
Anomalous Anomaly Detection
Muyeed Ahmed Iulian Neamtiu

Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, USA
{ma234, ineamtiu}@njit.edu

Abstract—Anomaly Detection (AD) is an integral part of
AI, with applications ranging widely from health to finance,
manufacturing, and computer security. Though AD is popular
and various AD algorithm implementations are found in popular
toolkits, no attempt has been made to test the reliability of these
implementations. More generally, AD verification and validation
are lacking. To address this need, we introduce an approach and
study on 4 popular AD algorithms as implemented in 3 popular
tools, as follows. First, we checked whether implementations
can perform their basic task of finding anomalies in datasets
with known anomalies. Next, we checked two basic properties,
determinism and consistency. Finally, we quantified differences
in algorithms’ outcome so users can get a idea of variations that
can be expected when using different algorithms on the same
dataset. We ran our suite of analyses on 73 datasets that contain
anomalies. We found that, for certain implementations, validation
can fail on 10–73% of datasets. Our analysis has revealed that five
implementations suffer from nondeterminism (19–98% of runs
are nondeterministic), and 10 out of 12 implementation pairs are
inconsistent.

Index Terms—Anomaly Detection, Outlier Detection, Machine
Learning, AI testing, AI reliability, Nondeterminism, Verification

I. INTRODUCTION

Anomaly Detection (AD), aka Outlier Detection, is a tech-
nique for detecting rare/unexpected items or events that differ
from the dataset’s normal or expected behavior. AD has been
used in a variety of fields: detecting abnormalities in medical
data, fraud detection in the financial sector, or detecting faults
during manufacturing. Hence there is a pressing need for ap-
proaches that can check the reliability of AD implementations.
More generally, AD users should expect basic properties such
as getting the same result when (a) running the same AD
implementation on the same dataset, or (b) running two im-
plementations of the same AD algorithm on the same dataset.
However, so far, AD research has focused on performance
and performance metrics, rather than reliability. To address
these needs, we introduce the first approach and study that
investigate AD reliability and expose several major issues.
Specifically, we study reliability along several dimensions. We
begin with a basic validation task: given a dataset with known
anomalies, i.e., ground truth, do AD implementations find the
anomalies? Next, we perform two analyses: determinism (does
running an AD implementation repeatedly on the same dataset
yield the same result?) and consistency (does running two
different implementations on the same dataset yield the same
result?). Finally, we quantify variations in outcome due to AD
algorithms.

20 10 0 10 20
40

30

20

10

0

10

20

30

cardio
Both Predicted Same Output
Only Run1 Predicted as Anomaly
Only Run2 Predicted as Anomaly

Fig. 1. Nondeterminism: different outputs of two different runs (algorithm:
Isolation Forest; toolkit: Scikit-Learn) on dataset cardio.

To motivate our approach, we show how AD implementa-
tion nondeterminism and inconsistency can severely affect AD
results on two medical datasets.

First, consider the dataset cardio, a cardiotocography1

dataset. This particular dataset has less than 10% data clas-
sified as suspect/pathologic (anomaly). We ran Scikit-Learn’s
Isolation Forest AD algorithm implementation on this dataset,
repeatedly, and found that results differ substantially across
runs. Figure 1 plots2 the results of two runs (a single imple-
mentation, run twice on the same dataset, with no changes in
input settings or parameters). In the figure, in blue we indicate
those points identified as anomalous in the first run only; in
red, those points identified as anomalous in the second run
only; and in gray, those points where the first and the second
run concur. Ideally, the runs would concur on 100% of the
points, in other words, all points should be gray, because
anomalies/outliers should not vary across runs. However, as
the figure shows, that is not the case: both red and blue
points expose the nondeterminism of the implementation, and

1Vitals gathered while monitoring pregnancy and labor. Anomaly status
indicates a high probability of having low blood oxygen level or high amount
of acid in the body fluids, both requiring immediate action [1], [2].

