0.24 0.39 0.15 0.04

TFSom
eucalyptus 0.05 0.28 0.23 0.07
fri c4 250 100 0.21 0.41 0.20 0.04
fri c4 500 100 0.16 0.34 0.18 0.04

RKoh
analcatdata reviewer 0.02 0.14 0.12 0.04
ar5 0.06 0.15 0.09 0.02
aids 0.06 0.14 0.08 0.02

2.2 × 1019); for MATLAB, the largest range in variation is
found in the dataset micro-mass with 3.8 × 1014. Similarly
for MiniSom, we see the same dataset having a range of
1.9 × 1014. For a more apparent understanding of distortion,
Figure 6 visualizes how distortion varies between runs on the
same dataset, analcatdata boxing1.5

E. Kruskal-Shepard Error

1) Definition: This value measures distance preservation
between the input space and the output space. The input space
is measured using Euclidean distance; in the output space,
Manhattan distance between the best matching units is used.

5Boxing match results.

5



Neighbor Distance 

0

1

2

3

4

5

Neighbor Distance 

0

1

2

3

4

5

Fig. 6. Distortion nondeterminism: in the analcatdata boxing1 dataset, toolkit RKoh, there are variations in distortion between each node and its neighbors.
The figure on the left (distortion = 4.36) shows significantly less distortion than the right (distortion = 6.53): orange indicates more similar nodes. The
higher the distance, the more dissimilar the nodes are (depicted in yellow or white). An ideal mapping would have predominantly red nodes.

2) Results: A low Kruskal-Shepard Error value is desirable
as it indicates better preservation between input and output
spaces. Table VI shows the differences that occur across toolk-
its and runs. We see the best error rate (0), but largest range
(0.22) for MATLAB with the dataset analcatdata reviewer. For
RKoh, again analcatdata reviewer shows the greatest variance,
having a range of 0.12. Finally, for MiniSom we see the largest
error (0.24) and range (0.15) in the dataset chscase adopt.

F. Topographic Error

1) Definition: Topographic Error (TE), akin to Trustwor-
thiness, is the ratio of total number of errors and number of
data points on a SOM. TE is normalized to a range from 0 to
1, where 0 indicates perfect topological preservation.

2) Results: For lack of space we omit a Top-3 table, but
results are in line with the nondeterministic outcomes we
observed for other metrics. For example, analcatdata neavote’s
best run with MATLAB has a min TE of 0.04 but its worst
run is a TE of 0.96, showing a range of 0.92, whereas the
other toolkits’ ranges were 0.73 and 0.64, respectively.

V. NONDETERMINISM RESULTS: EXTERNAL METRICS

So far we studied internal map qualities; we now change
our focus to external qualities, measuring SOM performance
on clustering tasks. Specifically, external metrics are computed
by comparing SOM-induced output with ground truth’s class
labels. The number of neurons is set to match the number
of distinct output classes to be classified, i.e., map size is C,
the number of distinct output classes (recommended size when
the number of clusters is known [25], [26]). We used the same
hexagonal topology and Manhattan distance as in Section IV.
We now define external metrics and present the results.

A. Clustering Accuracy

1) Definition: Clustering Accuracy divides the number of
samples correctly classified by the total number of samples.

2) Results: To emphasize the potential consequences of
nondeterminism for medical analysis, Figure 7 shows the
clustering accuracy of MiniSom, MATLAB, and RKoh on AP
Colon Lung. Accuracy of MiniSom varies significantly per run
(0.24–0.7): this bimodal distribution can be interpreted as a
coin toss for classification, which is undesirable. Table VII

TABLE VII
WIDEST-3 DIFFERENCES IN CLUSTERING ACCURACY.

Toolkit Dataset Min Max Range Stddev

MiniSom
confidence 0.40 0.86 0.46 0.12
AP Prostate Lung 0.24 0.69 0.45 0.16
AP Omentum Prostate 0.60 0.97 0.37 0.16

MATLAB
solar-flare 0.39 0.69 0.30 0.09
dbworld-bodies 0.55 0.83 0.28 0.08
dbworld-bodies-stem 0.58 0.86 0.28 0.07

TFSom
ar3 0.50 0.77 0.27 0.11
mw1 0.51 0.76 0.25 0.11
CostaMadre1 0.50 0.75 0.25 0.11

RKoh
AP Omentum Prostate 0.57 0.98 0.41 0.11
AP Endometrium Lung 0.50 0.90 0.40 0.12
water-treatment 0.50 0.83 0.33 0.05

further details how the accuracy varies greatly across runs and
tools. Hence when using SOMs for medical data analysis, a
particular run can influence the outcome decisively.

