
DEANOMALYZER: Improving Determinism and
Consistency in Anomaly Detection Implementations

Muyeed Ahmed Iulian Neamtiu
Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, USA

{ma234, ineamtiu}@njit.edu

Abstract—Anomaly Detection (AD) is a popular unsupervised
learning technique, but AD implementations are difficult to test,
understand, and ultimately improve. Contributing factors for
these difficulties include the lack of a specification to test against,
output differences (on the same input) between toolkits that
supposedly implement the same AD algorithm, and no linkage
between learning parameters and undesirable outcomes. We have
implemented DEANOMALYZER, a black-box tool that improves
AD reliability by addressing two issues: nondeterminism (wide
output variations across repeated runs of the same implemen-
tation on the same dataset) and inconsistency (wide output
variations between toolkits on the same dataset). Specifically,
DEANOMALYZER uses a feedback-directed, gradient descent-like
approach to search for toolkit parameter settings that maximize
determinism and consistency. DEANOMALYZER can operate in
two modes: univariate, without ground truth, targeted to general
users, and bivariate, with ground truth, targeted to algorithm
designers and developers. We evaluated DEANOMALYZER on 54
AD datasets and the implementations of four AD algorithms
in three popular ML toolkits: MATLAB, R, and Scikit-learn.
The evaluation has revealed that DEANOMALYZER is effective
at increasing determinism and consistency without sacrificing
performance, and can even improve performance.

Index Terms—AI testing, AI reliability, Nondeterminism, Ver-
ification, Anomaly Detection, Machine Learning

I. INTRODUCTION

Anomaly Detection (AD) is a widely-used unsupervised

learning technique for detecting rare/anomalous items, or

data/events that contradict expected behavior. Thanks to AI’s

growing popularity, AD use is increasing in a wide range

of domains, including manufacturing, health, security, and

finance. While AD reliability is crucial, verifying or validating

the output of an AD algorithm is challenging: there is no

specification to check against, and even in scenarios where

learning tasks have ground truth, different AD implementa-

tions can produce widely diverging outputs on the same input

(dataset). In general, AD users should expect (1) determinism:

a certain AD implementation produces the same output when

run repeatedly on the same dataset, and (2) consistency:

different implementations of the same AD algorithm produce

similar outputs on the same input dataset. However, prior

work has revealed that popular AD implementations violate

both properties [1]. Note that current AD efforts in the ML

or Big Data communities are focused on developing new

algorithms, optimizing performance, or increasing scalability

– little to no research is focused on testing, and improving the

reliability of, AD implementations. To address these issues,

we designed and implemented DEANOMALYZER: a tool that

(a) Default settings

(b) Improved via our univariate search

Fig. 1. Nondeterminism example: different outputs of two different runs
(algorithm: Isolation Forest; toolkit: Sklearn) on dataset vertebral.

increases determinism, consistency, and even performance,

of AD implementations, without requiring source code, by

exploring toolkits’ parameter spaces in a gradient descent-like

manner. We made DEANOMALYZER available on GitHub. 1

To motivate our approach, we illustrate nondeterminism and

inconsistency in two popular toolkits, Scikit-learn (Sklearn for

short) and MATLAB.

Nondeterminism. First, we illustrate AD nondeterminism on

vertebral – an orthopaedic dataset with two classes, normal

and abnormal [2]. We ran the Isolation Forest AD algo-

rithm (explained in Section IV) using Sklearn, multiple times,

without making any changes in parameters or environment,

yet obtained different results in different runs. Figure 1 (a)2

shows the result of two different runs, “Run 1” and “Run 2”.

The grey dots represent points where both runs predicted the

same output, blue dots are the points that were identified as

anomaly only in Run 1, and red dots were the points that were

identified as anomaly only in Run 2. Ideally, all the points

should be grey (same outcome in both runs), however that

is clearly not the case. Among the 240 points, the two runs

predicted different outcome for 14 points (cross-run ARI=0.63,

1https://github.com/MuyeedAhmed/DeAnomalyzer
2For Figures 1 and 2 we used t-SNE [3] to reduce dimensionality of the

datasets to 2 for better visualization.

17

2023 IEEE International Conference On Artificial Intelligence Testing (AITest)

2835-3560/23/$31.00 ©2023 IEEE
DOI 10.1109/AITest58265.2023.00012

(a) Default settings

(b) Improved via our univariate search

Fig. 2. Inconsistency example: algorithm Isolation Forest on dataset breastw.

far short of the expected ARI=1; Section II-A defines ARI).

DEANOMALYZER was able to achieve a cross-run ARI of 1

(eliminating nondeterminism), shown in Figure 1 (b). More-

over, DEANOMALYZER exposed the exact parameter values

responsible for nondeterminism, and the values that should be

used to eliminate it (e.g., n estimators should be set to 512

instead of the default, 100).

Inconsistency. Second, we ran the Isolation Forest AD

algorithm on dataset breastw (Breast Cancer Wisconsin [4],

[5]) using the default settings of MATLAB and Sklearn.

Figure 2 (a) shows the output, evidencing substantial dis-

agreement between toolkits. The red points represent points

identified as anomalies only by Sklearn, and points in grey

indicate that both toolkits agreed. While blue points would

represent the points only MATLAB identified as anomalies,

Figure 2 (a) does not contain such points, as MATLAB only

identified a subset of the anomalies exposed by Sklearn.

DEANOMALYZER reduced the inconsistency between the

implementations, as illustrated in Figure 2 (b): note the sub-

stantial increase of grey dots. DEANOMALYZER exposed the

parameter values responsible for the inconsistency, and the

values that should be used to reduce it (Matlab’s Contamina-
tionFraction should be set to a value akin to Sklearn’s “auto”,

i.e., 0.376, instead of the default 0).