2For all figures in this paper that plot datasets, we used t-SNE [3] to reduce
dataset dimensionality to 2, for a better visualization.

10 5 0 5 10

10

5

0

5

10

15
breastw

Normal
Anomaly

10 5 0 5 10

10

5

0

5

10

15
breastw

Normal
Anomaly

10 5 0 5 10

10

5

0

5

10

15
breastw

Normal
Anomaly

(a) Ground Truth (b) Matlab (c) Scikit-Learn
Fig. 2. Inconsistency example: algorithm Robust Covariance on the breastw dataset.

generally its unreliability.

Second, consider the dataset breastw (breast cancer Wis-
consin), whose ground truth anomalies are shown in red in
Figure 2 (a). We applied the Robust Covariance AD algorithm
on this dataset using two implementations, Matlab and Scikit-
learn. The exposed anomalies are shown in Figure 2 (b) and
Figure 2 (c). Note that Matlab and Scikit-learn’s findings
are inconsistent with each other (sets of red points differ)
which means two implementations of the same algorithm,
run on the same dataset, produce different outcomes. Further,
note that Matlab could not detect any anomalies and Scikit-
learn’s findings differ from ground truth (specifically, find
fewer anomalies), which raises validation questions.

Third, we provide a combined, descriptive statistics-based,
illustration of both nondeterminism and inconsistency. We
ran three different implementations (Matlab, Scikit-learn, R)
of the same algorithm, Isolation Forest, on the lymphography
oncological dataset. We ran the implementations 30 times and
measured the accuracy of different runs against the ground
truth. We show the results as boxplots in Figure 3. We can
see that the accuracy ranges of these toolkits have no overlap,
demonstrating inconsistency. For example, the minimum ac-
curacy in Matlab (0.98) was higher than the highest accuracy
attained by R (0.86) or Scikit-learn (0.73). Moreover, notice
the visible nondeterminism (different results across different
runs) in Matlab and Scikit-learn compared to R, which was
deterministic.

The rest of the paper is structured as follows. Section II
introduces AD, presents the algorithms and toolkits we exam-
ined, and discusses our experimental setup in detail. Section III
sets the stage via a validation study: five implementations had
trouble finding anomalies in datasets that contain confirmed
anomalies. In Section IV we focus on nondeterminism: we de-
fine nondeterminism in the AD context and present the results
of our study that show five implementations exhibit strong
nondeterminism. Finally, in Section V we study inconsistency;
the results reveal that 10 out of 12 implementation pairs show
strong inconsistency.

Matlab Sklearn R

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

Fig. 3. Isolation Forest accuracy ranges for dataset lymphography.

II. DEFINITIONS AND EXPERIMENTAL SETUP

In this section we first define AD and then describe the
setup for our approach (algorithms we explored, the toolkits
we investigated, and the datasets we used to conduct our
experiment).

A. Definition and Metrics

AD is an unsupervised learning technique3 that, given an
unlabeled dataset, aims to find those points whose characteris-
tics or properties differ from most other points. AD algorithms,
described in Section II-B, essentially aim to separate “normal”
(regular) points from “abnormal” (anomalous) points.

We use several metrics in this paper: accuracy, F1 score, and
the Adjusted Rand Index [4] (ARI),4 for reasons explained
shortly. ARI is mainly used to measure similarities of two

3While supervised and semi-supervised AD approaches exist, in this paper
we focus on the mainstream, unsupervised AD variety.

4The ARI of A and B is defined as follows:

ARI(A,B) =
2(N00N11 −N01N10)

(N00 +N01)(N01 +N11) + (N00 +N10)(N10 +N11)

where “N11 is the number of pairs that are in the same cluster in both A and
B; N00 is the number of pairs that are in different clusters in both A and B;
N01 is the number of pairs that are in the same cluster in A but in different
clusters in B; and N10 is the number of pairs that are in different clusters in
A but in the same cluster in B” [5].