MiniSom

MATLAB

RKoh

Fig. 7. Clustering accuracy ranges for dataset AP Colon Lung.

B. Purity

1) Definition: Purity is calculated by assigning each cluster
to the class which is most frequent in the cluster, and comput-
ing the ratio between how many points are accurately assigned
to the total number of points. A higher purity value indicates
better SOM clustering performance.

2) Results: Table VIII shows the widest-3 results. For Mini-
Som and RKoh we observed higher purity values, occasionally
at the expense of wide range (e.g., on AP Omentum Prostate,
purity ranges were as high as 0.41).

C. Class Scatter Index (CSI)

1) Definition: The class scatter index measures how the
ground truth labels are scattered in the SOM map. Classes

6
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Fig. 8. Neighborhood Preservation inconsistency in the dataset analcatdata challenger, toolkit RKoh. Though invariant across runs, NP varies across toolkits.
The red indicates an ideal mapping, with fewer samples being mapped to the same node. In contrast, yellow or white indicate many samples mapped to the
same node, showing a poor map fit and neighborhood preservation. Grey represents empty nodes, i.e., map might be too large.

TABLE VIII
WIDEST-3 DIFFERENCES IN PURITY.

Toolkit Dataset Min Max Range Stddev

MiniSom
AP Omentum Prostate 0.60 0.97 0.37 0.16
confidence 0.50 0.86 0.36 0.09
Smartphone 0.48 0.75 0.27 0.07

MATLAB
dbworldbodies 0.54 0.82 0.28 0.08
dbworldbodies-stem 0.57 0.85 0.28 0.07
confidence 0.55 0.79 0.24 0.05

TFSom
aids 0.50 0.74 0.24 0.11
analcatdatahappiness 0.38 0.58 0.20 0.07
pollution 0.52 0.70 0.18 0.06

RKoh
AP Omentum Prostate 0.56 0.97 0.41 0.11
dbworldbodies-stem 0.54 0.85 0.31 0.05
dbworldbodies 0.54 0.81 0.27 0.04

that are not scattered (i.e., distributed into fewer groups of
neighboring units) indicate a better map.

2) Results: Table IX shows the widest-3 CSI results. We
see that with RKoh the CSI is varied but better performing
with the max found in breast-tissue and user-knowledge of 2.00.
Other than leaf which has a large value across toolkits, the
remaining datasets have a max CSI of 2.00. Meanwhile, for
MiniSom and MATLAB with the dataset amazon-commerce-rev
we have a max of 7.90 and 7.16 respectively, indicating a map
with larger groups of neighboring units than ideal.

TABLE IX
WIDEST-3 DIFFERENCES IN CSI.

Toolkit Dataset Min Max Range Stddev

MiniSom
amazon-commerce-rev 4.80 7.90 3.10 0.83
leaf 3.47 5.53 2.06 0.50
eucalyptus 1.00 2.60 1.60 0.41

MATLAB
amazon-commerce-rev 5.42 7.16 1.74 0.44
leaf 3.00 4.67 1.67 0.42
LED-display 2.00 2.90 0.90 0.17

TFSom
soybean 1.95 3.68 1.73 0.37
spectrometer 2.54 4.17 1.63 0.53
leaf 3.27 4.77 1.50 0.36

RKoh
leaf 3.80 5.50 1.70 0.39
breast-tissue 1.00 2.00 1.00 0.19
user-knowledge 1.00 2.00 1.00 0.27

VI. INCONSISTENCY

We believe that SOM toolkit users should expect toolkits to
be interchangeable: when training an SOM on the same dataset
via different toolkits one would expect if not the same, at least
remotely similar results. However our experiments show that
this expectation is typically not met, e.g., the results of two
different toolkits on the same dataset are inconsistent. We first

illustrate inconsistency, then introduce the statistical test and
its results, and finally discuss the toolkits and datasets that
display the strongest contrast between toolkits.

A. Inconsistency Examples

To emphasize the consequences of inconsistency on a med-
ical dataset note that in Figure 7, on dataset AP Colon Lung,
one toolkit’s observed accuracy could be 3 times as high
compared to another toolkit. Hence when using SOMs for
medical data analysis, a particular toolkit can influence the
outcome decisively.