Our approach, and DEANOMALYZER’s architecture, are dis-

cussed in detail in Section III. DEANOMALYZER was designed

to operate in a black-box manner, with only knowledge of the

toolkit parameter settings (aka “hyperparameters”). DEANOM-

ALYZER uses a feedback-driven gradient descent-like approach

to find parameter values that improve determinism or consis-

tency, an approach we name univariate search. DEANOMA-

LYZER can also be used to expose the determinism v. perfor-

mance balance (and respectively, consistency v. performance

balance), an approach we name bivariate search, because the

search moves along two directions. Our experiments found

that DEANOMALYZER was able to alleviate nondeterminism

in all those 6 implementations that were nondeterministic,

and improve consistency for all 11 implementations. For the

three strongest nondeterministic algorithms (Matlab/OCSVM,

Sklearn/IF, and Matlab/IF), DEANOMALYZER improved ARI

from 0.11 to 0.9, 0.78 to 0.94, and 0.84 to 0.94, respectively.

The rest of the paper is structured as follows. Section II

introduces definitions and presents the experimental setup. In

Sections IV to VII, we present the improvements attained by

running DEANOMALYZER on each AD algorithm.

II. DEFINITIONS AND EXPERIMENTAL SETUP

We evaluated our approach on 4 algorithms, as imple-

mented in 3 popular toolkits; we validated the results on 54

AD-specific datasets. This section introduces the evaluation

metrics, algorithms, toolkits, and datasets.

A. Definitions and Metrics

Given an unlabeled dataset, AD aims to find abnormal or

anomalous points. Therefore, we use two performance metrics:

ARI and F1 score. The Adjusted Rand Index (ARI [6]),

originating from clustering analysis, measures the similarity

between two clustering outputs U and V . In our case, the

output represents a partition of a dataset into normal and

anomalous points. ARI is versatile as it does not require

ground truth, hence can be used to compare AD output

obtained from two runs, two toolkits, etc. ARI ranges from

−1 to +1, where −1 indicates “perfect disagreement” between

U and V , while +1 indicates the same output or “perfect

agreeement” (U≡V); a score close to 0 means that U and V
are random or independent. F1 score measures performance

(combining precision and recall of the AD result), and is useful

in scenarios, e.g., for AD developers, where ground truth is

available and the goal is to improve performance.

B. Algorithms

We explored four AD algorithms, described shortly; three

algorithms are prone to both nondeterminism and inconsis-

tency, while one is deterministic, only prone to inconsistency.

Isolation Forest (IF) detects anomalies by isolating anoma-

lous objects. IF uses one or more (potentially infinite number

of) estimators. Each estimator selects a random feature from

a group of features and then randomly splits a sub-sample of

the dataset by selecting a value between the minimum and

maximum of that feature [7].

Robust Covariance (RobCov) detects anomalies by drawing

a high-dimensional (number of features in a dataset) ellipsoid

around the center or “core” of the dataset [8].

Local Outlier Factor (LOF) uses the k-nearest neighbor

(kNN [9]) algorithm to measure the distance of each sample

in a dataset from its nearest k neighbors and then compares

their local density with their neighbors’ local density. If

local density is significantly lower, that sample is identified

as anomaly [10]. LOF is the only deterministic-by-design

algorithm among the four.

One Class SVM (OCSVM) uses Support Vector Machines

(SVM) to detect anomalies. Note that, to separate classes,

18

���
�����	

�����

������

���
������

����������

�����������������
�������������
�����������

�	����������
����	
��

�����
���������!�����

�	

��������������

�������

�������

����	�

�
������

����������

Fig. 3. DEANOMALYZER Determinism improver: univariate search.

SVM maps the points into a high-dimensional feature space

and generates class-separating hyperplanes [11]. OCSVM is a

simple two-class SVM: the larger class is considered normal,

while the smaller class contains anomalies or outliers.

C. Toolkits

We studied AD implementations in three popular toolkits.

Scikit-learn (Sklearn) has all four aforementioned algorithms

built-in. For MATLAB, we used the most popular LOF imple-

mentation based on GitHub stars [12]; the other algorithms are

implemented in official libraries. R supports 3 algorithms (IF,

LOF, OCSVM) implemented in separate packages [13]–[15].

Therefore, in total we explored 11 implementations.

D. Datasets

The following table summarizes the distribution and char-

acteristics of the 54 datasets we used in our experiments.

Min Max Geometric Mean
Instances (points) 63 7,200 426.7
Features (attributes) 2 64 14.10
of anomalies 6 2,036 39.88
Anomaly ratio 1.2% 35.9% 9.3%

Out of the 54 datasets, 16 are from Outlier Detec-

tion DataSets (ODDS) [16] and the other 38 are from

OpenML [17]. On average, the datasets have 426 instances

and 14 attributes. The anomaly percentage ranged from 1.2%

to 35.9% (typically: 9.3%).

III. DEANOMALYZER ARCHITECTURE

We designed DEANOMALYZER to improve the determinism

of a given AD toolkit, and the consistency between two

given AD toolkits. Moreover, when ground truth is provided,

DEANOMALYZER incorporates mechanisms to preserve, and

even increase, performance.

A. Nondeterminism

To reduce nondeterminism, DEANOMALYZER supports two

strategies: univariate search and bivariate search. Univariate

search optimizes for a single output variable, determinism, and

is applicable in scenarios where repeatability or reproducibility

are key; this strategy does not take into account performance.