2

clustering results. Assuming two clusterings (partitions) A and
B of the same dataset D, the semantics of the ARI between A
and B is: ARI = +1 indicates perfect agreement, i.e., A and
B are identical; ARI = 0 corresponds to independent/random
clustering, and ARI = −1 indicates “perfect disagreement”,
that is, completely opposite assignment. When A is an AD
result and B is ground truth, ARI can be used to measure AD
performance. Note that AD does not require labels or training.
However when labels (ground truth) do exist, ARI, accuracy,
and F1 score can be used to gauge performance.

One of the reasons to use ARI is because two different
AD outcomes might have the same accuracy and F1 score.
Consider a simple 1-dimensional 4-point dataset where the
ground truth is [0, 0, 0, 1], i.e., only the fourth point is an
anomaly. Now consider two AD outcomes, x = [0, 1, 0, 1]
and y = [0, 0, 1, 1]; their accuracy and F1 score are identical,
accuracy = 75% and F1 score = 0.67, but the underlying
points identified as anomalies are different between x and y.
In contrast, when comparing x and y using ARI, the difference
is exposed with ARI = −0.5.

B. Algorithms

We explore four popular AD algorithms.
Isolation Forest (IF) detects anomalies by isolating objects:

IF first selects a random feature and then randomly splits
the dataset by selecting a value between the minimum and
maximum of that feature [6].

One Class SVM (OCSVM), introduced by Schölkopf et
al. [7], uses Support Vector Machines (SVM) to detect novelty
objects. SVM maps data into a high-dimensional feature space,
then generates a hyperplane to best separate the data into two
groups [8]. OCSVM can be viewed as a simple two-class SVM
where one class is considered normal and the other class is
consider anomalous. Note that one toolkit, Matlab, required a
contamination, or outlier fraction, for this algorithm; though
the default value was 0, we went with the literature-suggested
value of 0.05 (i.e., 5% of the points are outliers).

Local Outlier Factor (LOF) is a density-based AD algorithm
proposed by Breunig et al. [9]. LOF uses the distance of an
object from its k-nearest neighbors to estimate its local density
and then compares with the local densities of its neighbors. An
object is considered an anomaly if its density is significantly
lower than its neighbors’ densities.

Robust Covariance (RobCov) draws a high-dimensional
ellipsoid around the “core” of the dataset (encompassing the
normal values and leaving out outliers). This algorithm works
best on datasets with simple Gaussian distribution [10]. Scikit-
learn required a contamination value for this algorithm; we
used the default value, 0.1.

C. Toolkits

We studied the implementation of the aforementioned algo-
rithms in three popular toolkits (Table I). Scikit-learn (version:
0.21.1), based on Python, has built-in libraries for all 4
algorithms. Matlab (version: R2021a) has official libraries for
3 of the 4 algorithms we focused on; for LOF, we used the

TABLE I
TOOLKIT/ALGORITHM CONFIGURATIONS.

Algorithm MATLAB R Scikit-learn
Isolation Forest ✓ ✓ ✓
LOF ✓ ✓ ✓
One Class SVM ✓ ✓ ✓
Robust Covariance ✓ ✓

most popular implementation based on GitHub stars [11]. For
R (version: 4.1.3), we used separate packages for each algo-
rithm [12]–[14]. In the remainder of the paper we use the term
“implementation” to denote a toolkit/algorithm combination.

D. Datasets

We used 22 datasets from Outlier Detection DataSets
(ODDS) [1]; this is a collection specifically designed to
benchmark AD implementations. We also used 51 datasets
from OpenML [15]; we selected these datasets by running
a skewness analysis to identify those datasets that contained
anomalies. The following table summarizes the distribution
and characteristics of the 73 datasets.