B. Statistical Test and Results

To expose statistically significant inconsistency between
toolkits, for each dataset and each pair of toolkits, we ran
a Mann-Whitney U test where the two populations were the
clustering accuracies (30 runs). If p < 0.05 we conclude that
the toolkits are inconsistent. The number of datasets displaying
inconsistency are shown in Table X; these numbers translate
to 51–92% of datasets yielding inconsistent results.

TABLE X
#DATASETS WITH STATISTICALLY SIGNIFICANT INCONSISTENCY.

MiniSom MiniSom MATLAB MATLAB MiniSom RKoh
vs. MATLAB vs. RKoh vs. RKoh vs. TFSom vs. TFSom vs. TFSom

298 254 196 332 333 332

Even in those rare cases where toolkits are deterministic on
a certain dataset (the few non-zero values in Table I) incon-
sistencies still arise between toolkits. For example, Figure 8
shows how Neighborhood Preservation is inconsistent for the
deterministic dataset analcatdata challenger.6

C. Mutual ARI Comparison

We now quantify and discuss those cases where the resulting
SOMs disagree strongly between toolkits. We use the Adjusted
Rand Index (ARI), a metric introduced by Hubert and Ara-
bie [27] that indicates how dissimilar two clusterings of the
same dataset are. An ARI = −1 indicates strong dissimilarity
between clusterings, ARI = 0 suggests that the clusterings are
independent, whereas ARI = 1 indicates a perfect agreement.

For each dataset, we compute “mutual ARIs” between all
toolkits pairs, that is, ARI scores between all six toolkits pairs.

6Space Shuttle Challenger parameters.
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TABLE XI
WORST-3 INCONSISTENCIES (MUTUAL ARI) ACROSS TOOLS.

MiniSom MiniSom MATLAB MATLAB MiniSom RKoh
vs. MATLAB vs. RKoh vs. RKoh vs. TFSom vs. TFSom vs. TFSom

shuttle-landing-c -0.14 shuttle-landing-cl -0.14 trains -0.13 pasture -0.08 MyIris -0.11 MyIris -0.12
trains -0.07 fabert -0.08 dbworld-bodies -0.06 ar4 -0.07 pasture -0.08 pasture -0.08
fri c4 100 50 -0.06 triazines -0.06 dbworld-sbjs-s -0.05 wine -0.07 wine -0.07 wine -0.07

In other words, for each toolkits pair, say RKoh vs. TFSom, we
compute the 30 runs × 30 runs ARI scores. We focus on the
minimum of these 900 pairs, as it indicates the worst-possible
disparity users can experience.

We present the worst disparities in Table XI. The strongest
observed dissimilarity were between MiniSom and MAT-
LAB, and MiniSom and RKoh, respectively: for dataset
shuttle-landing-control we have ARI = −0.14. When comparing
MATLAB and RKoh, other than trains with ARI = −0.13, we
see that overall the discrepancy between toolkits is much less
than compared with MiniSom. These negative ARI values are
concerning, because a negative ARI indicates that the cluster-
ings achieved via the two toolkits are worse than unrelated
and tending toward disagreement.

VII. RELATED WORK

We are not aware of any work that addresses SOM relia-
bility. Nondeterminism and inconsistency were studied before,
but in the context of discrete clustering algorithms [21], [28],
[29] rather than neural networks. The literature discusses how
to use SOM effectively, e.g., in image classification [26]
and choosing appropriate weights and features correctly [30].
To better understand SOM functionality and performance,
a variety of SOM quality metrics have been proposed by
Forest et al. [11] Pölzlbauer [9], Lutz [10], yet there were
no investigations based on variations of SOM results. Overall,
we have found no other investigation into quantifying SOM
disparities, either across runs or across toolkits.

VIII. CONCLUSIONS

Given the popularity of SOMs and neural networks in gen-
eral, we conduct the first study to investigate SOM reliability
in terms of determinism and consistency. Running four popular
SOM packages on 381 datasets shows that users should expect
wide variation across runs and toolkits. Our findings indicate
a need to scrutinize SOM results, especially in high-stakes
scenarios. Our study could spur further research into the causes
of, and remedies for, SOM nondeterminism and inconsistency.
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