In contrast, bivariate search optimizes for both determinism

and performance; this strategy is applicable in, for example,

validation settings, where ground truth is available.

procedure DeAnomalyzer Univariate:
Input: dataset d, implementation t, ParameterV alues
Output: OptimumParamSetting
ParameterV alues=m parameters, each with n values
for all parameters pi where i = 1, ...,m {
piV alues = {pi1, pi2, . . . pin}
pij = default from piV alues
CurrentV alues = set pi to pij in ParameterV alues
do {

// run executes t 10 times on d and returns the mean ARI
ARIScore = run(t, d, CurrentV alues)
Append pij to OptimumParamSetting
// Update CurrentV alues
if pij+1 performs better than pij
pi = pij+1

else
pi = pij−1

} while (ARIScore increases)
}
return OptimumParamSetting

Fig. 4. Univariate search pseudocode.

1) Univariate Search: Figure 3 shows an overview of uni-

variate search approach: given a toolkit, the parameter space is

explored, informed via feedback on determinism values (cross-

run ARI), to find values that maximize determinism.

Figure 4 shows the pseudocode for univariate search.

DEANOMALYZER takes as input the dataset d, an algorithm

implementation t (e.g., Sklearn/IF), and the set of parameters

ParameterV alues. For each parameter pi, we have a list

of possible values [pi1, pi2, ...].
3 DEANOMALYZER first starts

with a parameter pi and then runs t on the dataset using the

default value pij for pi (all other parameters are set to default

as well) 10 times, and computes the mean cross-run ARI.

Note that a high ARI value indicates determinism across the

10 runs, while a low ARI value indicates nondeterminism.

Then DEANOMALYZER selects the next value pij+1 from

the possible value list of pi and runs t again 10 times. If

the cross-run ARI score is better than the score with default

settings, DEANOMALYZER explores in that direction (the next

value for pi being pij+2) and will continue doing so as

long as the cross-run ARI increases. However, if the cross-

run ARI with pij+1 is worse than the default value’s score,

DEANOMALYZER will start exploring the values that precede

the default (i.e., pij−1, pij−2, ..). Before moving on to the next

parameter, DEANOMALYZER selects the parameter value with

the maximum determinism as the new default for pi and also

stores the “winner” in OptimumParamSetting. DEANOM-

ALYZER then follows the same procedure for exploring other

parameters of t. Finally, after going through all parameters,

OptimumParamSetting will have the settings, e.g., param-

eter values, that represent a nondeterminism minimum (i.e.,

determinism maximum) for t on dataset d.

For some parameters the default value is dynamic (i.e.,

depends on the dataset). For example, the default value

for max samples in Sklearn/IF is min(256,#ofsamples),
meaning the implementation will take 256 samples from the

3We had a few cases where parameter values were defined as continuous
values over a range, rather than a list of discrete values. In those cases we
created a 10-value list manually.

19

dataset to train an estimator if the dataset has more than 256

points, otherwise it will take all the points. Therefore, if the

dataset contains 1000 points, the default max samples should

come after 0.2 (20% of the points) and before 0.3 in the list

([0.1, 0.2, default, 0.3, . . .]) as now the fraction of points to

be used in each estimator is 0.256 (256/1000).

We illustrate univariate search on Isolation Forest, toolkit

Sklearn. As mentioned previously, max samples controls the

fraction of points to use to build a single estimator. The range

of max samples is (0, 1] so as list of values we divided this

range into 10 discrete values ([0.1, 0.2, . . . , 1.0]). Assuming

a default value max samples=0.5, DEANOMALYZER runs

Sklearn/IF 10 times on the dataset using 0.5 as max samples
and computes the cross-run ARI. DEANOMALYZER then

moves on to the next value, max samples=0.6, runs Sklearn/IF

10 times, and obtains a new cross-run ARI. If the new

cross-run ARI is better, DEANOMALYZER moves to the next

value, max samples=0.7 and will continue doing so until the

ARI starts to decrease or we exhausted the max samples’s

set of values. However if we obtained a lower ARI score,

DEANOMALYZER will select the max samples value of 0.4

and potentially continue exploring downwards (0.3, 0.2, . . .)
until a decrease in ARI score is observed. Assuming, for

example, that max samples=0.3 yields the maximum cross-

run ARI, DEANOMALYZER sets this value as the new default

and adds 0.3 in our OptimumParamSetting, i.e., output

parameters. Next, DEANOMALYZER explores the remaining

parameters of Sklearn/IF following the same strategy. For

unbounded parameters we manually set a realistic upper bound

(e.g., for n estimators we set the upper bound to 512).

Limitation: local v. global minima. As typical in gradient

descent, our approach assumes the function to be optimized

is convex, hence could discover local, rather than global,

nondeterminism minima. This is a deliberate trade-off to keep

exploration time tractable, as in the worst case the number

of runs is still linear in the number of parameter values. In

contrast, the number of runs in grid search will be exponential.

Figure 5 shows two examples of univariate search. In

Figure 5 (a), we used Matlab/OCSVM on dataset analca-
data apnea3 and in Figure 5 (b) we used Sklearn/IF on dataset

ar1. In both examples, we can observe a steady rise in cross-

run ARI with each step. In Figure 5 (a), with default settings

the cross-run ARI was 0.008; note that cross-run ARI close
to 0 indicates outputs so different across runs as to appear
unrelated. First, DEANOMALYZER explored the parameter

ContaminationFraction (CF) but changing the default value

of 0.1 in either direction did not improve the ARI score.