Min Max Geometric Mean
Instances 63 95,156 817
Features (attributes) 2 166 17.13
of Anomalies 6 3,511 58.79
Anomaly Ratio 0.03% 35.9% 7.2%

On average, the datasets have 817 instances and 17 features
(attributes). The anomaly ratio shows the percentage of a
dataset’s instances that are anomalies; in our corpus, typically
7.2% of the points in a given dataset are anomalies. As
mentioned in Section I, in our figures, we project datasets into
2-D for easier visualization; a drawback of this dimensionality
reduction, however, is that points that are outliers in the
original space might appear in the dataset’s “core” – e.g.,
center of the figure instead of the expected periphery – in
the projection.

III. VALIDATION

The crucial requirement for any AD implementation is to
find anomalies in datasets that contain anomalies. However, we
found that this requirement was violated in 6 implementations.

TABLE II
OUT OF 73 DATASETS, NUMBER (AND PERCENTAGE) OF DATASETS FOR

WHICH AN ALGORITHM FAILS TO DETECT ANY ANOMALIES.

Toolkit Algorithm # Datasets %

Matlab RobCov 54 73.9
LOF 19 26.0

Sklearn LOF 8 10.9
IF 1 1.4

R LOF 1 1.4
OCSVM 2 2.7

We ran each implementation 30 times on the 73 datasets.
Table II shows the number (and percentage) of datasets that
fail validation, i.e., the implementation failed to find anoma-
lies in at least one run (recall that all 73 datasets contain

3

TABLE III
NUMBER (PERCENTAGE) OF DATASETS FOR WHICH A IMPLEMENTATIONS

SHOW NONDETERMINISM.

Tool Algorithm # Datasets Percentage

Matlab
RobCov 14 19.2%
IF 71 97.3%
OCSVM 58 79.5%

Sklearn RobCov 59 80.8%
IF 72 98.6%

anomalies). In most cases the 6 implementation that failed
validation actually failed to detect anomalies in all 30 runs.
There were two exceptions, however: (a) for dataset vertebral,
RobCov/Matlab was able to find anomalies in 8 runs out of 30,
and (b) for dataset yeast ml8, IF/Scikit-Learn was able to find
anomaly in 7 runs out of 30. As we can clearly see, RobCov
on default settings performs very poorly as it fails to detect
any anomalies for 73.9% of the datasets. LOF (Matlab and
Scikit-Learn) also failed to find anomalies in 10.9% and 26%
of datasets, respectively.

The remaining 5 toolkit/algorithm configurations passed
validation (as per our definition), i.e., detected some anomalies
in each of the 30 runs.

IV. NONDETERMINISM

We now turn to verifying whether our studied implementa-
tions meet the basic determinism property: running a certain
implementation on a certain dataset repeatedly yields the same
(deterministic) outcome.

A. Nondeterminism Definition and Test

Measuring Nondeterminism. We ran the implementations
30 times on each dataset. We calculated the accuracy and F1
score of each run w.r.t. ground truth, as well as cross-run ARIs
(explained shortly), which expose nondeterminism across runs.

B. Nondeterminism Results

We found that 6 implementations (all three R packages,
LOF in Matlab and Scikit-learn, as well as OCSVM in Scikit-
learn) are deterministic; however the remaining 5 implementa-
tions were strongly nondeterministic. In the remainder of this
section we discuss the nondeterminism findings.

Cross-run ARI. For a certain implementation, we count a
dataset as nondeterministic if there exist at least 2 runs out
of 30 that have mutual (cross-run) ARI < 1; in other words,
these two runs disagree on which points are outliers and which
are not.

Table III shows the count and percentage of datasets for
which the 5 implementations showed nondeterminism. IF
shows high nondeterminism in both Matlab and Scikit-learn,
producing at least one nondeterministic run in > 97% of
datasets. RobCov displayed nondeterminism in both Matlab
(19.2%) and Scikit-learn (80.8%).

Table IV shows the widest differences in cross-run ARI
for each algorithm. The “1.000” entries are unsurprising
(ARI = 1 simply means that two runs yield the same out-
come). Particularly concerning however, are the entries where

TABLE IV
WIDEST-3 DIFFERENCES IN CROSS-RUN ARI (WITHIN SAME TOOLKIT,

I.E., NONDETERMINISM) FOR EACH ALGORITHM.

Algorithm Toolkit Dataset Min Max Range

IF

Sklearn analcatdata
chlamydia

-0.030 1.000 1.030

Sklearn yeast ml8 -0.001 1.000 1.000
Matlab analcatdata

chlamydia
0.171 1.000 0.829

OCSVM

Matlab fertility 0.395 1.000 0.605
Matlab analcatdata

chlamydia
0.553 1.000 0.447

Matlab mammography 0.556 1.000 0.444

RobCov
Matlab vertebral 0.000 1.000 1.000
Sklearn backache 0.109 0.853 0.744
Sklearn mnist 0.048 0.872 0.824

ARI is close to 0 or even negative, because ARI = 0 indicates
unrelated outcomes and ARI < 0 indicates disagreeing
outcomes (Section II-A).

TABLE V
TOP-5 WIDEST DIFFERENCE IN ARI VS GROUND TRUTH ACROSS RUNS.

Toolkit Algo. Dataset Min Max Range
Sklearn IF wine -0.073 0.361 0.434
Sklearn IF musk 0.223 0.600 0.377
Sklearn RobCov mnist 0.061 0.403 0.343
Sklearn RobCov ar3 0.258 0.558 0.299
Sklearn RobCov ar1 0.001 0.281 0.280

ARI vs ground truth. While the cross-run ARI shows the
deviations in outcome from run-to-run, we also need to un-
derstand the run-to-run deviations when compared to ground
truth. For that, we use ARI to compare the toolkit outcome
(AD result) with the ground truth. Table V shows the 5-widest
differences in ARI vs ground truth across runs. We make two
observations. First, note the negative ARI values in the table,
e.g., for backache we have ARI = −0.021 which suggests
the AD outcome is worse than unrelated to ground truth and
tilts toward opposite assignment. Second, note the wide range,
e.g., for musk, the ARI can vary from 0.223 to 0.6, i.e., wide
swings in AD outcome across runs.

Accuracy and F1 score. We now quantify nondeterminism in
terms of accuracy. Table VII shows the top-5 widest accuracy
differences across runs. For example, when we ran RobCov
on the dataset vertebral using Matlab, for one run the accuracy
was 0.875 whereas a subsequent run, on the same dataset
and with the same settings, achieved an accuracy of only
0.633. We also measured F1 scores and found significant
difference between runs. Table VI shows top-5 widest F1 score
differences across different runs. This table also shows the
minimum and maximum precision and recall of different runs.
For example, IF/Scikit-learn performed very differently in 2
different runs on dataset wine: in one run it failed to detect any
anomalies, hence the F1 score, precision and recall are all 0,
whereas in another run the F1 score was 0.483 (with a 0.368
precision and 0.7 recall).

Summary. These findings are concerning, as they indicate
that users cannot rely on the results: even when users are aware

4

TABLE VI
TOP-5 WIDEST F1 SCORE DIFFERENCE ACROSS RUNS.

Tool Algo. Dataset F1 Precision Recall
Min Max Range Min Max Min Max

Sklearn IF wine 0.00 0.48 0.48 0.00 0.37 0.00 0.70
Sklearn RC mnist 0.16 0.51 0.35 0.16 0.49 0.17 0.53
Sklearn IF musk 0.31 0.64 0.33 0.18 0.47 1.00 1.00
Sklearn RC ar1 0.09 0.38 0.29 0.08 0.33 0.11 0.44
Sklearn RC backache 0.09 0.37 0.28 0.11 0.44 0.08 0.32

TABLE VII
TOP-5 WIDEST ACCURACY DIFFERENCE ACROSS RUNS.

Tool Algo. Dataset Min Max Range
Matlab RC vertebral 0.633 0.875 0.242
Sklearn IF lympho 0.574 0.730 0.155
Sklearn IF analcatdata neavote 0.610 0.760 0.150
Sklearn IF visualizing livestock 0.223 0.362 0.138
Sklearn IF climate-model-sim-crashes 0.274 0.400 0.126

that results might differ across runs so multiple runs should
be considered, it is unclear which run to pick for best AD
outcomes.