Then, DEANOMALYZER moved on to the next parameter,

KernelScale (KS) ; the default value for KS is 1 and setting it to

“auto” (which invokes a heuristic procedure, i.e., the algorithm

will choose the value automatically) increased the cross-run

ARI by almost 0.5. After exploring the remaining parameters

(Lmda, SD, BT), DEANOMALYZER achieved a cross-run ARI

of 0.67, which is a substantial improvement from the default,

0.008. We also see a minor rise in F1 score, from 0.12 to

0.15. In the Figure 5 (b) example, DEANOMALYZER found

an optimal value for n e in three steps, then optimal values

for w s and m s). In the end, DEANOMALYZER increased

cross-run ARI from 0.84 to 0.93, with a minor decline in F1

score (from 0.287 to 0.277).

2) Bivariate Search: Figure 6 shows an overview of the

bivariate search approach: given a toolkit, the parameter space

is explored, informed via a feedback loop on both determinism

and performance values. Here, DEANOMALYZER explores the

determinism v. performance space. While ideally we wish

to improve both, this might not be possible in practice,

hence DEANOMALYZER allows users to quantify, say, the x%
performance loss incurred by a y% gain in determinism.

Bivariate search is similar to univariate search, but considers

performance. When comparing the result gathered by default

pij and pij+1, we check both the cross-run ARI and F1 score,

and move onto pij+2 if the cross-run ARI increased and F1

score did not decrease. However if the F1 score decreases, we

move on to pij−1 even when cross-run ARI increases.

Figure 7 shows two examples of bivariate search. For the

two examples we used the same datasets and tool/algorithm

combinations as in Figure 5. In Figure 5 (a) we see an increase

of cross-run ARI after changing the value of BetaTolerance
(BT) from the default 10−4 to 10−5. While in univariate search

we explored that path, in bivariate search we did not, as

it reduces performance, as can be seen in Figure 7 (a). In

this example we do see an increase of both cross-run ARI

(0.58) and F1 score (0.17). In Figure 5 (b), taking the path to

n estimators (n e)=512 from n estimators=256 would reduce

performance, hence we stop following that path. The final

result is no decrease in performance (0.30), while improving

cross-run ARI (0.90).

B. Inconsistency

To reduce inconsistency we adapted univariate and bivari-

ate search to operate on two toolkits. We had to address

the challenge where for a certain algorithm, the number of

parameters differed between toolkits, e.g., MATLAB/RobCov

has 9 parameters but Sklearn only has 4. DEANOMALYZER

addresses this by exploring all available parameters for a

certain toolkit. Figure 8 shows an overview of our approach.

1) Univariate Search: In univariate search targeting non-

determinism, after moving to a new parameter value we

calculated the cross-run ARI. In univariate search targeting

inconsistency, we “nest” one toolkit tb inside the other toolkit

ta. Specifically, we first choose a parameter pa from toolkit ta
and start exploring that parameter. We choose the pai value of

parameter pa and then choose the pbi value from parameter pb
of toolkit tb and check the mutual ARI between toolkits ta and

tb. Then we move on to pbi+1 in tb and similar to univariate

search targeting nondeterminism we check and move to the

next step. Note that instead of cross-run ARI, here we check

the mutual ARI of the two tools’ output. While exploring

toolkit tb we continue to update the default value with the

new default value for each parameter. After exploring toolkit

tb completely (all parameters), we change the pa parameter

value of toolkit a to pai+1 and continue with the same process

20

�

���

���

���

���

���

��	

��

���

���� ���� ���� ���� ���� ���	 ���
 ����

���������
��	�����	����
����������	��	����������

�
��	�����������	
��
����������	��	����������

�
��	�����	������������������	��	����������

�
��	�����	��������
���	�	����������������

��������

�
��
��
��
��
��

�
�
��	�����	��������
���	�	���	������������

����

����

���	

����

���

����

����

���
 ���
� ���� ����� ���� ����� ��� ����� ����

���������	
�����������������������������

��������

�
��
��
��

�
��

�

	�������������������������������

	�����	
������������������������

	����	��������������������������

	
���������������������������
	
�������������������������

(a) MATLAB/OCSVM, dataset analcatdata apnea3 (b) Sklearn/IF, dataset ar1

Fig. 5. DEANOMALYZER univariate search example: reducing nondeterminism.

�������

����	�

�
������
���

������
���

����	�
���������
��
������		�
��
��	����	

����"������
�	������#

���
�
����	�
��$�����

��

�%������
���������#

��
���

�����	����	�	��

�		�����

����	�
���

�����	

�����
������

����	
�
��

Fig. 6. DEANOMALYZER determinism improver: bivariate search.

again (run toolkit tb). We will continue doing this for all the

parameters of toolkit ta. Finally, we will have two sets of

parameter settings, for ta and tb respectively, that represent a

consistency maximum for the given dataset.

For example, Sklearn/IF has a parameter n estimators
whose default value is 100. When aiming to improve the

consistency between Sklearn/IF and MATLAB/IF, DEANOM-

ALYZER checks the mutual ARI of Sklearn and MATLAB

with this setting and continues exploring MATLAB, start-

ing from parameter ContaminationFraction and other subse-

quent parameters as long as the mutual ARI increases. Next,

DEANOMALYZER moves back to Sklearn and changes the

value of n estimators to the next option (in this case, 128)

and finds the setting in MATLAB that achieves the highest

agreement with (i.e., best mutual ARI) Sklearn’s current

setting. DEANOMALYZER continues this approach until all the

parameters of Sklearn have been explored.

Figure 9 shows how univariate search reduces inconsistency.

With default settings, the mutual ARI between the two toolkits

is low, 0.070. The first change, the Method parameter in

MATLAB flip from “fcmd” to “ogk”, brought the mutual ARI

up to 0.588. After exploring all the parameters in MATLAB

once, DEANOMALYZER went back to Sklearn and changed as-
sume centered from “false” to “true”, which increased mutual

ARI slightly from 0.686 to 0.710. In the next few iterations,

MATLAB did not improve the mutual ARI. After changing

the Sklearn parameter contamination to “IF” we saw another

small increase. Finally, the mutual ARI increased to 0.866.