V. INCONSISTENCY

In this section we study whether our examined imple-
mentations meet the basic consistency property: running two
different implementation of the same algorithm, on the same
dataset, yields the same outcome. Users reasonably expect
implementations of a certain algorithm to be interchangeable,
in other words, the outcome of a certain AD algorithm on a
dataset should not depend upon the implementation.

A. Inconsistency Definition and Test

To test inconsistency for a certain algorithm and a certain
dataset, we computed the mutual ARI of every run of one im-
plementation against every run of a different implementation;
that is,

(
30
2

)
= 435 pairs of runs. Among these, we look for

the worst-case scenario, i.e., lowest ARI, which indicates that
in practice two users that use two toolkits on the same dataset
might obtain widely different results.

B. Inconsistency Results

Table VIII shows the 2 lowest consistencies across toolkits
for different algorithms. From the table we can see that for
each algorithm the toolkits perform very different from each
other. In most cases we have ARI < 0.

Table IX shows the average mutual ARI for all the datasets
on different toolkits for each algorithm. From the table we can
clearly see that for all toolkit combinations, the algorithms
are generally inconsistent. For all the cases the average is
below 0.5 and for all the combinations, more than 60% of the
datasets, the mutual ARI values were below 0.5. Results were
consistent in just two cases: for 8 datasets we got consistent
result when we ran LOF using Matlab and Scikit-learn; for
one dataset, we got consistent result when we ran OCSVM
using Matlab and Scikit-learn.

We illustrate inconsistency in Figure 4. The figure shows
three different algorithms’ performance, on three different

TABLE VIII
LOWEST-2 CONSISTENCIES ACROSS TOOLKITS FOR DIFFERENT

ALGORITHMS.

Algorithm Toolkits Dataset ARI

IF

Sklearn analcatdata apnea2 -0.060
vs. Matlab analcatdata apnea3 -0.060
Sklearn analcatdata apnea3 -0.098
vs. R analcatdata apnea2 -0.094
Matlab analcatdata challenger -0.014
vs. R yeast ml8 -0.002

OCSVM

Sklearn analcatdata neavote -0.053
vs. Matlab arsenic-male-bladder -0.003
Sklearn mnist 0
vs. R oil spill 0
Matlab optdigits -0.003
vs. R fertility -0.001

RobCov Sklearn breastw 0
vs. Matlab glass 0

LOF

Sklearn mnist 0
vs. Matlab optdigits 0
Sklearn appendicitis -0.091
vs. R wbc -0.079
Matlab glass -0.076
vs. R ar3 -0.068

TABLE IX
AVERAGE MUTUAL ARI ACROSS DIFFERENT TOOLKITS FOR EACH

ALGORITHM.

Algorithm Toolkits Average Percentage of Datasets with
ARI mutual ARI below 0.5

IF
Sklearn vs. Matlab 0.306 79.4%

Sklearn vs. R 0.338 72.6%
R vs. Matlab 0.405 63.9%

OCSVM
Sklearn vs. Matlab 0.006 100%

Sklearn vs. R 0.283 75%
R vs. Matlab 0.012 100%

RobCov Sklearn vs. Matlab 0.067 98.6%

LOF
Sklearn vs. Matlab 0.413 71.2%

Sklearn vs. R -0.010 100%
R vs. Matlab 0.0003 100%

datasets using various toolkits. At the top of the figure, for
dataset mnist, using the IF algorithm, outputs differ substan-
tially between toolkits R and Scikit-learm. In the center of
the figure, for dataset optdigits, using the OCSVM algorithm,
the outputs of Scikit-learn and R (latter not displayed in the
figure) are close but the output of Matlab is very different.
At the bottom of the figure, for the dataset wbc, the LOF
algorithm did not find any anomalies in Matlab, whereas in R
a substantial number of points were labeled anomalous.

Summary. These statistics confirm that, for a given algo-
rithm, outcomes differ depending on the toolkit; while root
causes differ (toolkits implement a given algorithm differently,
toolkits use different default parameter values, etc.) the end-
users’ assumption that implementations of the same algorithm
are interchangeable, is undermined.

VI. RELATED WORK

We are not aware of any studies on the reliability of
AD algorithms or their implementations. Work in this area
focused on AD performance. Ahmed et al. surveyed AD
techniques in the context of detecting network anomalies. They
categorized AD methods into four categories (classification,

5

40 20 0 20 40

40

20

0

20

40

mnist
Normal
Anomaly

40 20 0 20 40

40

20

0

20

40

mnist
Normal
Anomaly

(a) R (b) Scikit-Learn

40 20 0 20 40
40

20

0

20

40
optdigits

Normal
Anomaly

40 20 0 20 40
40

20

0

20

40
optdigits

Normal
Anomaly

(c) Matlab (d) Scikit-Learn

6 4 2 0 2 4 6

4

2

0

2

4

6 wbc

Normal
Anomaly

6 4 2 0 2 4 6

4

2

0

2

4

6 wbc

Normal
Anomaly

(e) R (f) Matlab

Fig. 4. Inconsistency example: (a-b) IF, (c-d) OCSVM, (e-f) LOF.

statistical, clustering and information theory) and evaluated
their effectiveness using different criteria such as output of
AD (is the output of AD continuous score or binary labels),
attack detection priority (does the AD prioritize detecting
collective anomaly or point anomaly) and computational com-
plexity [16]. Maxion et al. explored how datasets’ intrinsic
structure can affect the performance of AD techniques and in-
troduced a metric for characterizing structural regularities [17].
These efforts are complementary to our work – our findings
indicate that experiments with AD implementations in general
might lead to unstable results.

The issues of nondeterminism and inconsistency have been
studied before in other unsupervised learning contexts, specifi-
cally Clustering and Self-organizing Maps [18]–[21]. However
those findings do not translate to (neither can they serve as
indicative of) Anomaly Detection, because our application
area, goals, and experimental setup are different.

VII. CONCLUSIONS

Anomaly Detection is widely used but its reliability has not
been questioned. We do so in this paper, by investigating 11
implementations of 4 popular AD algorithms. Our findings

show that AD implementations can exhibit nondeterminism,
that there a strong differences between two different imple-
mentations of the same algorithm, and that even core func-
tionality cannot be taken for granted. We make the case that
(1) AD reliability needs further scrutiny and (2) the problems
affecting current AD implementations should be addressed.

Our experiments indicate that, with default settings, the
implementations Isolation Forest/Matlab, Isolation Forest/R,
and Robust Covariance/Scikit-learn achieved consistently good
performance across datasets.

ACKNOWLEDGMENTS

We thank Parth Patel for his help with dataset processing, and
the anonymous reviewers for their valuable feedback. This material
is based upon work supported by the National Science Foundation
under Grant No. CCF-2007730.

REFERENCES

[1] “ODDS,” April 2022, http://odds.cs.stonybrook.edu/.
[2] “Chapter 10 - fetal growth,” in Twining’s Textbook of Fetal Abnormalities

(Third Edition), third edition ed., A. M. Coady and S. Bower, Eds.
Churchill Livingstone, 2015, pp. 211–222.

[3] L. Van der Maaten and G. Hinton, “Visualizing non-metric similarities
in multiple maps,” Machine learning, vol. 87, no. 1, pp. 33–55, 2012.

[4] L. Hubert and P. Arabie, “Comparing partitions,” Journal of Classifica-
tion, vol. 2, pp. 193–218, 02 1985.

[5] N. X. Vinh, J. Epps, and J. Bailey, “Information theoretic measures for
clusterings comparison: Variants, properties, normalization and correc-
tion for chance,” JMLR, vol. 11, no. Oct, pp. 2837–2854, 2010.