2) Bivariate Search: For bivariate search we follow the

same procedures, but also optimizing for F1 score. Addition-

ally as we already have the ground truth, we nest our tools in

such a way that the toolkit with the worse outcome (lower F1

score) tries to get closer to the toolkit with better outcome. For

example, for algorithm Isolation Forest, the average F1 score

in MATLAB with default settings was 0.26 and in Sklearn it

was 0.294. Therefore we mirrored Sklearn’s parameter explo-

ration in MATLAB (i.e., after changing a parameter’s value

in Sklearn, all the parameters will be explored in MATLAB)

in order to increase the performance of MATLAB, resulting

in an increased mutual ARI. After the bivariate search, the F1

score of MATLAB was 0.326, Sklearn’s was 0.322, while the

mutual ARI increased from 0.551 to 0.598.

We now present the evaluation results for each algorithm.

IV. ISOLATION FOREST

A. Nondeterminism

Isolation Forest implementations are nondeterministic in 2

of the 3 toolkits (only R was deterministic [1]); specifically,

Sklearn and MATLAB were nondeterministic for more than

90% of datasets. We now discuss how DEANOMALYZER

reduces nondeterminism without sacrificing performance.

1) Sklearn: DEANOMALYZER revealed that n estimators
is one of the most influential parameters for reducing nonde-

terminism (n estimators is the number of base estimators the

algorithm can use to predict anomalies). The default setting of

n estimators was 100, with possible values {2, 4, 8, ..., 512};

DEANOMALYZER revealed that increasing the value can re-

duce nondeterminism. DEANOMALYZER runs with different

values of this parameter on each dataset 10 times and pro-

duces cross-run ARI scores (Section III). Table I shows the

results of a Mann-Whitney U test [18] for each pair [(64,

100), (64, 128), (64, 256),...] across all datasets. The strong

significance levels (< 0.05 for all but one) essentially indicate

that each different value of the parameter produces very
different levels of determinism (cross-run ARI). The other

influential parameter is max samples (which determines the

fraction of points to be used in each estimator). Table II shows

other IF parameters with their AIC value (Akaike information

criterion [19]) – lower values indicate higher relevance. These

values essentially quantify the importance of each parameter.

21

�

��

���

���

���

���

���

��

�� ��� ��� ��� ��� ��� ��
 ���

���������
��	������������������������	����������

�
��	�����������	
����������������	����������

�
��	���������������������������	����������

�
��	������������������	�	����������������

�������

�
��
��
��

�
��

�

����
����
����
����
����
���

����
����
���

���
����

���
 ���
� ���� ����� ���� ����� ��� ����� ���

���������	
�����������������������������

�������

�
��
��
��

�
��

�

	�������������������������������

	�����	
������������������������

(a) MATLAB/OCSVM, dataset analcatdata apnea3 (b) Sklearn/IF, dataset ar1

Fig. 7. DEANOMALYZER bivariate search example: reducing nondeterminism.

���������

��	�
�	

�����	��

������
������

���
������

	�
���
���

���������

�����&
������

	�
�����

	�
�����
������������
��������
��������

�������������
���
�����

�����	�
�����
�������
��������&

��

����� �
�! �" �

� �#�"� �����	�
�����
������
��������'

����� �
�! �" �

� �#�"�

�����&
������

	�
�����

�����'
������

	�
�����
$��������

	�
�����

Fig. 8. DEANOMALYZER consistency improver: univariate search.

�

�%�

���

���

���

���

��	

��

���

���

	�����	���� ������

�
��
��
��
��
��
���

��

�	
�	���
��� �����

�������	�

���	������� ������
�������	������������ ����

������	��������������� ���

������	��������������� ���
������	�����������
������� �� �

�����

Fig. 9. DEANOMALYZER improving consistency in dataset vertebral using
Robust Covariance algorithm in Sklearn and MATLAB.

Table III shows how DEANOMALYZER performed on Iso-

lation Forest algorithm in Sklearn. In univariate search we see

a high improvement in determinism (19.8%, i.e., from 0.783

to 0.938) with the mean performance virtually identical to the

default setting. In bivariate search we see a slight increase in

determinism (from 0.783 to 0.84) without compromising per-

formance. Univariate search improved determinism in 53 out

of 54 datasets; one dataset’s determinism remained unchanged.

In case of performance we do not see any mean difference

with the default, but in 30 datasets we observed an increase

in F1 score while in 23 datasets we observed a decrease in

F1 score (performance on one dataset remained unaffected).

In bivariate search, out of 54 datasets, we see that 42 have

TABLE I
IF/SKLEARN N ESTIMATORS: U TEST SCORE OF CROSS-RUN ARI

100 128 256 512
64 0.06573 0.00362 4.43E-06 2.57E-10
100 0.26738 0.00331 2.84E-07
128 0.02761 6.57E-06
256 0.00943

TABLE II
IF/SKLEARN: AIC VALUES, IN DECREASING ORDER OF IMPORTANCE

max samples n estimators max features bootstrap n jobs warm start
35 64 138 171 171 171

TABLE III
IF: IMPACT OF DEANOMALYZER

Config. Determinism Performance
#Datasets #Datasets

Mean Better Worse Mean Better Worse

S
k
le

ar
n Default 0.783 - - 0.294 - -

Univariate 0.938 53 0 0.294 30 23
Bivariate 0.840 42 0 0.308 42 0

M
A

T
L

A
B Default 0.839 - - 0.260 - -

Univariate 0.943 53 0 0.245 26 25
Bivariate 0.881 40 0 0.298 40 0

R

Default 0.983 - - 0.260 - -
Univariate 0.992 35 0 0.279 20 15
Bivariate 0.989 23 0 0.291 23 0

better determinism and performance than the default.