[6] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in ICDM.
IEEE, 2008, pp. 413–422.

[7] B. Schölkopf, R. C. Williamson, A. Smola, J. Shawe-Taylor,
and J. Platt, “Support vector method for novelty detection,” in
Advances in Neural Information Processing Systems, S. Solla,
T. Leen, and K. Müller, Eds., vol. 12. MIT Press,
1999. [Online]. Available: https://proceedings.neurips.cc/paper/1999/
file/8725fb777f25776ffa9076e44fcfd776-Paper.pdf

[8] K. Heller, K. Svore, A. D. Keromytis, and S. Stolfo, “One class support
vector machines for detecting anomalous windows registry accesses,”
2003.

[9] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: identifying
density-based local outliers,” in ACM SIGMOD, 2000, pp. 93–104.

[10] P. J. Rousseeuw and K. V. Driessen, “A fast algorithm for the minimum
covariance determinant estimator,” Technometrics, vol. 41, no. 3, pp.
212–223, 1999.

[11] “Anomaly detection toolbox.” [Online]. Avail-
able: https://github.com/dsmi-lab-ntust/AnomalyDetectionToolbox/tree/
master/Algorithms/distributionBased/LOF

[12] David-Cortes, “David-cortes/isotree: (python, r, c/c++) isolation forest
and variations such as sciforest and eif, with some additions
(outlier detection + similarity + na imputation).” [Online]. Available:
https://github.com/david-cortes/isotree

[13] “Local outlier factor score.” [Online]. Available: https://search.r-project.
org/CRAN/refmans/dbscan/html/lof.html

[14] “Svm: Support vector machines.” [Online]. Available: https://www.
rdocumentation.org/packages/e1071/versions/1.7-9/topics/svm

[15] “OpenML,” April 2022, https://www.openml.org/.
[16] M. Ahmed, A. Naser Mahmood, and J. Hu, “A survey of network

anomaly detection techniques,” Journal of Network and Computer
Applications, vol. 60, pp. 19–31, 2016.

[17] R. Maxion and K. Tan, “Benchmarking anomaly-based detection sys-
tems,” in Proceeding International Conference on Dependable Systems
and Networks. DSN 2000, 2000, pp. 623–630.

[18] V. Musco, X. Yin, and I. Neamtiu, “Smokeout: An approach for testing
clustering implementations,” in ICST 2019, April 2019.

[19] X. Yin, I. Neamtiu, S. Patil, and S. T. Andrews, “Implementation-
induced inconsistency and nondeterminism in deterministic clustering
algorithms,” in ICST 2020, October 2020.

6

http://odds.cs.stonybrook.edu/
https://proceedings.neurips.cc/paper/1999/file/8725fb777f25776ffa9076e44fcfd776-Paper.pdf
https://proceedings.neurips.cc/paper/1999/file/8725fb777f25776ffa9076e44fcfd776-Paper.pdf
https://github.com/dsmi-lab-ntust/AnomalyDetectionToolbox/tree/master/Algorithms/distributionBased/LOF
https://github.com/dsmi-lab-ntust/AnomalyDetectionToolbox/tree/master/Algorithms/distributionBased/LOF
https://github.com/david-cortes/isotree
https://search.r-project.org/CRAN/refmans/dbscan/html/lof.html
https://search.r-project.org/CRAN/refmans/dbscan/html/lof.html
https://www.rdocumentation.org/packages/e1071/versions/1.7-9/topics/svm
https://www.rdocumentation.org/packages/e1071/versions/1.7-9/topics/svm
https://www.openml.org/

[20] X. Yin, V. Musco, I. Neamtiu, and U. Roshan, “Statistically rigorous
testing of clustering implementations,” in AITEST 2019, April 2019.

[21] S. Rahaman, R. Samuel, and I. Neamtiu, “Quantifying nondeterminism
and inconsistency in self-organizing map implementations,” in IEEE
AITest, 2021, pp. 85–92.

7