2) MATLAB: While the MATLAB implementation of the

IF algorithm is nondeterministic, a default parameter setting

renders it de facto deterministic in an unexpected way. Specif-

ically, the default ContaminationFraction is 0, meaning the

implementation will label 0% of the points as anomaly – a

questionable default value yielding a deterministic “no anoma-

lies” outcome. Hence, though deterministic, this outcome is

not desirable due to false negatives; in other words, if the

dataset contains outliers, the F1 score will be 0. Typically users

set the value of ContaminationFraction to 0.05 or 0.1 meaning

the user expects the dataset to have 5% or 10% outliers [20],

[21]. MATLAB does not offer a strategy for predicting an

appropriate value for this parameter. Therefore, we created

a set of possible ContaminationFraction values based on

the anomaly percentage predictions made by Sklearn/IF and

Sklearn/LOF.

As comparing it with the default ContaminationFraction
would be pointless, we compared the custom settings with a

22

Fig. 10. Isolation Forest: Performance v. Consistency before (default) and
after DEANOMALYZER’s search. The three large points are mean F1 score
and ARI across all datasets.

modified default setting, where the ContaminationFraction is

set to 0.1. Univariate search increased cross-run ARI by 12.4%

but led to a 5.8% loss in F1 score. However with bivariate

search, we see both a 5% increase in cross-run ARI and a

14.6% increase in F1 score.

3) R: R’s implementation of Isolation Forest uses the

same random seed in each run, yielding deterministic results.

However this behavior is vulnerable to changes in seed values.

We experimented with different seed values in different runs

and observed nondeterminism for 43 out of the 54 datasets.

Although nondeterministic, the cross-run ARI was very high,

averaging 0.98. This is mainly due to its default value of ntrees
set to 500; note that ntrees in R/IF has similar semantics to

n estimators in Sklearn/IF. The average F1 score in default

setup is 0.26. With DEANOMALYZER in univariate search,

determinism raised to 0.992; in bivariate search, DEANOMA-

LYZER increased accuracy by 11.9%.

B. Inconsistency

Figure 10 shows the gains thanks to DEANOMALYZER’s

bivariate and univariate search. The x-axis is the average F1

score for each toolkit, while the y-axis is the average mutual

ARI (Sklearn v. R, R v. MATLAB, and Sklearn v. MATLAB).

Each point represents a dataset, with default in red, univariate

in green, and bivariate in blue. The enlarged points in the figure

represent the mean of all datasets (performance and consis-

tency) in each setting. In both univariate and bivariate search

we see an increase in both performance and consistency – note

how the green points have shifted up (higher consistency) and

the blue points have shifted up and right (better consistency

and performance). DEANOMALYZER has revealed that, for

most datasets, a high increase in consistency can be achieved

by matching values of parameters ContaminationFraction and

sample size between toolkits.

V. ROBUST COVARIANCE

Robust Covariance, supported by MATLAB and Sklearn,

has nondeterministic behavior in both implementations; the

two implementations are inconsistent as well.

A. Nondeterminism

We discuss DEANOMALYZER’s outcome on each toolkit;

the results are shown in Table IV.

1) Sklearn: Unlike Sklearn/IF and Sklearn/LOF,

Sklearn/RobCov does not follow any algorithm or method to

predict the number of outliers in a dataset; instead a default

value of 0.1 is used (meaning 10% of the points will be

labeled as outliers).

TABLE IV
ROBCOV: IMPACT OF DEANOMALYZER

Config. Determinism Performance
#Datasets #Datasets

Mean Better Worse Mean Better Worse

S
k
le

ar
n Default 0.87 - - 0.25 - -

Univariate 0.93 37 0 0.26 21 14
Bivariate 0.91 29 0 0.28 29 0

M
A

T
L

A
B Default 0.978 - - 0.077 - -

Univariate 1.0 12 0 0.120 14 10
Bivariate 0.984 11 0 0.147 22 0

Both univariate and bivariate search performed better than

the default on average, with many datasets achieving a cross-

run ARI of 1 for both univariate and bivariate search. From

Table IV we can see that determinism increased in both

univariate (6.9%) and bivariate (4.6%) search without losing

performance. In univariate search, out of 54 datasets we see

a decrease in performance in 14, but overall we gained 4% in

performance (mean F1 score increase across all datasets).

2) MATLAB: While MATLAB has good determinism with

default settings, DEANOMALYZER’s univariate search made

performance completely deterministic (mean cross-run ARI

increased from 0.978 to 1). However with default settings,

the implementation has a very low F1 score (on average

0.077), as for 38 datasets, the algorithm failed to detect any

anomalies. DEANOMALYZER managed to increase the overall

performance to 0.147.

B. Inconsistency

The MATLAB and Sklearn implementations of RobCov

were very inconsistent (mean mutual ARI was 0.26); while

DEANOMALYZER managed to reduce inconsistency substan-

tially, it did not eliminate it altogether.

Figure 11 shows the mutual ARI of the univariate search

and bivariate search with default setting between the two

implementations. With univariate search, DEANOMALYZER

increased mutual ARI from 0.26 to 0.7 and for the bivariate

search from 0.26 to 0.5, as seen in Table V. In terms of

performance, we only see a small decrease in Sklearn (6%)

with univariate search.

VI. LOCAL OUTLIER FACTOR

LOF is by design a deterministic algorithm, so in all toolkits

we saw deterministic output for all datasets. Nevertheless, the

output was inconsistent across toolkits, which DEANOMA-

LYZER successfully reduced.

Recall that LOF uses a local density metric to identify

outliers (Section II-B). In practice, the metric is Local Reach-

ability Density (LRD), an inverse density measure (i.e., a high

23

Fig. 11. Robust Covariance: Performance v. Consistency before (default) and
after running DEANOMALYZER.

TABLE V
ROBUST COVARIANCE: IMPACT OF DEANOMALYZER

Default Univariate Bivariate
Mutual ARI Mean 0.26 0.70 0.50
(Sklearn #Datasets Better - 16 16
v. MATLAB) #Datasets Worse - 0 0
Performance Mean 0.33 0.31 0.40
Sklearn #Datasets Better - 8 12

#Datasets Worse - 6 0
Performance Mean 0.26 0.29 0.30
MATLAB #Datasets Better - 10 14

#Datasets Worse - 5 0

LRD value indicates the point is in a non-dense region, hence

has a high probability of being an outlier). Implementations

use a threshold LRD value to label the point normal (below

threshold) or outlier (above threshold). MATLAB and R use

a predefined threshold value: 1 in R and 2 in MATLAB. This

threshold produces poor performance in MATLAB and R,

which DEANOMALYZER successfully addressed.

We plot the DEANOMALYZER performance improvements

in Figure 12. The ‘default’ boxplots show the performance

(statistics across all datasets) for each toolkit. Note the average

F1 scores: 0.097 in MATLAB and 0.49 in R. In contrast,

Sklearn’s performance was significantly better (average F1

score: 0.87). Sklearn operates differently: by default (con-
tamination set to “auto”), Sklearn sets the threshold to 1.5

and it produces a binary (normal/outlier) output. With differ-

ent contamination values, Sklearn calculates the appropriate

threshold. Another important parameter is the minPts (in R)

or k (in Sklearn and MATLAB) – the number of nearest

neighbors of a point. By default, the parameter is set to 20

in Sklearn/MATLAB and to 5 in R. DEANOMALYZER was

able to increase the F1 score of R substantially (from 0.49

to 0.89); for MATLAB, the improvement was modest (from

0.097 to 0.237, a 0.14 gain). For both R and MATLAB we

set the threshold to match the percentage of outliers identified

by Sklearn’s auto strategy (in other words, the output of all

3 implementations will have the same number of anomalies).

This moved MATLAB and R’s threshold and minPts values

close to Sklearn’ default values.

We present the results, substantial increase in consistency

among all three toolkits, in Table VI. In all three cases

Fig. 12. Local Outlier Factor: performance comparison.

TABLE VI
LOCAL OUTLIER FACTOR: IMPACT OF DEANOMALYZER

Sklearn v. R Sklearn v. MATLAB R v. MATLAB
Default -0.012 0.132 -0.001
Univariate 0.913 0.923 0.892

after running DEANOMALYZER, the cross-toolkit ARI moved

from roughly 0 (no similarity between outputs) to 0.9 (strong

agreement between outputs), a significant increase. Note that

for LOF, both univariate and bivariate search achieved the

same result, so we omit the bivariate results from the table.

VII. ONE CLASS SVM

First, we show how DEANOMALYZER increases MAT-

LAB/OCSVM’s determinism, and then show how DEANOM-

ALYZER improves consistency between toolkits.

A. Nondeterminism

Our experiments indicated that MATLAB has high nonde-

terminism and low performance. We show the default settings’

outcomes in Figure 13: as the red points indicate, average

determinism (ARI) was 0.105 and average F1 score was 0.127.

DEANOMALYZER was able to increase both determinism

and performance significantly. Table VII shows the average

cross-run ARI of both univariate and bivariate search rise

substantially (from 0.105 to 0.896 and 0.778, respectively)

and the F1 score doubles (from 0.127 to 0.258 and 0.288,

respectively).

TABLE VII
MATLAB/OCSVM: IMPACT OF DEANOMALYZER

Configs Determinism Performance
#Datasets #Datasets

Mean Better Worse Mean Better Worse
Default 0.105 - - 0.127 - -
Univariate 0.896 54 0 0.258 44 10
Bivariate 0.778 51 0 0.288 50 0

B. Inconsistency

The implementations of OCSVM are highly inconsistent. In

default settings we found the mutual ARI to be below 0.1 for

MATLAB v. R and MATLAB v. Sklearn, whereas for Sklearn

v. R it was 0.18. When DEANOMALYZER “imposed” Sklearn’s

24

Fig. 13. MATLAB/OCSVM: Performance v. Determinism before (default)
and after running DEANOMALYZER.

nu parameter value onto R and MATLAB (in MATLAB

that parameter’s name is ContaminationFactor), a significantly

high consistency was achieved. Specifically, for MATLAB v.

R consistency improved from 0.007 to 0.378; for MATLAB v.

Sklearn, consistency increased from 0.02 to 0.477; for Sklearn

v. R, the increase was from 0.18 to 0.39.

VIII. RELATED WORK

We found little prior work on AD reliability, and no attempt

to improve AD implementations’ reliability.

Ahmed and Neamtiu [1] measured nondeterminism and

inconsistency among AD implementations of 4 popular AD

algorithms; they found that more than half of the implemen-

tations are nondeterministic and all implementation pairs are

inconsistent. Soenen et al. [22] studied the effect of hyperpa-

rameter tuning between default and maximum performance

within the same toolkit, and proposed a strategy to tune

parameters for a given dataset. However these efforts have

not attempted to alleviate nondeterminism or inconsistency.

Nondeterminism and inconsistency have been studied in the

context of clustering algorithms. Several studies have exposed

and quantified the issues [23]–[25] without providing a so-

lution. Yin et al. [26] took a manual white-box approach for

exposing the root causes of, and reducing, nondeterminism and

inconsistency for clustering implementations. Their approach

is not applicable here, as AD and clustering solve different

problems; in addition, their white-box approach was focused

on specific issues in specific implementations, rather than

being a black-box optimization tool.

IX. CONCLUSIONS

Given the rising popularity of Anomaly Detection and evi-

dence that AD can produce nondeterministic and inconsistent

results, there is a need for approaches that allow testing,

and increasing the reliability of, AD implementations. Our

approach DEANOMALYZER explores AD toolkits’ parameter

spaces to reduce nondeterminism and inconsistency. An evalu-

ation on 11 AD implementations has confirmed that parameter-

based optimization is an effective approach, and has estab-

lished that DEANOMALYZER is effective at achieving higher

determinism and consistency on given AD implementations.

ACKNOWLEDGMENTS

This material is based upon work supported by the National

Science Foundation under Grant No. CCF-2007730.

REFERENCES

[1] M. Ahmed and I. Neamtiu, “Anomalous anomaly detection,” in
2022 IEEE International Conference On Artificial Intelligence Testing
(AITest), 2022, pp. 1–6.

[2] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

[3] L. Van der Maaten and G. Hinton, “Visualizing non-metric similarities
in multiple maps,” Machine learning, vol. 87, no. 1, pp. 33–55, 2012.

[4] W. N. Street, W. H. Wolberg, and O. L. Mangasarian, “Nuclear feature
extraction for breast tumor diagnosis,” in Biomedical Image Processing
and Biomedical Visualization, ser. SPIE, R. S. Acharya and D. B.
Goldgof, Eds., vol. 1905, Jul. 1993, pp. 861–870.

[5] W. H. Wolberg and O. L. Mangasarian, “Multisurface method of pattern
separation for medical diagnosis applied to breast cytology.” Proceedings
of the National Academy of Sciences, vol. 87, no. 23, pp. 9193–9196,
1990. [Online]. Available: https://www.pnas.org/content/87/23/9193

[6] L. Hubert and P. Arabie, “Comparing partitions,” Journal of Classifica-
tion, vol. 2, pp. 193–218, 02 1985.

[7] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in ICDM.
IEEE, 2008, pp. 413–422.

[8] P. J. Rousseeuw and K. V. Driessen, “A fast algorithm for the minimum
covariance determinant estimator,” Technometrics, vol. 41, no. 3, pp.
212–223, 1999.

[9] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE
Transactions on Information Theory, vol. 13, no. 1, pp. 21–27, 1967.

[10] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: identifying
density-based local outliers,” in ACM SIGMOD, 2000, pp. 93–104.

[11] K. Heller, K. Svore, A. D. Keromytis, and S. Stolfo, “One class support
vector machines for detecting anomalous windows registry accesses,”
2003.

[12] “Anomaly detection toolbox.” [Online]. Avail-
able: https://github.com/dsmi-lab-ntust/AnomalyDetectionToolbox/tree/
master/Algorithms/distributionBased/LOF

[13] David-Cortes, “David-cortes/isotree: (python, r, c/c++) isolation forest
and variations such as sciforest and eif, with some additions
(outlier detection + similarity + na imputation).” [Online]. Available:
https://github.com/david-cortes/isotree

[14] “Local outlier factor score.” [Online]. Available: https://search.r-project.
org/CRAN/refmans/dbscan/html/lof.html

[15] “Svm: Support vector machines.” [Online]. Available: https://www.
rdocumentation.org/packages/e1071/versions/1.7-9/topics/svm

[16] “ODDS,” April 2022, http://odds.cs.stonybrook.edu/.
[17] “OpenML,” April 2022, https://www.openml.org/.
[18] P. E. McKnight and J. Najab, “Mann-whitney u test,” The Corsini

encyclopedia of psychology, pp. 1–1, 2010.
[19] Y. Sakamoto, M. Ishiguro, and G. Kitagawa, “Akaike information

criterion statistics,” Dordrecht, The Netherlands: D. Reidel, vol. 81, no.
10.5555, p. 26853, 1986.

[20] “Fit isolation forest for anomaly detection - MATLAB,” December 2022,
https://www.mathworks.com/help/stats/iforest.html.

[21] “Code Generation for Anomaly Detection,” De-
cember 2022, https://www.mathworks.com/help/stats/
code-generation-for-anomaly-detection.html.

[22] J. Soenen, K. Leuven, E. V. Wolputte, L. Perini, V. Vercruyssen,
W. Meert, J. Davis, and H. Blockeel, “The effect of hyperparameter
tuning on the comparative evaluation of unsupervised anomaly detec-
tion methods,” ser. ODD ’21: 6th Outlier Detection and Description
Workshop, 2021.

[23] V. Musco, X. Yin, and I. Neamtiu, “Smokeout: An approach for testing
clustering implementations,” in ICST 2019, April 2019.

[24] X. Yin, V. Musco, I. Neamtiu, and U. Roshan, “Statistically rigorous
testing of clustering implementations,” in AITEST 2019, April 2019.

[25] S. Rahaman, R. Samuel, and I. Neamtiu, “Quantifying nondeterminism
and inconsistency in self-organizing map implementations,” in IEEE
AITest, 2021, pp. 85–92.

[26] X. Yin, I. Neamtiu, S. Patil, and S. T. Andrews, “Implementation-
induced inconsistency and nondeterminism in deterministic clustering
algorithms,” in ICST 2020, October 2020.

25

